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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE
FRACTIONAL INTEGRO - DIFFERENTIAL EQUATIONS IN
BANACH SPACES
JUN WU , YICHENG LIU
ABSTRACT . In this article , we established the existence and uniqueness of so -
lutions for fractional integro - differential equations with nonlocal conditions in
Banach spaces . Krasnoselskii - Krein - type conditions are used for obtaining the
main result .
1. INTRODUCTION
In this article , we are interesting in the existence and uniqueness of solutions for
the Cauchy problem with a Caputo fractional derivative and nonlocal conditions :

Dix(t) = f(t,x(t), [0x](t)), q€(0,1)teI:=][0,1],
z(0) + g(z) = =, (1.2)

where g € (0,1),f: Ix X xX = X,g:C(I,X)— X,0: X - X defined as

t
[0z](t) = | k(t,s,xz(s))ds,
0
and k: Ax X - X, A ={(t,s):0<s<t<1}. Here,(X,| - ) is a Banach space
and C' = C(I, X) denotes the Banach space of all bounded continuous functions from
I into X equipped with the norm || - || C.

The study of fractional differential equations and inclusions is linked to the
wide applications of fractional calculus in physics ,  continuum mechanics ,  signal
processing ,  and electromagnetics .  The theory of fractional differential equations
has seen considerable development , see for example the monographs of Kilbas et
al . [5] and Lakshmikantham et al . [9] .

Recently , existence and uniqueness criteria for the various fractional ( integro -
) differential equations were considered by Ahmad and Nieto [ 1 ], Bhaskar [ 4 ] , Lak
- shmikantham and Leela et al [ 7,8 ].  For more information in this fields , see [ 2,
3]
and the references therein .
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As indicated in many previous articles , the nonlocal condition z(0) + g(z) = xo
generalizes the Cauchy condition 2(0) = xg, and can be applied in physics with better
cases than the Cauchy condition . The term g(x) denotes the nonlocal effects , which
describe the diffusion phenomenon of the a small amount in a transparent tube , with
the general form g(z) =>"_, ¢;z(t;). Also, the problem (1.1)-(1.2)
includes many classical formulations . For example ,g(x) = zg — x(T) becomes
a periodic boundary problem ,g(x) = z¢ + 2(T) becomes an antiperiodic boundary
problem , while g(x) = 0 becomes a Cauchy problem .

In [ 2], the authors presented some existence and uniquenesb results for the prob -
lem (1.1)-(1.2),when f(¢,x(t),[0z](t)) = —|—f0 (t,s,2z(s))ds. In [ 3],
the
authors presented some existence and uniqueness results for the problem (1.1 )- (1
2,
when f(t,z(t), fo (t,s,z(s))ds. The aim of this paper is to present some
existence results for the problem (1. 1)- (1. 2) for some Krasnoselskii - Krein -
type con -
ditions . Our methods are based on the equivalence of norms and a fixed point
theorem .

2. MAIN RESULTS
For the next theorem , we sue the following assumptions :
(F 1) fis continuous and there exist constants a, 8 € (0, 1], L1, Ly > 0 such that

fort € Tandz;,yi € X,
I £t 2, 91) = f(t2,92) (| < Lo flar =yl | o+ Ly || 22 — 52 |1%;
(F 2) Fkis continuous and there exist 31 € (0,1],h € L*(I) such that

Ikt s,2) —k(t,s,9) | <h(s) [a—y 7' (ts) € Az, € X;

(G) g isbounded , continuous , and there exists a constant b € (0,1) such that

I9(u) =g(v) || <bllu—-v].
Theorem 2. 1. Under Assumptions (F1),(F2),(G), Problem (1.1

)- (1.2) has a
unique s o lution .

For special cases of f, we obtam the followmg corollaries . Corollary 2 . 2. Let
ft,z(t), [0x](t)) = +f0 (t,s,z(s))ds. Assume (F 2),

(G) and that pis contmuous and there efmst constants (€ (0,1], L > 0 such that

||p(t7$>_p(t?y) H SLHJ}—yH’B t€I7xay€X

Then (1.1)- (1.2) has a unique so lution .
Corollary 2. 3. Assume (F1),(G) and that k(t,s,z(s)) =~(t, s)z(s) and
v €
C(A). Then (1.1)- (1.2) has aunique s o lutio n .
For the next theorem , we use the assumptions :

(F 1) fiscontinuous and there exist constants pl,p2 € [0,q), L1, L2,C > 0

such
that

AT e H+ ||y||+C tel,x,yeX;

(F2’) Fkis continuous and there exist h € L'(I), K > 0 such that



|kt s,2) < h(s) [ = +K, (&) € A,y € X,

Theorem 2 . 4. Assume (F1’),F(2’),(G).Then (1.1)- (1.2) has
at least one s o lution . We remark that Theorem 2 . 1 extends [ 2, Theorem 2 . 1 ]
and [ 3, Theorem 2. 1] .
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3. PROOF OF THEOREM 2 . 1
The following lemma , due to Krasnoselskii , plays an important role in the proof
of the existence part of Theorem 2. 1. Lemma 3.1 ([6]). Let M be a clos ed
convez and nonempty subset of a Banach space
X. Let A, B be two operators such that (1)Ax + By € M whenever x,y € M;(2)
A is compact and continuous ;(3)B is a contraction mapping . Then there exists

z € Msuchthatz = Az + Bz.

Proof of Theorem 2. 1 . First , we transform the Cauchy problem (1. 1)
-(1.2) into fixed point problem with F': C(I,X) — C(I, X) defined by

Fﬂﬂ=m—gmﬂq%54(Pwﬂ”ﬂ&ﬂ$Wﬂ@Ww (3.1)

LetF = A + B, with

Aalt) = 75 [ (0= f(sva(o) el(s))ds - (32
Bzx(t) =x9 — g(x). (3.3)
Define the norm || - || kin C(1, X), for v € C(I, X) and for some k € N, by

| w || k= max{e " || u(t) ||: t € I}.

Note that the norms || - || C and |- | k are equivalent .
We prove Theorem 2 . 1 in the followir%g two steps . Step 1 : Existence . Let
P = SUPzex H g(gc) ”’MO = SUP¢er ” fo k(t,s,O)ds Hle = SUD¢er H f(t,0,0) ” and
Q=lxo || +P+ % + 3. Choose a k; € N such that
1
72 (LQ + Lo([[ 1 || L'Q + Mp)”) < 3.

1
Setting Bog ={u e C(I,X) : |lul| ki <Q} Forue Bg, noting the assump-
tion ( F 2 ), we have

t
|Hmmwn§/"nuanuw»—kumﬂw+uunmndr
0
<A LY sup | @(r) ||Pt +M
r € [0,t]
<| | L Q + My,
Thus

1 6u || kx <|| B || L'Q7" + M.
By assumption (F 1), for u € Bg, we obtain

t

I Fu(t) | <[ o | +P + ﬁ /O(t = )17 | f(s,u(s), [0ul(s)) — f(s,u(s),0) || ds

1 ' q—1 — f(s S
@/o (t— )77V || £(5,u(s),0) — £(5,0,0) || d

L t —5)at S s
e =T (s 0.0) ) d
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t

< o +P+FL(;) /Ou—s)‘H I [0ul(s) |1° ds

t
Ly

e

_ M,
t—8) 7 | uls) |* ds + =——
Je=ar a1 as+ 7
M, Lo

t
< T +P 4 —+ / t — )0 LeBRisgs |l ooy |12

I /t(t — syrlekisgs || u |
I'(q) Jo .

<o | +P+ A 1 /t@s)qle’“”ds T
=0 I(g+1)  T(q) Jo Fa
L t
i [ = stensas( b Q7 + M)’
F(Q) 0

My

L L
F QY+ 2 (0 ) 1Q7 + M)
1 1
Thus
M,

Ly
Fulk< | = +P 4+ — 4 Q%+
| Full ki < |l o | Tlg+ 1) ktle

Lo
kfg(H h | L'QP + M) < Q.
ThisimpliesF'(Bg) C Bg.

On the other hand , for v € Bg and t1,t2 € J(t1 < t2), we deduce that

| Au(tz) — Au(ty) ||

1 ) ! - " —8)T7 f(s,u(s), [fu](s))ds
= g It = o st e — [ = s (s, s |
M

< 2ty — )T+ (1) — (t2)7
< T e — )"+ () = ()]
2M q
< —(tg —t
< F(q+1)(2 1) ’
where M =sup {|| f(t,z,y) || : (t,z,y) €IxBgx6(Bg)}. Thismeans A(Bg)
is equicontinuous set . By Ascoli - Arzela theorem , we easily deduce that A(Bg) is
relatively compact set . It follows from the continuousness of f that A is complete
continuous .
By Assumption ( G ) , it is easy to see that B is contraction mapping .  Following

the Lemma 3 . 1  ( Krasnoselskii ’ s fixed point theorem ) , we conclude that F' has
a fixed point in Bg. Thus there exists a solution of Cauchy problem (1. 1)- (1. 2

). Step  2: Uniqueness . Let ¢(t) and 9 (t) be two solutions of Cauchy
problem

() = b(0) | (1.1)  (1.2), andsetm(t) =

First , we prove that m(0) = 0. Indeed , by the definition of operator B and

assumption (G), we see that B is contraction on C(I, X). Thus there exists a unique



y(t) such that By(t) = zo + g(y). On the other hand , noting that ¢(0) = xo + g(p)
and ¥(0) =z + g(10), we obtain ¢(0) = 1(0).

Next , we prove m(t) = 0 for ¢t € I by contraction .  If m(t) # 0 for some ¢ € I.
Setting t, = min {¢t € I : m(t) # 0}, then m(¢t) =0 for t € [0, t,]. Thus m(¢t) =0 for
t € I if and only if t, = 1. If t, < 1, then we can choose positive numbers £y and
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ko € Nsuchthat
ek)QE[)

k3
wherem,, = max{|| ¢(t) — ¥(t) ||: t € [ts,t« + €0}

(Lym& '+ Lo || b || Braelf'~1o) < 1,

Redefine the norm || - || k2 on the interval [t.,t. + £o] by

Il || k2 = sup{e™=2C7") | u(t) || t € [te, ts +eo]},

then the norms |- || k2 and | - | C are equivalent on [t.,t. + £¢]. Since ¢(0) =
1(0), we claim that g(¢) = g(v). Thus there exists t; € [t., t« + £0] such that

0<me = | @(tr) —v(t1) ||
= || Fo(t1) — Fi(t) ||

1 [ _
< @/ (tr — )71 || f(s,0(5), [02](5)) = f(s,9(s), [09](s)) || ds
t.
= Ll/tl(t — )7 [ p(s) —(s) | ds
N F(Q) b ! 4
s [0 oA — 00166 1P ds
F(Q) t
1 b1
< —/ (b — )5 Lum®(s) + Lo || b |, sup mP(r)]ds
I'(q) t. €.-[0,s]
< [ e o - I,
I'(q) L.
Ly || h || Bra /t1 —1_BB1F2(s—t BB1
= t; —s)4 e (s—t-)ds —
e [ o v I
eheo o B _Bpl
= a (leso + Lo H h ”Ll €m O) < Mgy,
2
This is impossible . Thus t. = 1 and we conclude that ¢(t) = ¢(t) for t € [0, 1].

The proof is complete . [
4. PROOF OF THEOREM 2 . 4
Define an operator H : C(I,R") — C(I, RT) by
1 t
Hz(t) = —/ (t— )9 as P 4 bsP2) sup x(r)ds,
I'(q) Jo €[0.s]

where pl,p2 € [0,q) are constants and @ = Li,b = Ly || h || L!. Lemma 4 . 1 .
There exist an increasing function b€ C(I, RY) and a § € (0,1) such

thatHb(t) < 6b(t).
Proof . We choose a positive number 7 € I such that

an? P'B(q,1—pl) b P2B(q,1— p2)

+an? Pt + bt < 1,
I'(q) I'(q)
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fo —8)* 15” lds. Let

a=P1B(q,1 — pl 2 P2B(q,1 — p2
§ = arn (Q7 p ) + Ui (Q7 p ) + aanpl 4 banpQ
I'(q) I'(q)

and define an increasing function b: I — R by

1, ift € [0,n],
BO=3  -om
e ., ift € (n,1].

We claim that Hb(t) < 6b(t) for t € [0, 1]. For ¢ € [0, 7], recalling that B(x,y) =

1
/ (1 —s)" ts¥"!ds, wehave
0

t

1

Hb(t :—/t—sqfl as Pl + bs7P2)ds

(0= 57 L= )

a 1 ! 1_1-pl—1 b 2 ! 1_1-p2—1
= ——¢I7P / (1—2)1"2 7P de + ——=t17P / (1—2) 2 7P dz

['(q) 0 I'(q) 0
_ aB(gq,1 —pl) sa—pl bB(q,1 — p2) sa—p2
I'(q) I'(q)
aB(¢,1—pl) . 1  bB(g,1—p2) . o

_— + ——————nI7P2 < §b(t).
O o 2

For t € (n, 1], we have

Hb(t) = ﬁ /O (t — 8)7(asP" + bsP2)b(s)ds
1 ! q—1 —pl s~ P s
:@/O (t — )71 (as + bs~P2)d

t
1

T

/(t —5)7 (as™P! + bs_p2)es —n
n N ds

1

F(q

l/t t—s)at sfp1—|—bsfp2)657n

F n N ds

< " B(g,1 - pl) N by "*B(g,1 — p2)
- I'(q) I'(q)

/ (- 5)7 (a5~ + bs~P2)ds

t

1 / —1/, .—pl - —t — t—mn
—— [ (t—8)T" " (as™P +bsP2)e™""?dse——
) n( ) ) n ;

an? "' B(q,1 —pl) N bn?P2B(q,1 — p2)

n
= T(g) T(q)

t —
+an? P! + byt P le—

= 5b(t).

The proof is complete . [ Proof of Theorem 2 . 4 . As in the proof of Theorem 2

. 1, we prove the operator F’
admits a fixed point . Define the norm |- || bin C(I, X), for u € C(I,X), by



|ul| b= max{% Il u(t)||: t € I}.
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|- ||Cand | -| b areequivalent . Let P =sup,cx || 9(z) |,
1 C L,KB(q,1—p2)
= +P + :

and Bo ={ue C(I,X): |u|b<Q} Forue Bg, noting the assumption ( F 2~
), we have

t
|| [Bu](#) IIS/O I Kty u(r)) | dr <[ b || L* sup, [ (r) || +K.

By the assumption (F 1’ ) and Lemma 4 . 1, for u € Bg, we obtain

| Fut) <] 2o | +P + —— / (t— )7L || £(s,u(s), [0u](s)) | ds

['(q)

1 t
<[l zo | +P+r(q)/ (t— )T (Lys™P || u(s) || +Las7P? | Qu(s) || +C)ds

0

t
Sl | +8+ s [ 6= 97 (T + L | B L) sup [ uls) |

L'(q) Jo €l0.s]
t
1
—&-—/ t—8) T YLy Ks™ P2+ (O)ds
t
= o / (t— )9 (Lys ™ + Ly || A || L " )b(s)ds || u || b
F(Q) 0
C LyKB(g,1 —p2)
+ |l x +P +
o Ry (@)
C LyKB(q,1 —p2)
<bt) ||ullb+ |z +P+
Thus
C LyKB(q,1—p2)
Fullb<déQ+ | zo || +P + + =Q.
| Fu |l Q+ | o || CES)Y e Q

ThisimpliesF'(Bg) C Bg.

Similar arguments as in the proof of Theorem 2 . 1 show that A is completely
continuous and B is contraction mapping . Thus , by Lemma 3 . 1 , we conclude
that F has a fixed point in Bg. Thus there exists a solution of Cauchy problem ( 1 .
1)-

(1.2). The proof is complete . [
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