Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

Congruences for q [ p / 8 ] ( m o d p )

Zhi-Hong Sun — 2013

Acta Arithmetica

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of the integers m and n. Let p ≡ 1 (mod 4) be a prime, q ∈ ℤ, 2 ∤ q and p=c²+d²=x²+qy² with c,d,x,y ∈ ℤ and c ≡ 1 (mod 4). Suppose that (c,x+d)=1 or (d,x+c) is a power of 2. In this paper, by using the quartic reciprocity law, we determine q [ p / 8 ] ( m o d p ) in terms of c,d,x and y, where [·] is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.

On the quartic character of quadratic units

Zhi-Hong Sun — 2013

Acta Arithmetica

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, d = 2 r d and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine ( b + ( b ² + 4 α ) / 2 ) ( p - 1 ) / 4 ) ( m o d p ) for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and ( 2 a + 4 a ² + 1 ) ( p - 1 ) / 4 ( m o d p ) for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for U ( p - 1 ) / 4 ( m o d p ) and the criterion for p | U ( p - 1 ) / 8 (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and U n + 1 = b U + U n - 1 ( n 1 ) , and b ≢...

Legendre polynomials and supercongruences

Zhi-Hong Sun — 2013

Acta Arithmetica

Let p > 3 be a prime, and let Rₚ be the set of rational numbers whose denominator is not divisible by p. Let Pₙ(x) be the Legendre polynomials. In this paper we mainly show that for m,n,t ∈ Rₚ with m≢ 0 (mod p), P [ p / 6 ] ( t ) - ( 3 / p ) x = 0 p - 1 ( ( x ³ - 3 x + 2 t ) / p ) ( m o d p ) and ( x = 0 p - 1 ( ( x ³ + m x + n ) / p ) ) ² ( ( - 3 m ) / p ) k = 0 [ p / 6 ] 2 k k 3 k k 6 k 3 k ( ( 4 m ³ + 27 n ² ) / ( 12 ³ · 4 m ³ ) ) k ( m o d p ) , where (a/p) is the Legendre symbol and [x] is the greatest integer function. As an application we solve some conjectures of Z. W. Sun and the author concerning k = 0 p - 1 2 k k 3 k k 6 k 3 k / m k ( m o d p ² ) , where m is an integer not divisible by p.

Ramsey numbers for trees II

Zhi-Hong Sun — 2021

Czechoslovak Mathematical Journal

Let r ( G 1 , G 2 ) be the Ramsey number of the two graphs G 1 and G 2 . For n 1 n 2 1 let S ( n 1 , n 2 ) be the double star given by V ( S ( n 1 , n 2 ) ) = { v 0 , v 1 , ... , v n 1 , w 0 , w 1 , ... , w n 2 } and E ( S ( n 1 , n 2 ) ) = { v 0 v 1 , ... , v 0 v n 1 , v 0 w 0 , w 0 w 1 , ... , w 0 w n 2 } . We determine r ( K 1 , m - 1 , S ( n 1 , n 2 ) ) under certain conditions. For n 6 let T n 3 = S ( n - 5 , 3 ) , T n ' ' = ( V , E 2 ) and T n ' ' ' = ( V , E 3 ) , where V = { v 0 , v 1 , ... , v n - 1 } , E 2 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 1 v n - 2 , v 2 v n - 1 } and E 3 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 2 v n - 2 , v 3 v n - 1 } . We also obtain explicit formulas for r ( K 1 , m - 1 , T n ) , r ( T m ' , T n ) ( n m + 3 ) , r ( T n , T n ) , r ( T n ' , T n ) and r ( P n , T n ) , where T n { T n ' ' , T n ' ' ' , T n 3 } , P n is the path on n vertices and T n ' is the unique tree with n vertices and maximal degree n - 2 .

Turán's problem and Ramsey numbers for trees

Zhi-Hong SunLin-Lin WangYi-Li Wu — 2015

Colloquium Mathematicae

Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with V = v , v , . . . , v n - 1 , E = v v , . . . , v v n - 3 , v n - 4 v n - 2 , v n - 3 v n - 1 and E = v v , . . . , v v n - 3 , v n - 3 v n - 2 , v n - 3 v n - 1 . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for r ( T , T i ) , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.

Page 1

Download Results (CSV)