Currently displaying 1 – 20 of 27

Showing per page

Order by Relevance | Title | Year of publication

Fibonacci numbers and Fermat's last theorem

Zhi-Wei Sun — 1992

Acta Arithmetica

Let Fₙ be the Fibonacci sequence defined by F₀=0, F₁=1, F n + 1 = F + F n - 1 ( n 1 ) . It is well known that F p - ( 5 / p ) 0 ( m o d p ) for any odd prime p, where (-) denotes the Legendre symbol. In 1960 D. D. Wall [13] asked whether p ² | F p - ( 5 / p ) is always impossible; up to now this is still open. In this paper the sum k r ( m o d 10 ) n k is expressed in terms of Fibonacci numbers. As applications we obtain a new formula for the Fibonacci quotient F p - ( 5 / p ) / p and a criterion for the relation p | F ( p - 1 ) / 4 (if p ≡ 1 (mod 4), where p ≠ 5 is an odd prime. We also prove that the affirmative answer to...

On sums of binomial coefficients modulo p²

Zhi-Wei Sun — 2012

Colloquium Mathematicae

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) / m k ( m o d p ² ) , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and p a > 3 , then k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) ( - h / 2 ) k ( ( 1 - 2 h ) / ( p a ) ) ( 1 + h ( ( 4 - 2 / h ) p - 1 - 1 ) ) ( m o d p ² ) , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If p a > 3 then k = 0 p a - 1 ( p a - 1 k ) ( 2 k k ) ( - 1 ) k 3 p - 1 ( p a / 3 ) ( m o d p ² ) .

The tangent function and power residues modulo primes

Zhi-Wei Sun — 2023

Czechoslovak Mathematical Journal

Let p be an odd prime, and let a be an integer not divisible by p . When m is a positive integer with p 1 ( mod 2 m ) and 2 is an m th power residue modulo p , we determine the value of the product k R m ( p ) ( 1 + tan ( π a k / p ) ) , where R m ( p ) = { 0 < k < p : k is an m th power residue modulo p } . In particular, if p = x 2 + 64 y 2 with x , y , then k R 4 ( p ) 1 + tan π a k p = ( - 1 ) y ( - 2 ) ( p - 1 ) / 8 .

Page 1 Next

Download Results (CSV)