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EXISTENCE OF SOLUTIONS FOR QUASILINEAR DELAY
INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL
CONDITIONS
KRISHNAN BALACHANDRAN , FRANCIS PAUL SAMUEL
ABSTRACT . ‘We prove the existence and uniqueness of mild and classical solu -
t ion to a quasilinear delay integrodifferential equation with nonlocal condition .

The results are obtained by using Cg— semigroup and the Banach fixed point

theorem .
1. INTRODUCTION
The existence of solution to evolution equations with nonlocal conditions in Banach
space was studied first by Byszewski [6]. In that paper , he established the

existence and uniqueness of mild , strong and classical solutions of the nonlocal Cauchy
problem

u'(t) + Au(t) = f(t,u(t)),t € (0,a
u(0) + g(t1,to, ...y tp, u(ts), ulte)..., u(ty) = uo, (1.2)

where 0 < t; < -+ < t, < a,—A is the infinitesimal generator of a Cy— semigroup
in a Banach space X,up € X and f :[0,a] x X — X, g :[0,a]” x XP — X are given
functions . The symbol g(¢1, ..., tp, u(+)) is used in the sense that in the place of “ -7
we can substitute only elements of the set (¢1,...,¢,). For example

g(t1seestp, u(-)) = Cru(ty) + - - - + Cpully),

where C;(i = 1,2...,p) are given constants . Subsequently many authors extended the
work to various kind of nonlinear evolution equations [3,4,7,8].

Several authors have studied the existence of solutions of abstract quasilinear evo-
lution equations in Banach space [1,5,10,18]. Bahuguna [2],Oka[15 ] and
Oka and Tanaka [ 1 6 ] discussed the existence of solutions of quasilinear integrodifferen
- tial equations in Banach spaces .  Kato [ 1 2 ] studied the nonhomogeneous evolu-
tion equations and Chandrasekaran [ 9] proved the existence of mild solutions of
the nonlocal Cauchy problem for a nonlinear integrodifferential equation . Dhakne and
Pachpatte [ 1 1] established the existence of a unique strong solution of a quasilinear
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ifferential equation in Banach spaces .  An equation of
this type o ccurs in a nonlinear conversation law with memory

u(t, ) + U(u(t,x)), = /0 b(t — s)U(u(t,z)).ds + f(t,x), te€]0,al, (1.3)
u(0,2) = ¢(z), =xeR. (1.4)

It is clear that if nonlocal condition (1. 2 ) is introduced to ( 1. 3 ) , then it will also
have better effect than the classical condition u(0,z) = ¢(x). Therefore , we would
like to extend the results for (1. 1)- (1. 2) to a class of integrodifferential equations
in
Banach spaces .

The aim of this paper is to prove the existence and uniqueness of mild and classical
solutions of quasilinear delay integrodifferential equation with nonlocal conditions of
the form

u'(t) + At w)u(t) = f(t,u(t), u(a(t))) +/0 k(t, s,u(s),u(B(s)))ds, (1.5)
u(0) + () = w0 (L6)

where t € [0,a], A(t,u) is the infinitesimal generator of a Cp— semigroup in a Banach

spaceX,ug € X, [ IX X XX > X k: AxXxX > X,g:C(I:X)— X,

a,B : I — I are given functions . Here I = [0,a] and A = {(¢,8) : 0 < s <t < a}.
The results obtained in this paper are generalizations of the results given by Pazy [ 1 7
], Kato [ 13,1 4] and Balachandran and Uchiyama [ 5] .
2. PRELIMINARIES

Let X and Y be two Banach spaces such that Y is densely and continuously em-
bedded in X. For any Banach spaces Z the norm of Z is denoted by | - | or
| - || Z. The space of all bounded linear operators from X to Y is denoted by B(X,Y)
and B(X, X) is written as B(X). We recall some definitions and known facts from
Pazy [17].
Definition 2 . 1. Let S be a linear operator in X and let Y be a subspace of X.
The operator S defined by D(°) = {z € D(S)NY : Sz € Y} and S, = Sz for 2 € D(%)
is called the part of S in Y.
Definition 2 . 2. Let B be a subset of X and for every 0 <t < a and b € B, let
A(t, b) be the infinitesimal generator of a Cy semigroup Sy, b(s),s > 0, on X. The
family of operators {A(t,b)}, (t,b) € I x B, is stable if there are constants M > 1 and
w such that

p(A(t, ) D (w,00) for(t,b) € I x B,

k
I TTRO: Aty 5)) 1< MO —w)~*
j=1

for A > w every finite sequences 0 <t} <ty <--- <t <a,b; € B, 1<j<k Thest
ability of {A(t,b)}, (¢,b) € I x B implies ( see [ 1 7] ) that



k k
I LSt () 1€ Mexp{wd 55}, s3>0
j =1 ] =1
and any finite sequences 0 <ty <ty <--- <ty <a,b; € B,1<j<kk=1,2,..
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Definition 2 . 3 . Let Si¢p(s),s > 0 be the Cy— semigroup generatated
by A(t,b), (t,b) €I x B. A subspace Y of X is called A(t,b)— admissible if Y is
invariant subspace of Sy ;(s) and the restriction of S, ,(s) to Y is a Cp— semigroup in
Y.

Let B C X be asubset of X such that for every (¢,b) € Ix B, A(tb)
is the infinitesimal generator of a Cyp— semigroup S;(s),s > 0 on X. We make the
following assumptions :

(E1) The family {A(¢,b)}, (¢t,b) € I x B is stable .
(E2) Y is A(t,b)— admissible for (¢,b) € I x B and the family {4(¢,b)}, (¢,b) €
I x B of parts A(t,b) of A(t,b) inY, is stable in Y.

(E3) For (t,b) € IxB,D(A(t,b)) DY, A(t,b) is a bounded linear operator from

Y to X and ¢ — A(t,b) is continuous in the B(Y, X) norm || . || for every

be B.
(E4) Thereis a constant L > 0 such that

| A(t.by) — A(t,b) | Y = X <L bi—by|| X

holds for every by,bs € B and 0 <t < a.
Let B be a subset of X and {A(¢,b)}, (t,b) € I x B be a family of operators satisfying
the conditions (E1)- (E4). Ifue C(I: X) has values in B then there is a unique
evolution system U (¢, s;u),0 < s <t < a, in X satisfying , (see [1 7, Theorem 5. 3.
1
and Lemma 6 . 4. 2, pp. 135,201-202]
(i) | U#t,su)| < Met=5) for 0 <s<t<a. where M and w are stability

constants .

(i1) %U(t,s;u)w = A(s,u(s))U(t, s;u)w for w e Y, for 0 < s <t < a.

(i) LUt su)w=-U(t,s;u)A(s,u(s)w forweY, for 0< s <t <a.
Further we assume that

(E5) Forevery u e C(I: X) satisfying u(t) € B for 0 <t < a, we have

Ult,s;u)Y CY, 0<s<t<a

and U(t, s;u) is strongly continuous in Y for 0 < s <t <a. ( E 6) Y is reflexive . (
E 7) Forevery (t,b1,b2) € I x Bx B, f(t,b1,b2) €Y. (E8) ¢g:C(I:B)—Yis
Lipschitz continuous in X and bounded in Y, that is ,

there exist constants G > 0 and GG; > 0 such that

lg(u) [ Y <G,
I 9(u) — g0) | Y < Gy mase | u(t) —v(t) | X.
For the conditions (E 9 ) and ( E 10 ) let Z be taken as both X and Y.

(E9) k:AXxZ— Zis continuous and there exist constants K1 > 0 and Ky > 0
such that

t
/ | k(e 5,11, 01) — k(t, 5,19, 09) || 29 < Ky (]| wn(t) — ua(t) + o1(t) — vct) || 2),
0

t
Ky = max{/ | k(t5,0,0) || Zds : (t,5) € A}.
0
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is continuous and there exist constants K3 > 0 and
K4 > 0 such that

1t ur,v1) = [t ug,09) || Z < Ks(|| ur —uz || Z+ [ o1 —v2 || Z)
Ky =max || £(¢,0,0) || Z.
Let us take My = max {|| U(t,s;u) | B(Z)0 < s <t <a,u € B}.

(E11) «,B:1I — I is absolutely continuous and there exist constants b > 0 and
¢ > 0 such that o/(t) > b and p'(t) > c respectively fort € I. (E12)

Mo[l| uo | Y + G+ r[Ksa(1+1/b) + Kia(1+1/¢)] + a(Ky + Ka)] <7
q=[Kallu | Y +GKa+ MyG:1 + My[Ksa(l +1/b) + Kia(1+1/c)]
+Kal[r(Ksa(1+1/b) + Kia(1+1/c¢))] + a(Ks + K2)] < 1L
Next we prove the existence of lo cal classical solutions of the quasilinear problem (
1.5)-(1.6).
For a mild solution of (1. 5)— (1. 6) we mean a function u € C(I : X) with
values in B and ug € X satisfying the integral equation

cu)u) — cu)g(u t
u(t) = UL G 0 (8 L P U s ) [f (s, u(s), u(als)  (21)

A function u € C(I : X) such that u(t) € D(A(t,u(t))) for t € (0,a],u € C1((0,d] : X)
and satisfies (1.5))—(1.6)in X is called a classical solutionof (1.5)-(1.6
) on I. Further there exists a constant K > 0 such that for every u,v € C(I : X) with
values in B and every w € Y we have

t
WU, s;u)w—Ut,s;v)w || <K wl Y/ | w(r) —v(r) || dr. (2.2)
S
3. EXISTENCE RESULT Theorem 3 . 1. Let up €Y andlet B={uec X :
lu||Y <r},r>0. Ifthe as -

sumptions (E1)—- (E12) are satisfied , then (1.5) - (1. 6) has a unique
classical s o lution

ue C([0,a] : Y)NCH(0,a] : X)

Proof . Let S be a nonempty closed subset of C([0,a] : X) defined by S ={u:u €
C([0,a] : X), || u(t) | Y <rfor0 <t < a}. Consider a mapping P on S defined by
t
(Pu)(t) = Ult,0:)u0 — U (6. 0:ug(w) + | Ult,:0)[(5,u(s),ula(5)
0
+ [ k(s 7u(r), u(B(7)))dr]ds.
0

We claim that P maps S into S. For u € S, we have

| Pu(t) || Y

=[l U 0; wjuo = U(t, 0;u)g(u) +/0 U(t, s;u)[f(s,u(s), u(als)))
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/ k(s, T, u(r 7)))dr]ds ||
< U, 0;w)uo || + || U, 0;u)g(w) ||

+/0 | U, s;u) | Il f(s,u(s),u(a(s))) — f(s,0,0) | + || f(s,0,0) ||
o /Os[k(s,T,u(T),u(ﬁ(T))) — k(s,7,0,0dr || + | /Osk(s,f,o,o)df 1ds.

Using assumptions (E8 ) - (E11), we get

| Pu(®) | Y < Mo | uo | Y + MoG + / MolKs( uls) || + 1| u(a(s)) [) + K
/ Ki(| u Hu(B(r)) [)dr + /0 Kdrlds
< Mo | uo | Y + MG + My[Ksar + Ky / | u(a(s)) || (@ (s)/b)ds

+Kya+ Kyar + K, / (Il u(B(s)) || (8'(s)/e)ds + Kaal

a(t)
< My || Uo H Y + MyG + Mo[K3a’/‘ + (Kg/b)/ || ’LL(S) || ds + K,a
a(0)

B(t)
LK yar + (K, /o) / (Il u(s) || ds + Kaa]
B(0)
< Mol wo || Y + G +r[Kza(l+1/b) + Kia(1+1/c)] + a(K4 + K3)]

From assumption ( E 12 ), one gets || Pu(t) || Y <r.  Therefore P maps S into it
self . Moreover , if u,v € S, then

| Pu(t) — Po(t) |
< U 0;w)uo = Ut 0;0)uo |+ [[U(E0;u)g(u) = U(t,0;v)g(v) |

/HUtsu (s,u(s /kSTu 7)))dT]

—U(t, 5;0)[f(s,0(s), v(a(s))) +/ k(s, 7, 0(7),v((B()))dr] || ds

0
<[ U, 0;w)uo = U(t, 0;0)uo |+ [[U(20;u)g(u) = U(t0;v)g(w) ||
= 1O 0;0)9(u) = U(#,0;v)g(v) ||

S

+ / (UG 5:0)[f (s, uls), u(a(s))) + / K(s, 7 u(r), u(B(r)))dr]
Ut 5;0) [f (s, u(s), uals)) + / k(s 7, u(r), u((B(r)))dr] |
UG s 0) [ uls), ula(s) + / k(s (), u((B(r)))dr]

—U(t, s30)[f (s, 0(s), v(a(s))) + /OSk(smv(T)w((ﬁ(T)))dT] [}ds
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E12), one can get

I Pu(t) — Po(t) ||
< Ka |l uo [| Y max [ u(r) —v(7) | +GKamax | u(r) —v(r) |

+MyG, max | u(r) —v(7) |

FKamas | u(r) —o(r) | [Ks / l us) || ds + Ks / | u(a(s)) || (' (s)/b)ds
+Kya+ Kyar + Ky / | u(B(s)) || (8'(s)/c)ds + K]

Mo / I u(s) - v(s) || ds + K / I u(a(s)) — v(als)) || (@ (s)/b)ds

+Eamax || u(r) —o(7) | +K1/ lu(B(s)) = v(B(s)) Il (B'(s)/c)ds
TE 0

<[Ka | uo || Y +GKa+ MyGy + My[K3a(1+1/b) + Kia(l+1/c)]
+Kalr(Kza(l+1/b) + Kia(l +1/¢))] + a(Kq + Kz)Jmax || u(r) —o(7) ||

= qmax || u(r) = o(7) |

where 0 < ¢ < 1. From this inequality it follows that for any ¢ € I,

| Pu(t) — Polt) || < qmax || u(r) = o(r) |

so that P is a contraction on S. From the contraction mapping theorem it follows that
P has a unique fixed point u € S which is the mild solution of (1.5))—- (1.6 ) on
[0, a]. Note that w(t) isin C(I :Y) by (E6 )see[17,pp. 135,201-202 Lemma
7.4]. Infact ,u(t) is weakly continuous as a Y — valued function . This implies that
u(t) is separably valued in Y, hence it is strongly measurable .  Then || u(t) || Y is
bounded and measurable function in ¢.  Therefore ,u(t) is Bochner integrable ( see e
.g. [19,Chap. V]) . Using relation u(t) = Pu(t), we conclude that u(t) is in
C(I:Y).
Now consider the evolution equation

whereB(t) = A(t,u(t))andh(t) :f(t,u(t),u(a(t)))+/0 k(t, s,u(s), u(B(s))ds,

t € [0,a] and u is the unique fixed point of P in S. We note that B(t) satisfies ( H
1)-(H3)in[17,Sec. 5.5.3]landheC(l:Y). Theorem5.5.20f[1
7 ] implies that there exists a unique function v € C(I : Y) such that v € C1((0, a], X)
satisfying (3.1 )and (3. 2) in X and v is given by

v(t) =U(¢,0;u)ug — U(t,0; u)g(u) —|—/O Ul(t, s;u)[f(s,u(s), u(a(s)))

—1—/0 k(s, m,u(r),u(B(7)))dr]ds,

where U(t, s;u) is the evolution system generated by the family {A(¢,u(¢))},t € I of
the linear operators in X. The uniqueness of v implies that v = u on I and hence u is
a unique classical solutionof (1. 5) )~ (1. 6)andu € C([0,a] : Y)NC'((0,a] : X). O
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