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COMPACT ATTRACTORS FOR TIME - PE R -1 ODIC
AGE - STRUCTURED POPULATION MODELS
PIERRE MAGAL
ABSTRACT . In this paper we investigate the existence of compact attractors
for t ime - periodic age - structured models . So doing we investigate the eventual
compactness of a class of abstract non - autonomous semiflow ( non necessarily
periodic ) . We apply this result to non - autonomous age - structured models . In
the t ime periodic case , we obtain the existence of a periodic family of compact
subsets that is invariant by the semiflow , and attract the solutions of the
system .
1. INTRODUCTION
In this paper , we are interested in non - autonomous age - structured models . Usu

- ally this model takes the form
+oo

u(t)(0) = ; Bt ut))(a)u(t)(a)da
O8:(8)(a) + a(t)(a) = —puu(t)(a) + M(t,u(t))u(t)(a)
u(0) = ¢
with u € C([0,T], L1(0, +oo; R)N). We refer the reader to the books by Webb

[18], Metz and Dieckmann [ 9 ], and Iannelli [ 6 | , for a nice survey on nonlinear
age - structured population dynamic models . Here

uy (t)
UQ(t)
u(t) = ,
un(t)
where u;(t)  represents i"  class of the population .  For example the population

can be divided into several species , and several patches ( when there is a spatial
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where pi(a) represents the natural mortality of class ¢, 5;;(¢,u(t))(a) represents the
fertility of class j into class 7, and

=1 m(lé’2mj(tsu (Z))uj(t)t))uj(t)

Mt u@)u(t) = Ngy n T e )
(o=
represents for the application to fisheries problems , intra and inter - specific compe -
tit ion , fisheries , and migrations .  One can note that it is very natural to introduce
periodic births and periodic mortalities in fisheries problems . We refer to Pelletier and
Magal [ 1 2] for the example of a fishery problem where the time periodicity is necessary
for continuous time model .

In this paper we will consider an abstract formulation of that type of evolu - tion
problem .  The results that we present here are in the line of Thieme ’ s work [ 1 3 ,
16, 17,15]. The main point here is to study ( in abstract manner ) the even -
tual compactness of the non - autonomous semiflow associated to this system .  This
problem is studied in the book by Webb [ 1 8 | in the autonomous case , and with
bounded mortality rates .  In this paper , we obtain similar results to those in the
book by Webb [ 1 8 ], but by using integrated solutions of the problem ( see section 2
for a precise definition ) . Also , the first part of the paper (i. e . sections 2 , 3 and 4
))
is strongly related with the paper by Thieme [ 1 3 ] . But the goal of this article is
not to show the existence , the uniqueness , and the positivity of the solutions . Our
aim is to show the existence of compact attractors for the time periodic age structured
population models .

We now present the plan of the paper .  In section 2 , we recall some results
originating from the work of Da Prato and Sinestrari [ 4 ] , concerning existence of
integrated solutions . We also recall some results due to Arendt [ 1] [ 2], Kellermann
and Hieber [7], Neubrander [10], Thieme [14], -concerning integrated
semigroup . In section 3, we present some results based on the usual semi - linear
approach . We adapt results of books by Cazenave and Haraux [3], and Webb
[18] to this situation .  In section 4 , we study the t ime differentiability of the
solutions .  This part is strongly related with Proposition 3 . 6 and Theorem 3 . 7 in
the paper by Thieme [ 1 3].  This part is based on the usual differentiability result
that can be
found in the book by Pazy [11] (see Theorem 1. 5p. 187). This result is used
in section 6 to prove the existence of an absorbing subset for the system . In section
5 , we prove an eventual compactness result for a class of non - autonomous semiflow
which is applied in section 6 . Finally in section 6 , we give conditions for existence
, uniqueness , global existence , and eventual compactness of the nonlinear and non -
autonomous semiflow generated by the age - structured models .  These conditions
are close to the conditions given by Webb in [ 1 8 ] for autonomous age - structured
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. Finally , we prove the existence of a” glo—ba attractor” fo th systm—e
w he—n
t — B(t,.) and t — M (t,.) are periodic maps .
2. PRELIMINARIES
We consider the non homogeneous Cauchy problem

dug:(t) = Au(t) + f(t), t > to; (2.1)

u(to) = wo.

Assumption 2 . 1.
a) A:D(A)C X — X is a linear operator , and assume that there exist real
constants M > 1, and w € R such that (w, +o0) C p(A4), and

| (AMd—A)™"| <(AM_,)", forne N\ {0}and\ > w.
b) xg € Xo = .D(A)

c¢) f:]0,+00) = X is continuous . In the sequel , a linear operator A : D(A) C X —
X satisfying Assumption 2 . 1 a )

will be called a Hille - Yosida operator . Definition 2 . 1. A continuous function
u: [tg, +oo[— X is called an integral s o lu -

tiom to(2.1)if

¢ ¢
u(t)y=x0+ A | u(s)ds+ [ f(s)ds, forallt > t,. (2.2)
to to

Note that ( 2. 2 ) implies that j;to u(s)ds € D(A). The main result of this section
is as follows .
Theorem 2.2 ([4, Thm8.1]). Let A : DA Cc X —» X
be a linear operator satisfying Assumption 2. 1 a ), and x € D(A). Let

F(t) = F(0) + fot f(s)ds (for 0<t<T) forsome Bochner - integrable function
f:(0,T) = X, and assume that

Az + F(0) € D(A).
Then there exists a unique function U € C1([0,T],X) N C([0,T], D(A)), such that
U'(t) = AU(t) + F(t), forallt € [0,T]
U(0) ==z.

We now recall some result concerning integrated semigroups . We refer the reader
to Arendt [ 1, 2], Kellermann and Hieber [ 7 ] , Neubrander [ 1 0 ] , Thieme [ 1 4 ]
for more details .

Definition 2 . 3. A family of bounded linear operators S(t),¢ > 0, on a Banach
space X is called an integrated s emigroup if and only if

i) S(0)=0

ii) S(t)is strongly continuous in ¢t > 0.iii) S(r)S(t) = [; (S(r +1t) — S(r))dr =
S(t)S(r) for all t,r > 0.
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An integrated semigroup is non - degenerate if S(t)x = 0 for all ¢ > 0 o ccurs only
for x = 0. The generator A of a non - degenerate integrated semigroup is given by
the requiring that , for z,y € X,

t
acED(A),y:A;U@S(t)x—tx:/ S(s)yds, Vt>0.
0

The following theorem is obtained by combining Theorem 4 . 1 in Arendt [2],
Proposition 2 . 2, Theorem 2 . 4 , and their proofs in Kellermann and Hieber [ 7] .
This
theorem is taken from Thieme [ 16, thm . 6] .

Theorem 2 . 4 . The fo I lowing three s tatements are equivalent for a linear clos
ed operator A in a Banach space X :

i) A s the generator of an integrated s emigroup S that is locally Lipschitz
continuous in the s ense that , for any b > 0, there exists a constant A > 0 such that

1 S@E) —Sr) | <A|t—r], foralld <rt<b.

ii) A is the generator of an integrated s emigroup S and there exist constants

M > 1,w € R, suchthat
t
I S(t) —S(r) ||I< M/ e“?ds, forall0 <r <t < +o0.

iii) There exist constants M > 1,w € R, such that (w,~+00) is contained in the
res o lvent s et of A and

A=A <(AM_yyn, forn € N\ {0}, andX > w.

Moreover , if one (andth en all) of i), i), i) holds , D(A) co in cides
with thos e
x € X for which S(t)x is continuously differentiable . The derivatives S'(t)xz,t >
0,z € D(A), provide bounded lin ear operators S’'(t) from Xo= D(A) into its e If
forming a Cy— s emigroup on Xg which is generated by Aq the part of A in Xo.
That s the linear operator defined by
D(Ag) ={z € D(A): Az € Xo} and Aoxr = Az for all z € D(Ay).
Finally S(t) maps X into Xy and
S'(r)S)=SEt+r)—S(r), forall r,t>0.

In Kellermann and Hieber [ 7] , a very short proof of Theorem 2 . 2 is given by

using integrated semigroups . One has

f t
= Tq T to S(t —s)f(s)ds
u(t) = ngz - tgogasg * dtd/tt dOS(t (tfs)f)();;) (2'3)
0

where S(¢) is the integrated semigroup generated by A, and the last integral is a Stieltjes
integral . Now by setting

w(lt)=U'(t), x=0, andF(t) =z +/0 f(s)ds, (2.4)

one immediately deduces the existence of a solution of equation (2. 2) .
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orem 2.5 ([4]). Under Assumption 2 . 1, there exists a unique s o lutio n
to(2.2)

with value in Xo = D(A). Moreover ,u satisfies the estimate

¢
| u(t) ||< Me*tt0) || zo || +/ Me“t=) || f(s) || ds, forallt > to. (2.5)
to

Assume now that f(¢) = 0, then the family of operators Ty(t) : Xo — Xo,t > 0,
defined by

To(t)zo = u(t), forallt > 0,

is the Cy— semigroup generated by Ag the part of A in Xy. For the rest of this article
, we denote by Tp(t) the semigroup generated by Ag.

In the paper by Thieme [ 1 3 ] the following approximation formula is obtained .
Assume that w is a solution of (2. 2 ) , then one has

dt(\Id — A) " u(t) = Ag(Md — A)"tu(t) + (Ad — A) L (1), (2.6)

SO ,

AN — A)7tu(t) = To()ANd — A) oy + /t To(t — s)MANId — A)~ L f(s)ds, (2.7)
0

thus limy 1 o0 fot To(t—s)A(Md— A)~! f(s)ds exists because the other terms in equation
(2. 7) converge ( since xy and u(t) belong to Xj). So , we have

u(t) = To(t)ro + lim t To(t — s)AANId — A)~' f(s)ds. (2.8)

— A+ 0

To conclude this section , we remark that Lemma 5. 1 p. 17 in Pazy [ 1 1] holds ,
even

when the domain of the generator is non - dense . More precisely , let | . | be the norm
defined by

@ l= Jim_fo ] (2.9)
where

| @ ||,=sup || p*(uld — (A —wld)) ™"z ||, for all u> 0.
n>0
Then one has the following two properties :

lel<lz|<M]z|, VzelX,
| MAId — (A —wId)) 'z |<|z]|, YzeX,YA> 0.
So , if uw € C(]0,T], Xo) is a solution of

u(t) = o + (A — wld) /Ot u(s)ds + /Ot f(s)ds, forallt € [0,T], (2.10)



then one has ( by using (2. 5 ) with M =1, and w = 0)

t
u(t) <] 70| +/ | £(s) | ds, forallt > 0. (2.11)
0
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3. SEMI - LINEAR PROBLEM
In this section , we first follow the approach of Cazenave and Haraux [ 3 ] . Here we
consider the case where the nonlinearity is Lipschitz on bounded sets . We consider
the following problem : u € C([0,T], Xo) satisfies

u(t) = xo + A/o u(s)ds —l—/o F(s,u(s))ds, fort € [0,T]. (3.1)

Assumption 3 . 1.
a) A: D(A) C X — X is alinear operator , and there exist real constant
M > 1, and w € R such that (w,+00) C p(A), and

[A=A4)7"] <(AM_,)", forneN\{0}, and\>w.

b) F:R; x Xy — X is continuous , and for all C' > 0, there exists K(C) > 0,
such that

| F(t,z) — F(t,y) || < Kp(C)|lz—yl,Yz,y € B(0,C)N Xo,Vt >0,
whereB(0,C) = {z € X :|| z ||< C}.

Problem ( 3. 1) is equivalent to

u(t) = zo + (A — wld) /0 u(s)ds + /0 F(s,u(s)) +wu(s)ds, Vte[0,T].

Then by using the equivalent norm | . | defined in (2. 9) , we can assume that M =1,
w = 0. Moreover , the map

G(t,x) = F(t,z) + wz, Vo € X0, Vit > 0,
satisfies for all C' > 0,

| G(t,z) = G(t,y) | (MKp(C) +w) |z —y|,Vz,y € B (0,C) N Xo,Vt >0,

where B |(0,C) = {z € X :| # [< C}. So without loss of generality , we can assume
that M =1, and w = 0. Lemma 3 . 1. Under Assumption 8 . 1 , for ea ch
xo € Xo, (3.1) admits at most one

s o lutio n w € C(]0,T], Xo)-

Proof . Assume that ( 3. 1) admits two solutions u,v € C([0,T], Xo). We denote

C= sup max(|ut)],]v(t)]).
t e [0,7T)

Then one has
u(t) —o(t) = A/o u(s) —v(s)ds +/0 F(s,u(s)) — F(s,v(s))ds, vVt € [0,T],
thus

u(t) — v(t) = (A — wid) /0 u(s) — v(s)ds

—|—/ F(s,u(s)) — F(s,v(s)) +w(u(s) —v(s))ds,Vt € [0,T].
0
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from (2. 11 ), we have ( by using the equivalent norm | . | definedin (2.9))

| u(t) —o(t) |< ; | F(s,u(s)) — F(s,v(s)) + w(u(s) —v(s)) | ds,Vt € [0,T],

thus

| u(t) —o(t) |< (MKp(C) —|—w)/0 | u(s) —v(s) | ds,Vt € [0,T],

and by Gronwall ’ s lemma one deduces the result . [ Let Cr = maxy¢[o,1/2] | F'(£,0) |
,Lc =2C + CF for C > 0, and
Te = [2Ka(2C + Cp) + 2] €]0,1/2], forC > 0,

where Kg(C) = MKp(C)+ w for C > 0. The following proposition is adapted
from Proposition4 . 3. 3p. 56 in the book by Cazenave and Haraux [ 3] . Proposition
3.2. Let C >0, andlet g€ Xo with |z |<C.  Under Assumption

3. 1, th ere exists a unique s o lution of problem (3.1),u € C([0,T¢], Xo).

Proof . Lemma 3 . 1 shows the uniqueness . Let xg € X with | 2o |[< C, and let

E={ueC(0,Tc], Xo) :| u(t) |< Le,Vt € [0, Tc]}
be equipped with the metric

d(u,v) = tmax €[0,T¢] | u(t) —v(t) |, Yu,v € E.
For u € E, we define ®, € C([0,T¢], Xo), as the solution of the following equation ,
vVt € [O,Tc],
t t
D,(t)=(A- wId)/ D, (s)ds + xo + / F(s,u(s)) +wu(s)ds. (3.2)
0 0

We note that for all s € [0,7¢], one has F(s,u(s)) = F(s,0) + (F(s,u(s)) — F(s,0)),
thus

| F(s,u(s)) + wu(s) |[< Crp+ LeKg(Le) < (C+Cr)/Te.
We deduce that

| Du(t) [<] o | +/O | F(s,u(s)) +wu(s) | ds

§C+(C+Cp)t/TC:Lc, Vit € [O,Tc].
So ,®: E — E. Moreover , for all u,v € E, one has

| Do (t) — Do (t) |< KG(LC)/O | u(s) — v(s) | ds < 1/2d(u,v), vt € [0, T].

So , ® is a strict contraction and the theorem is proved . [
Theorem 3 . 3 . Under Assumption 3 . 1 . Let

T(x) =sup {T'>0: JueC(0,T],Xo) s olutionof (3. 1) }y. (3.3)
Then

2K (2 | u(t) | +t € [P0, T(2)[| F(t,0) |) > T(1,) — t — 2,5t € [0, T()).

In particular , e ither T(x) = +oo, or T(x) < 400 and limypyy | u(t) |= +oo.
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We refer the reader to Theorem 4 . 3 . 4 in the book by Cazenave and Haraux [ 3 |
for the proof of the above theorem .

Proposition 3 . 4. Under Assumption 8 . 1, th e fo | lowing holds :
i) T:X — (0,400] is lower s emi - continuous .
ii) If zp—ozandif T<T(z), then u, —>uin C([0,T],Xo), where
Uy, and

u are the so lution of (3. 1 ) co rresponding respectively to the initial valu e x,
and x.

We refer the reader to Proposition 4 . 3. 7p. 58 in the book by Cazenave and
Haraux [ 3 ] for the proof of this proposition . ~ We summarize Propositions 3 . 2 and
3 . 4 in the following theorem .

Theorem 3 . 5 . Under Assumption 3. 1 ,theset D ={(tz):z € X,0<
t <T(x)} is open in [0,4+00) x Xg, and the map (t,z) —
ug(t) from D to Xo is continuous .

We are now interested in the positivity of the solutions , for which end we use the
conditions used by Webbin [19]. Let X4 C X be a cone of X. That is to say
that X is a closed convex subset of X, satisfying

i) deX ,Vee Xy forallA\>0

ii) zeXiand —z€ Xy =2=0.
It is clear that Xoy = XoNX is also a cone of Xy. We recall that such a cone defines
a partial order on the Banach space X which is defined by

x>y ifandonlyif x—ye X,.
Assumption 3 . 2.

c) (Md—A)"'X, c X for\ > w.
d) Forall C >0 andall T > 0, there exists y(C,T) > 0 such that

F(t,z) + wz+~(C,T)x € Xy, Vzxe B(0,C)N Xoy,Vte[0,T].

Proposition 3 . 6 . Under Assumptions 8. 1 and 8. 2, for each x¢ € Xoy, the
corre - sponding s o lution of equation (3.1)u satisfies

u(t) € Xoy, Vte0,T(x)).
Proof . For T € [0,T¢], let

EY ={ue C([0,T], Xo) : u(t) € Xot,| u(t) |< Le, Yt € [0,T]}
For t € [0,T], we define ®Z(#) as the solution of the equation

T o F( (Le, TCO) w)Id) Tu(s)ds
P (t) = w0+t ng,,(Z<s>§+ e 1) /W 0°D) (5 as. (3.4)
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we have to prove the positivity of ®,(t), for all ¢ € [0,7]. But , we have

oT(t) = Jim AAMd— Aol (1)

= lim AMd— A)"te O Tt 1)z,

— A +00

t
+/ e*(V(Lc,Tc)er)(t*S)TO(t, $)A
0
x(Ad — A) 7 F(s,u(s)) + (v(Lo, Te) + w)u(s)]ds,
so under Assumption 3 . 2 ¢ ) and d ) , we see that Vu € ET, VA > w,Vt € [0,T],

¢
AAId — A)—1e—(v(Lc,Tc)er)tTO(t)xo + / e—(v(Lc,Tc)+w)(t—S)T0(t —5)A
0
X (M — A F(s,u(s)) + (1(Lo, Te) + w)u(s)]ds € Xoy
So , by taking the limit as A — 400, and using the fact that Xy is closed , we deduce
that
®L(t) € Xoy, VEE[0,T].
So ®T : ET — C([0,T], Xo+). Finally , for all T > 0 small enough , ® maps ET
into itself , and ®7 is a strict contraction . The result follows . O
We recall , that a cone X of a Banach space (X, || . ||) is normal , if there exists a
norm | . || 1 equivalent to || . ||, which is monotone , that is to say

Ve,y € X,0<z <y implies |z|1<]y] 1.
Assumption 3 . 3.
e) There exist G : Ry x Xg — X and Gs : Ry x Xy — X continuous maps ,
such that
F(t,z) = Gi(t,z) + Ga(t,z), VYo e Xo,Vt>0,

where G1(t,x) € — X for all x € X4, all ¢ > 0, and

| G2t z) [< kg, [z |, Vo € Xoy,VE 2 0.
f) X,y is anormal cone of (X, .||).
Proposition 3 . 7. Under Assumptions 8 . 1, 8. 2, and 8. &8, for each
xo € Xoi, th ere exists a unique u € C([0,+00), Xo4) s o lution of (3. 1 ).
Moreover , th ere exist Cy > 0 and Cy > 0, such that for al | zy € Xo4,
[l u(t) 1] o || Coe “rhezt)t vt > 0.
Proof . We start by letting | « | 1 = lim, o || 2 || 1 where
| z | 1p =sup || p*(uld — (A — wlId)) ™"z || 1,u > 0.
n >0

Then since || . || 1 is monotone , and (A\Id — A)~! is a positive operator for A > w, we
deduce that | . | 1 is monotone , and satisfies

| p(pld — (A —wId)) 'z |1 <]z |1, fory>0, andzc X.

Consider now



u(t) = xo + A/O u(s)ds —|—/O F(s,u(s))ds, fort € [0,T(xg)).
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have
Cy= sup | ut)|< +oo.
te[0,7T)
By Assumption 3 . 2 d ) , there exists v(Cy,T) > 0 such that

F(t,z) + wz +v(Cy,,T)x € X4,Vx € B(0,C,) N Xoy, Vte[0,T].
We fix & > 0 such that @ +w > v(Cy,T). Then for all ¢ € [0, T,

u(t) = 20+ (A — (w+ a)d) /0 w(s)ds + /0 Fs,u(s)) + (w + a)u(s)ds.

Therefore , for all ¢ € [0, 77,

t
lu() [1<e™ 2|1 +/ e U F(s,uls)) + (w + a)uls) | 17,
0

Using the monotonicity of | . | 1 one has

t
lu(t) [1<e " || 1+/ e | Ga(s,u(s)) + (w+ aJu(s) | 17,
0

Since the norm || . || and | . | 1 are equivalent , we have for some constant C; > 0,

t
lut) |1 <e |20 1 +/ e =90k, +w +a] | u(s) | 1%Vt € [0,T).
0

By using Gronwall ’ s lemma we obtain

() [1<] o 157 wee 0,77,
Existence of a global solution follows from Theorem 3.3. O
4. TIME DIFFERENTIABILITY OF THE SOLUTIONS
In this section , we study only the time differentiability of the solutions . We refer
to Thieme [ 1 3 ] Theorem 3 . 4 and Corollary 3 . 5 for the differentiability with respect
to the space variable . Consider u € C([0,7], D(A)) a solution of

u(t) = xo +A/O u(s)ds+/o F(s,u(s))ds, fort € [0,T], (4.1)

and assume that xo € D(A) and that F : [0,7] x Xo — X is a C! map . Then when
the domain is dense it is well known ( see Pazy [1 1] Theorem 6. 1. 5p. 187)
that ¢ — wu(t) is continuously differentiable ,u(t) € D(A) for all ¢ € [0, T, and satisfies

u'(t) = Au(t) + f(t),Vt € [0,T7,
u(0) = xo.
We are now interested in the same type of result when the domain is non - dense . We
will use the following theorem .
Theorem 4 . 1 ([Thm.6.3][4]). Let A:D(A) — X be a Hille - Yosida

operator . Let
feC(0,T],X) and x9 € Xo. If wisasolution of

u(t) = xo + A/o u(s)ds —|—/O f(s)ds, ¥t € 10,77,
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nging to C1([0,T],X) or to C([0,T],D(A)), then

ul(t) - Au<t) + f(t)a vt € [OaT]a
u(0) = xp.
withu € C*([0,T], X) N C([0,T], D(A)).
Assumption 4 . 1.

a) A:D(A) C X — X is a linear operator , and there exist two real constants
M > 1, and w € R such that (w,+00) C p(A), and

[A=A4)~"] <(A\M_,)", forneN\{0}, and\> w.

b) F:[0,7] x Xg — X is continuously differentiable from [0,7] x Xj into X. ¢ )
There exists u € C([0,T], D(A)) solution of

u(t) = xo + A/O u(s)ds —|—/O F(s,u(s))ds, forallt € [0,T]. (4.2)

Theorem 4 . 2 . Under Assumption 4 . 1, if in addition x9 € D(Ag)( i . e
2o € D(A) and Azy € D(A)) and F(0,z9) € D(A); then there  ewists
u € CY[0,T],X)Nn

C([0,T], D(A))satisfying
u'(t) = Au(t) + F(t,u(t)), vVt € [0, T,
u(0) = xo.

Proof . We use the idea in the proof of Theorem 6 . 1. 5in Pazy [11]. Let
w € C([0,T],D(A)) be a solution of the equation

_ 0 D, F(su
w(t) = AaiJr fOtw(S)derg(o’ZoF(if(A))ﬁ]t(S))w(s)d&Vt € [0,T]. (4.3)

It is clear that the solution w(t) exists and is uniquely determined , since u(t) exists on
[0,T]. Let t > 0. For h > 0, we have

u(t+ h) — u(t)
h

t+h t t+h t
_ hlA[/O u(s)ds 7/0 u(s)ds] +h1[/0 F(s’u(s))ds */0 F(-S,U(S))ds]
+ h
— —u(s)ds A uls)as
_A[/O u(s + hp) — u(s)ds] + ' _/0 (s)d

t h
—1—/0 F(s+h,u(s+p h)) — F(s,u(s))ds + h /o F(s,u(s))ds.
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w(t+ hp) —u(t) — w(t)
= A/O u(s+ hp) — u(s) —w(s)ds
h h
A u(s)ds + bt s,u(s))ds — Axg — x
h /0 (5)d +h/OF(, (s))ds — Ay — F(0, 20)
+/0 F(s+ hyu(s+h)n) — F(s+ h,u(s)) — D, F(s,u(s))w(s)ds

+ / F(s+ hu(s),) — F(s, u(s)) — 02 Cu(s))ds.
0

So by using (2. 5), and Gronwall ’ s lemma ,

the right differentiability of wu(t)
will follow if we prove that

h h
lim h'4 / u(s)ds + ht / F(s,u(s))ds + Axg + F(0,z0) = 0.
h™\0 0 0

Ift > h > 0,
u(t —h) — u(t)
—h

t—h ¢ h
= 1_hA[/0 u(s)ds f/h u(s)ds] — 1_hA/0 u(s)ds
t—h ¢ h
+1,h[/0 F(s,u(s))ds — /h F(s,u(s))ds] — 1,h/0 F(s,u(s))ds
= A/h u(s — B, — u(s)ds + /h F(s—h,u(s M- F(s,u(s))ds

+hA /Ohu(s)ds+h1 /OhF(s,u(s))ds.

Therefore ,

t h
) - — K —u(s)ds — w(s)ds — w(s)ds
u(t—h_h—u(t)—w(t)—A/ w(s — B — u(s)d A/h (s)d A/O (s)d
h h
—Axo—F(O,a:O)—l-hlA/O u(s)ds+h1/0 F(s,u(s))ds
—l—/h F(s—h,u(s M) F(s,u(s))ds

- /Ot A%tF S u(s)) + Dy F (s, u(s))w(s)ds.
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obtain

u(t —hp, — u(t}? —w(t)

_ A/h (s — . p — :(s) — w(s)ds hA/O w(s)ds

—Azo — F(0,z0) +th /0 u(s)ds + h /O F(s,u(s))ds

+ /h F(s— hyu(s =" ), — F(s,u(s))ds

- /ht %t — hyu(s — b)) + Do F(s — hyu(s — h))w(s — h)ds

- /h Ot u(s)) + Dy F(s,u(s))w(s)ds.
0

Since by construction , we have

h
lim A/ w(s)ds =0,
O o

to prove the left differentiability of w it is sufficient to prove that

h h
lim A4 / u(s)ds + h' / F(s,u(s))ds = Azxg + F(0, o).
h™0 0 0

Taking into account Theorem 4 . 1 , Theorem 4 . 2 is a consequence of the following
lemma . [
Lemma 4 . 3. Under the assumptions of Theorem 4 . 2, one has

h h
lim hlA/ u(s)ds + h' / F(s,u(s))ds = Axg + F(0,z0).
h™0 0 0

Proof . This lemma will be proved if we show that

]%i{‘%u(h)h — 9 = Az + F(0,x0).

We remark that u(t) = To(t)xo + v(t), where Ty(¢) is the semigroup generated by Ag
the part of A in D(A), and v € C([0,T], D(A)) is the solution of

t t
v(t) = A/ v(s)ds + / F(s,v(s) + To(s)xo)ds.
0 0
Since xy belongs to the domain of A, it remains to prove that

}lbl\(mov(hh) = F(0,z0).
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v(t) —tA(Nd — A) "' F(0, z)
_ A[/t o(s) — SN — A)"LF(0, z0)ds]
+t22XA(Nd — A)"LF(0, z0) —Ot)\(AId — A7 F(0,20) + tF(0, x0)
+ /Ot F(s, v(s) + To(s)z0) — F(0, 20)ds
Now using the fact that F(0,zq) € D(A) one has

lim A(Md— A)"'F(0,20) = F(0,2),

—x+oo

and using (2.5),

| v(t) = tF(0,z0) || <[ v(t) —tA(AId — A)~"F(0, ) ||
+t | A(Ad — A)""F(0,20) — F(0,x0) ||
< Me®t || 220 A(Nd — A)" F(0,z0) ||
t
+/ Me®=9) | F(s, v(s) + To(s)z0) — F(0, a0) || ds
0
+2t || A\(Ad — A) " F(0,20) — F(0,20) || -
0

To extend the differentiability result to the case where F'(0, o) element—slash D(A),
we remark that , since u(t) € D(A)forallte [0,7], a necessary condition for
the differentiability is

Az + F(0,29) € D(A).

In fact , this condition is also sufficient . Indeed , taking any bounded linear operator

B € L(X), ifusatisfies
t ¢

u(t) = xo + A/ u(s)ds +/ F(s,u(s))ds,Vt € [0,T],
0 0

we have

u(t) =xo+ (A+ B)/O u(s)ds +/O F(s,u(s)) — Bu(s)ds, fort € [0,T].

So to prove the differentiability of u(t) it is sufficient to find B such that (A + B)xzg €
D(A). By taking B(¢) = —x*(¢) Azp, where z* € X* is a continuous linear form ,
with 2*(xzg) = 1 if 29 # 0, which is possible by the Hahn - Banach theorem .  So we
have

xzo € D(A) = D(A+ B), and(A+ B)zg € D(A) = D(A+ B).

Moreover , assuming that Azg + F(0,z9) € D(A), we obtain F(0,x¢) — Bzg € D(A).
So , by using classical perturbation technics ( see Pazy [ 1 1 ] Chapter 3 ) , we deduce
that A + B is a Hille - Yosida operator , and we have the following theorem .
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Theorem 4 . 4 . Under Assumption 4 . 1, if xo € D(A), and Azo+ F(0,20) €
D(A),
then there exists u € C1([0,T],X) N C([0,T], D(A)) satisfying
u'(t) = Au(t) + F(t,u(t)),Vt € [0,T],
u(0) = .

We now consider the nonlinear generator ,

And = Ap+ F(0,¢), forp € D(Ay) = D(A),

As in the linear case , one may define Ay o the part Ay in D(A) as follows

AN70 = ANOHD(AN’O) = {y € D(A) : ANy S D(A)}

Of course , one may ask about the density of the domain D(Ay ) in D(A). This
property will be useful in section 6 to obtain a priori estimates ( more precisely to
obtain the existence of an absorbing set ) .
Assumption 4 . 2.

d) F(0,.): Xo — X is Lipschitz on bounded sets i . e . VC > 0,3K(C) > 0,
such that

1F0,2) = FO,y) | <K(C)|z-yl, Vz,yeB0,C)NX.

Lemma 4 . 5. Under Assumptions 4 . 1 a ) and 4.2,D(Anyo) is dense in
Xo = D(A). Proof . Let y € D(A) be fixed .  Consider the following fixed point
problem : 1z €

D(A)satisfying
(Id = ANA = \F)xy =y < 2y = (Id — NA) 'y + MX(Id — NA) 7 F(0, ).

We denote
Oy () = (Id — NA) "ty + A\(Id — NA) "' F(0,2), Yz € Xo.
Then r > 0 being fixed , one can prove that there existsn = n(r) > 0 (
with
[, +oo[C p(A))suchthat
(PA(B(yv T)) - B(ya ’I“), V)‘ S (07 77]7
where B(y,r) denotes the ball of center y with radius r in Xy. Moreover , one

can assume that ®, is a strict contraction on B(y,r). So ,VA €]0,7], there exists
xx € B(y,r), such that ®y(z)) = x,. Finally , by using the fact that y € D(A), we
deduce

(Id
lim —MA) "'y = im A" (A1 d — A) "1y =
Jimy )y lim, ( )y =y,

so lim z)=y. O
A——+o0 A y
5. EVENTUAL COMPACTNESS
In this section we are interested in the eventual compactness of the nonlinear
non - autonomous semiflow generated by



t t
Uz, (t) = To + A/ Ugo(s)ds + | F(s,ug,(s))ds, fort € [0,T]. (5.1)
0 0
We recall that a family of operators U(t,s) (witht > s > 0) is called a
non - autonomous semiflow ( see Thieme [1 3] ) if

Ut,r)U(r,s) = U(t,s)ift >r >s, andU(t,t) = Id.
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semiflow defined by

¢ ¢
U(t, s)xo :xo—f—A/ U(Ls)xodl—l—/ F(l,U(l,s)xo)dl, fort> s,

and we want to investigate the eventual compactness of the family of nonlinear operators
{U(s+1t,s)}i>0(1. e. the complete continuity of U(s +t,s) for t > 0 large enough ) .
In the sequel , we only consider the case where s = 0, the case s > 0 being similar .

This problem is studied in the linear autonomous case by Thieme in [ 1 6 ] , and
we refer to the paper by Webb [ 1 8 ] for the semi - linear case with dense domain .
This problem is also investigated in the book by Webb [ 1 9 ] for nonlinear age struc -
tured model with bounded mortality rate , in the autonomous case . Here , we follow
Webb ’ s approach in [ 1 9 ], and we adapt his approach to the abstract problem .
Assumption 5 . 1.

a) A:D(A)C X — X is a Hille - Yosida operator .
b) F:[0,T] x Xo — X is a continuous map , which satisfies

F(t,z) = Fi(t,x) + Fs(t, z),
where F; : [0,T] X Xo — X, and F5 : [0,T] x Xo — X satisfy :  VC > 0,

JK(C) > 0,suchthat
| Fi(t,z) — Fi(t,y) |[< K(C) ||z —y ||,Va,y € B(0,C)N Xo,Vt € [0,T], i=1,2.

¢ ) There exists a bounded set B C X such that , for each xg € B, there exists a
continuous solution uz, : [0,7] = Xp of (5. 1), and

sup - sup || gy () [|< ao.
xo € Bt € [0,T]

d) Foreacht € [0,T],¢ — Fi(t,¢) is continuous and maps bounded sets into
relatively compact sets , and VC > 0,3k(C) > 0, such that

| Fi(t,z) — Fi(lyz) || <k(C)|t—1],Vz e B(0,C)nN Xy, Vt,le[0,T].
e ) There exists k = k(B) > 0, such that
| Fi(t,ug, (t) — Fi(luz, (D) | <k|t—1|,Vzo € B,Vt,1€]0,T).
We now consider the system of equations

t t
Uiz, (B) = A/O Ulwo(s)d3+/0 Fi(s,uz,(8))ds, fort € [0,T],

t t
Uz, (t) = 20 + A/ Uy, (5)ds Jr/ Fs(s,uq,(8))ds, fort € [0,T].
0 0

Then the solution of the previous system clearly exists , and by uniqueness of the
solution of the problem

t t
v(t) = zo + A/ v(s)ds —l—/ F(s,uz,(s))ds, forallt € [0,T],
0 0
we have

Uy () = w1, (t) +ug, (t), forallt € [0,T7.

Theorem 5. 1. Under Assumption 5 . 1, the s et {uig(t) : t €
[0,T),2z0 € B} has compact closure .
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For each o € B, we denote v, ., € C([0,T], Xo) the solution of the problem

U 2o (1) :A/O vn,mo(s)dﬁ/o pn s Fy (o ug, () (s)ds, vt € 0,7,

where pn : R — R, is a mollifier , with support in [1—p, 1,],

7 (Tsuag (1)) sy T,
Fl (t, Ugg (t)) = { F’lF1 Py (tauaco (ﬂ)?(@in?(o))’ 1ft1f, ifO Sggotzt» T,

pn % Fy (g, () () = minus — integraldisplay"‘gpn(ﬁ)ﬁl(t — 0, ug, (t — 0))db.

On the other hand , we know ( see Thieme [ 1 3] ) that

t
Unao (1) = /0 dS(s)pn x F1(.,uz, ()t —9),
where S(¢) denotes the integrated semigroup generated by A. We then have ,
Vnsao (1) = S(0)[pn 5 Fi (-1 (1))(0)] = S(0) [on  Fi (-, tay (1) (1)]

/ S(s)pl, * Fi(. (s Uz (L)) (E — s)ds.

Since S(0)x =0, for all x € X,

Ummo (£) = S(8)[om 5 By (g () (0)] + / S(5)0ly * Fy (11 ()) (¢ — 5)ds.

By using Assumption 5. 1 d ) , one deduces that F;([0,7] x (B(0,a9) N Xp)) is com -
pact , and Mazur ’ s theorem conv (Fy([0,T] x (B(0,ag) N Xg))) is compact . Indeed ,
let & > 0 be fixed such that

| Fi(t,z) — Fi(r,z) || <k|t—r|,Vz e B(0,a) N Xo,Vt,r €[0,T].
For each n € N\ {0}, let t? =4, T for i =0, ...,n. Then for i =0,1,...,n— 1

)

I F1 (@) = Fa(t, o) (|[< KT /n, VEe [t 6]
Let € > 0 and n € N\ {0} be such that kT'/n < €/2. As Fi(t?, B(0,a9) N Xp) is
relatively compact , so there exists {iz,,%z,, .9z, (i)} C B, such that for all x € B,
there exists j € {1,2, ..., k(i) }, satisfying
I Fu(t, 55) = Fu(#}, @) < e2.
We have

Fy([0,T] x (B(0,00) N X0)) C Uit,...nf = 1, ..., k(1) 5® 2),

and the compactness of Fy([0,7] x (B(0,a9) N Xp)) follows .  From Theorem 2 . 4 ,
we know that S(t) is lo cally Lipschitz , so by using the same argument as above , we
deduce that

Ut»E[O,T] UzoeB S(t)[pn * ﬁl('a UIO())(O)]

is relatively compact , and

UtE[O,T]S € [O7T] UzoeB S(t)p/n * ﬁl('auﬂﬁo('))(s)
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there exists a compact subset

C,, C Xy, suchthat
Upao (t) € Cp, Vg € B,VE € [0,T].

To complete the proof , it remains to prove the uniform convergence of vy, 4, (t) to
U145, (t). That is to say Ve > 0,3ng € N\ {0}, such that

| 1,20 () — Un oo (B) [|< €, V2o € B,VE € [0,T],Vn > ng.
WehaveVt € [0, T,
U1,z (t) — Un,zo (t)

= A/O U0 (8) — Vnzo (8)ds +/0 Fi(8,u,(8)) — pn* Fi(., ug, (1)(s)ds,

so that

I 1,00 (1) = Vna (8) | < M / D) | By, () — prw By (g ()(8) | ds.
ThenVs € [0, T7,
Fiy(5, gy (5)) = prx Fy (o, gy (1))
= Fi(5, Uz (5)) = = 2pn(0)T1(s — 0, ug, (s — 0))d6
= 2 pn(0)T (s, sy () — Fi (5 — 0,1, (s — 0))do.
So by using Assumption 5. 1 e ) , one has

| Fi(s,ttan(5) = pns B g (D)(s) | < k=T 2pn(8) | 0] dB < ko,

and we have

| w10 (t) — Vpao () | < Me“TTE Vg € B,V € [0,T],Yn > 1.
O

Assumption 5. 2.

f) Let (Z,] .| Z) be a Banach space , let H : Z x Xg — X be a continuous
bilinear map , and let be a Lipschitz continuous map G : Ry x Xg — Z which maps
bounded sets into relatively compact sets . We assume that

Fy(t,x) = H(G(t,x),x),Va € Xo,Vt > 0.
g) Let wy, € C([0,T], Xo) be the solution of

t
Wy, () = To(t)xo Jr/o To(t — $)H(G(S, Uz, (), ey (s))ds, Voo € B,Vt € [0,T].
We assume that there exists 77,0 < T" < T, such that

We, (t) = 0,Vzo € B, Vt>T'.

The following theorem gives the eventual compactness of the non - autonomous semi -
flow .

Theorem 5 . 2. Under Assumptions 5. 1-5. 2, theset {ug(t):te
[T",T),xz0 € B} has compact closure .
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By taking into account Theorem 5 . 1 , it remains to investigate the eventual
compactness of the second component us,, (). We have

Uz (8) = To ()20 + Lung (g (-))(8) + Ly (w1 () (£), V¢ € [0, T,

where

Loy (())(1) = / To(t — $)H(G(5, sy (). t(s))ds., V¢ € [0,

As an immediate consequence one has

Uaao (t) = Y LE (To(Dao) () + Y LE (u1ay())(),, VE € [0, 77,
k=0 k=1
thus
Uy (1) = Way () + D Lk (e (1)) (8),, V2 € [0, T,
k=1

where w,, (t) is the continuous solution of

t
wa (£) = To(t)o +/ To(t — 8)H (G5, 1y (5)), way (5))ds, V¢ € [0, T,
0
By Assumption 5 . 2 g ) , one deduces that

o0

Uz (t) = ) Ly (w10, (1) (1), VE € [T, T.
k=1

So for each integer m > 1,

m o0

Uaao(t) = Y LK (ura () () + Y LE (urs, (1)(#), ¥t € [T, T).
k=1 k=m+1
We recall that

t
L (109 () (1) = / To(t — 8)H(G(5, tiny (8)), 1o (3))ds, Vi € [0,T).
0
Moreover , by using Assumption 5. 2 { ) , and Theorem 5 . 1, one deduces that

Modef_{ H(G(t, tn, (t)), tray (t)) : 20 € B, t € [0,T]}

is relatively compact . By compactness of [0,T] x My, and by continuity of (¢,z) —
To(t)x, one deduces that

Mldef:{To(t)LE cx € My,t € [O7T}}

is also relatively compact . Therefore ,

Lo (u12,(.))(t) € conv(My)def_Ey, Vit € [0,T],



)

and by Mazur ’ s theorem Ej is compact . By using induction arguments we deduce
that for each m > 1, there exists a compact subset E,, C Xg, such that

D Lk (w1 ())() € B, VEE[0,T].
k=1

Moreover , by using Assumption 5. 1 ¢ ), we know that there exists a constant C > 0,
such that

I L5, (u120 () (2) || < c0e T CFT,
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where C = M || H || £(Z x Xo, Xo)[|| G(0,0) || + || G || v ip!®0 + T7], 0 > 0 is the
constant

introduced in Assumption 5. 1 ¢ ), and where R x Xj is endowed with the norm
| &)l =|t|+ ||z - So, we deduce that V¢ € [0,T],
k=m+ k=m+1
1Y 1L (e (D) | < aoe?™ Y (CTin)"
k=0
< e T (eCT — Z(CTky)k)def:’ym -0

as m — +oo. Let E = Uyep/ 1o € B{uas,(t)}. Then for all 2 € E there exists
y € By, such that ||z —y [[<ym. Let € > 0, and let be m > 0 such that ym < 2.
Since E,, is compact we can find a finite sequence {y; };=1..., such that

E,, C Uj:l,‘..,pB(y]H 52)7

and since ym < €2, we also have E C U;=1,... ,B(y;,¢). So FE is relatively compact .

O

We are now in position to investigate compact global attractors for periodic non -
autonomous semiflow generated by the Cauchy problem
dU (t, sdt)xg = AU(t, s)xo + F(t,U(t, s)xg), fort > s,
U(s, s)xg = xo,
where F'is time periodic .
Assumption 5 . 3.
a) A:D(A)C X — X is a Hille - Yosida operator .
b) F:[0,4+00) x Xg — X is a continuous map , which satisfies
F(t,l’) = Fl(tvm) + Fg(t, (E),
where F; @ [0,+00) x Xg = X, and Fy : [0,+00) x Xg — X satisfying :

vC > 0,3K(C) > 0,suchthat
| Fi(t,z) — F;(t,9) IS K(C) ||z —y ||,Vz,y € B(0,C) N Xo,Vt >0, i=1,2.

¢ ) There exists a closed convex subset Ey C X such that , for each s > 0, and
each zy € Ey there exists a continuous solution U(., s)xg : [s, +00) = X of

t t
Ul(t,s)xg = zo + A/ U(l, s)xodl +/ F(,U(l, s)xo)dl,Vt > s,
s S
U(t,S)EO C Ep,Vt > s >0,
and for each s > 0, each T' > 0, and each bounded subset B C Ej, the set

{U(t+s,8)xg:0<t<T,z9 € B} isbounded.

d) Foreacht > 0,4 — Fi(t, ) is continuous and maps bounded sets into relatively
compact sets , and for each C' > 0, for each T > 0, there exists

k = k(C,T) > 0,suchthat
| Fi(t,z) — Fi(l,z) || <k|t—1|,Vze B(0,C)N Xy, Vt,l€[0,T].
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For each bounded subset B C Ey, for each s > 0, and for each T" > s, there
exists k = k(B,s,T) > 0, such that

| Fi(t,U(t, 8)xo) — Fy(L,U(,8)xo) || <k|t—1|, Yoo € B,Vt,l € [s,T].

f) Let (Z,] .| Z) be a Banach space , let H : Z x Xg — X be a continuous
bilinear map , and let be a Lipschitz continuous map G : Ry x Xg — Z which maps
bounded sets into relatively compact sets . We assume that

Fy(t,x) = H(G(t,x),x),Va € Xo,Vt > 0.

g ) For each s > 0, and for each xy € Ey, let wy,(.,s) € C([s,+0), Xo) be the
solution of

t
Wy (t,8) = To(t — 8)xo + / To(t —DH(G(L,U(,8)x0), we, (1, 8))dl, ¥Vt > s.
S
We assume that there exists T > 0, such that

We, (8, 8) = 0,Vag € Eo,Vt > T + s.
h) There exists w > 0 such that

F(t+w,z) = F(t,x),Vt > 0,Vz € Xj.

i) There exists a closed bounded subset £y C Ej such that for each s > 0, for
each bounded subset B C Ey, there exists tg = to(B, s) > s such that

U(t,S)B C El,Vt > to.

In section 6 , we will verify Assumption 5 . 3 for the age - structured model with
Ey = Xo+, and By = B(0,M)N X4 for some M > 0. But it is possible
to consider different situations .

The following theorem describes the global attractor for a periodic non - autonomous
semiflow . The compactness of A and its attractor properties have already been
proved by Zhao [ 20 | under more general assumptions .  Zhao ’ s proof also contains

vi), butnotiiz).

Theorem 5 . 3. Under Assumption 5. 8, th e non - autonomous s emiflow
U(t,s) re- stricted to Ey is w— periodic , that is to say that
Ult+w,s+w)xeg=U(t,s)xg, forall xg€ Ey, forall t>s>0.
Moreover , there exists a family {Ai}i>0 of subsets of Ey, satisfying :
i) A=A, forall t>0.
ii) Forall t>0,A; is compact and connected .
iii) Forall t>s>0,U(t s)As = As.
iv) A=Up<i<wA; is compact .
v ) The map t — Ay is continuous with respect to the Hausdorff metric , that is
to say that h(A:, Ay,) = 0, as ¢t — tg, where
h(A, B) = max ( dist (A, B), dist (B, A)),
with dist (A, B) = sup,¢ 4 dist (z, B), and dist (z,B) =inf {|| z —y |: y € B}.
vi)  For each bounded s et B C Ey, and for ea ch s> 0,

lim dist(U(t,s)B, A:) = 0.

—>¢+00
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Proof . One can first note that under Assumption 5. 3 a ) - g ), Assumptions 5 . 1
and

5 . 2 are satisfied for any bounded set B C Ey and for any T > T’. So Theorem 5 . 2
implies that for each s > 0, and for each T > T"

{U(t+ s,8)xo: t € [T',T],z0 € B} has compact closure . The periodicity of U(t,s) is
immediate .  Let us denote for each ¢ > 0, the map

T; : Ey — FEy, definedby
Ti(z) =U(t +w,t)z,Vz € Ey.
From Assumption 5 . 31 ), it is not difficult to see that E; is an absorbing set for T,

that is to say that for each bounded set B C Ejy, there exists an integer ky € N, such
that

TF(B) C Ey,Vk > k.

Moreover , from Theorem 3 . 5 and Theorem 5 . 2 we know that for all m € N, such
that mw > T7, T} is continuous and maps bounded sets into relatively compact sets

Thus from Theorem 2 . 4. 2 p . 1 7 in the book by Hale [ 5] , we deduce that
for each t > 0, there exists A; C Ey a global attractor for T;. Namely ¢)A; is compact ;
11)T; Ay = Ay and 4i7) for every bounded subset B C Ey,

lim dist(T/"(B), A;) = 0. (5.2)

—m+00

Furthermore , since Ej is closed and convex , we deduce that conv (4;) C Ey. More -
over by Mazur ’ s theorem conv (A;) is compact , so A; attracts conv (A;) with respect
to the map T;. By applying the method of the proof of Lemma 2 . 4. 1 p. 17 in
the book by Hale [ 5] , we deduce that A; is connected . We now prove that

Ul(t,s)As = Ay, Vt > s > 0.
Let t > s > 0 be fixed , and let us denote

B, =U(t,s)As.
Then
T;By =U(t+w,t)U(t,s)As = U(t + w,s + w)U(s +w, s)As
=U(t,s)TsAs = U(t, s)As = Bs.
So B, is compact and invariant by T;. We deduce from ( 5. 2 ) that B; C A;. Moreover
if K € Nis such that s+ kw > t, and m > k
Ay =T (A) = Ut + mw, t) Ay
=U(t+ mw, s+ kw)U(s + kw, t) A,
=U(t +mw,s+mw)U(s+ mw, s + kw)U(s + kw,t) As
= U(t +mw, s +mw)T" U (s + kw, t) A,
=U(t,s) T U (s 4 kw, t) A;.

So by using again ( 6 . 2 ) , and by taking the limit when m goes to infinity , one
deduces that

A C U(t, S)AS = B;.



So ,

Ay = U(t,s)Ag, ¥t > s > 0. (5.3)

We now prove iv). Let {z,}n>0 be a sequence in A.  Then there exists numbers
t, € [0,w] such that x,, € A; . Since A; = U(t,0)Ap, there exists elements yn in
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Ap such that z,, = U(t,,0)yn. Since Ay is compact ,yn — y € Ay after choosing a
subsequence .  Further ¢, — ¢ € [0,w] after choosing a further subsequence .  Since
the map (¢,2) — U(t,0)x is continuous by Theorem 3.5, z,, — U(t,0)y € A; after
choosing a subsequence .

We now prove v). Claim 1: dist (A5, 4;) — 0as s —t. Suppose that is not
the case , then there exists some € > 0 and a sequence ¢,, — ¢ such that dist (A;,, A¢) > ¢
for all n € N. By definition of dist (. , . ) , there exist elements z,, € A;, such that
dist (zn, A¢) > € for all n € N. Since A;, = U(t,,0)Ap, there exist elements yn € Ay
such that x,, = U(ty,0)yn for all n € N.  Since Ag is compact ,yn — y € Ap after
choosing a subsequence .  So z, — U(t,0)y € A; after choosing a subsequence , and
dist (@, A;) — 0, which gives a contradiction . Claim 2 :  dist (A;, As) = 0as s — t.
Suppose that is is not the case , then there exists some ¢ > 0 and a sequence t,, — t
such that dist (A, A¢,) > € for all n € N. By definition of dist (. , . ) , there exist
elements x,, € A; such that dist (z,, A, ) > € for all n € N Then there exist elements
yn € Ap such that x, = U(t,0)yn  After choosing a subsequence ,x,, — U(t,0)y for
some y € Ag. By definition of dist (. ,. ),

| U@E0)yn —U(tn,0)y ||= || zn — U(tn, 0)y ||> dist(z,, Ay,) > € > 0.
But
H U(tv O)yn - U(tna O)y ”4) ” U(ta O)y - U(tv O)y ”: 0.
To complete the proof it remains to prove vi).  Assume vi) does not hold .  Then

there exists a sequence ¢, — +oo and some ¢ > 0 such that

dist(U(ty, s)B, As,) > >0, ¥YneN.
Let 0,, € [0,w], and m,, € N, be such that ¢ = m,w + 0,, + s, then one has

Ultn,s) =U(muw+ 0, +s,8)
=U(mpw + 0, + s, mpw + s)U(muw + s, 8) (5.4)
=U(0, + s,9)U(mpw + 5,8) =U(0p + s,8)T"".

By (5. 4) there exist elements z,, € B such that

dist(U (0, + s, 8)T0" @y, Ag, +s) > € >0,Yn €N,

and m, — +o0o0 as n — +oo. Since Ay attracts B under Ty and A, is compact ,
yn =T""x, — y € A, after choosing a subsequence . Since U(0,, + s, s)y € Ag, +s,

0<e<dist(U(bn+s,8)Ta" " xn, Ag,1+5) < U0, +s,8)yn — U0, + s,9)y || -
After choosing another subsequence 6,, — 6,

0<e< [[U@+s,s)y—-U0+s sy,

which gives a contradiction . [
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In this section , we consider the following system , for ¢ = 1,..., N,

+oo0 J=1
/ 5 Bt o) aus o)),

0yt + 05" = —pi(a Zm” (t, u(t u;(t)(a),a.e.a € (0,iq, ),
ui(t)(a) = 0,a.e.a € (iq,, +00),
u;(0)(a) = i(a),a.e.a € (0,+00),

where i, > 0 is the maximum age of the class 4, 8;; (¢, u(t))(a) the birth rate of
individuals of the class j in the class i, ui(a) is the mortality of individuals of class i,
and m;;(t, u(t))(a) represents : 1) if ¢ # j a migration from class j to classi; 2 ) if
1 = j intra - specific or inter - specific competition , and loss due to migration from
class i to another class .

Let us consider

Y:Y1XY2X'-'XYN,
with
Y; = {¢ € L'(0,+00) : ¢(a) = 0,a.e.a € (iq,,+00)}, i=1,..,N.

Here the Banach space X is

X=R" xY
which is endowed with a usual product norm of RY x L(0,4+00)", and
X+ = R_I,'\_/v X Y+
where Y} = Yy 4 x Yoy X+ XYy, with Y;y = Y;NLY (0, 400), fori = 1,..., N. Following
Thieme * s approach [ 13 ,p. 137], we define A: D(A) C X - X
0 0
A é = (—¢(0), Bg), for é € D(A) = {0gN} x D(B),

where B: D(B) CY — Y is defined by

(Boi(a) ={ —0%@ — pi(a)gia), a*ga® e (O D

tay

and

D(B) = {¢ € W"(0,400)" : pigi € L'(0,400), pi(a) =0, a.e.a € (iq,,+00)}.
So here Xy = D(A) = {0gN} x Y, and Xop = {OgN} x Y. We also introduce the

nonlinear map F': Ry x Xg — X is ,

F(t,(0rN,¢)) = F1(t,¢) + Fa(t,¢), fort >0, andp €Y,
whereF] : Ry XY — Xis

~ 400 J=1
Fi(t,¢) = ( F1(()i ) > withFy (¢, ¢)i = / > Bii(t,¢)(a)¢;(a)da
N
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andFy : Ry XY — Yis

0= N - =
Pt0) = (g ) ORI =m0

Assumption 6 . 1.

a) ( Concerning the unbounded linear operator A)  For
1 = 1,.,N, u €

Llloc ( [07 Z'aj- ), R) andsatisfies
a

a
/0 pi(s)ds < +00,Ya € [0,iq,[, lim pi(s)ds = 400,

a/‘zmr 0
wi(a) > 0,a.e.a € (0,44, ), pi(a) = 0,a.e.a € (iq;,+00)

b ) ( Concerning the existence and uniqueness of the solutions ) For all ¢ > 0,
Vo € Y,Vi,j =1,...,N, the functions §8;; : Ry x Y — L*°(0,4+00) and m;; : Ry x Y —
L°°(0,+00) are continuous maps , and

ifi #j, m(t,¢)(a) =0, a.e.a>iq.
Moreover , for 7,5 = 1,..., N,VC > 0, there exist kfij(C’) > O,kgij(C) >0,
k"7 (C) > 0, and ky 7 (C) > 0, such that V1,42 € Y N B(0,C),Vt > 0,

I Bij (£ $1) = Bij(t, 62) || Loo(0, +00) < K7V (C) || 61 = 62 || L* (0, +00)",
| s (t, ¢1) — mij(t, 62) || Loo(0,+00) < k{7 (C) || ¢1 — ¢2 || L*(0, +-00)™
I Bij (£, 61) || Loo(0,+00) < k57(C),
| mij(t, ¢1) || Loo(0, +00) < ky™ (C).

¢ ) ( Positivity of the solutions ) For all 7,5 = 1,..., N,V¢ € Y, Vt > 0, we have

Bij(t, @) >0, andifi # j, m4;(t,¢) > 0.

d) ( Global existence of the nonnegative solutions ) For alli,j = 1,...,N

g ey 5

Ekgij > 0,37 > 0,Y € Yy, ¥t > 0,
sup Yy || Bij(t, ¢) || Loo(0,+00) < k59,
02t7¢6
sup Y || mij(t,6)* || Loo(0, +o0) < k',
0>,,9€

where m;;(t, $)* (a) = max (0,m;;(t,$)(a)),a. e.a > 0. Theorem 6. 1. Under
Assumption 6.1 a), the operator A : DA < X - X
satisfies (0,400) C p(A), and for all X >0,

| (AId — A)~t < AL
Moreover ,  forall A > 0, (\Md-A)7'Xy < Xy Ao To(t) =
(0,To(t)) the Co— s emigroup generated by Aoy, th e part of A in D(A), is given
by

‘ ; ; a.e. a 0, min(t, i4,)),
OéxP(7 /a—t MZ(U)dU)(bZ(a B t), a/' e “ ee ((Hlin(t7 (ia'r)’ T')i?l]‘)v

Ty(t)¢i(a) =

0, ae. ac€ (ig,+00).
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Proof . We consider the case N = 1, the case N > 1 being similar . Let us start by
computing the resolvent of A.  Let ({}) € R x Y( since N =1 we have Y =Y1).

We look for ¢ € Y7 solution for A > 0 of

(5) == (3) = (3) = (V)

Thus

M@zetéA+u@ﬂa+lef/‘kﬂﬂmw@@ya&aé@jb

We conclude that the resolvent operator is positive i . e . (AMd— A)"Y(Ry x Y}) C
{0} x Y. Moreover , for A > 0,

1(1]L a
| ()\Id—A)_1< ) I :/ |e_/ A+ p(l)dly, +/ / A+ (D) dly(syds|da
0 0
/ /°A+u mMM+/T / / (1)dl | (s) | dsda
1a u.]\. 1().
< / e Mda | | +/ / e dae™ | Y(s) | ds
0 0 a

1la
<Xt fals [TEe oA e v |ds

0

Vol [ e a=a (5)

so A is a Hille - Yosida operator .  To complete the proof of this theorem , it remains
to give the explicit formula for the linear semigroup Ty(¢). Let < 2 € D(A)(
i.e.
¢ € Y1).Wedenote
0 0
Ti(t =( ~ ,
()= (s )
where

Vg [ pila)do)oila—1), a

0, ae.ac (tl,+o0).

Ty (t)(¢)(a) = braceleftbt — braceex — bracele ftmid — braceex

0

From section 2 , to prove that Ty(t) ( 0 ) =Ti(t) ( é

é ) ,Vt > 0, it is sufficient to

verify that

ﬂ@(i)(i)+{£ﬂ@(g>ﬁwza 6.1)

To show this , we need to compute fg Ti(¢)(s)ds. We define ¢1 € C(R,Y), for all
t >0, by



s

pi(o)do)d(a _ — s)ds,
i(o)do)é(a )ds,

a.eval €€ (min(t, 1), 14)

(4,400
(0,min(t,11)),>
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now want to prove that ¥1(t) fo T1 (s)ds, for all t > 0. By the Hahn -
Banach theorem , it is sufficient to show that

+o00 t +o0
/ Fa) / T (5)(6)ds) (a)da = / F@)$1(t)(a)da, Vf € L*(0, +00).
0 0 0

Moreover , it is not difficult to see that T7(¢) has the semigroup property , and it is
sufficient to prove (6 . 1) for t < t1.  We deduce that it is sufficient to prove the
above equality for ¢ < 1}. Let t € [0,a]. and f € L>(0, +00),

/+OO fla )(/ T1(s)(¢)ds)(a)da

/ /m 71 ()(6)(a)dads

- / / " F(@)71(5)(6)(a)dads

_ /O t / " Fla) exp(— / _ i(0)do)d(a — s)dads
[ r@est- [ o) - syads

:/tf(a) /aexp(—/aa i(0)do)b(a — 5)dsda

/ fa / exp(—- /asﬂi(g)dg)éb(as)dsda

Lay
/f Y1(t)(a)da + fla)v1(t)(a)da

+oo
- / F(a)$1(t)(a)da

Now it remains to replace T3 (t) and #1(t) in equation (6.1). O Theorem 6 . 2 .
Under Assumption 6 . 1, for each s >0, and each xg € Xy, th ere
exists a unique mazimal s o lution U(., s)xo € C([s,Ts(xg)), Xo) of

t t
Ul(t,s)xo =z + A/ U(l, s)xodl + / F(L,U(1,s)xo)dl,Vt € [s,Ts(x0)), (6.2)

where the map Ty : Xog — (s, +00] is
Ts(xo) =sup {T > s: Ju € C([s,T],Xo) s o lution of (6. 2) }, and U(t,s) is a
non - autonomous s emiflow , that is to say that

U(t,r)U(r,s)xo = Ul(t, $)xo, Vo € X0,V0 < s <r <t < Ts(xo).

Moreover for each s> 0,theset Ds={(t,z):z € Xg,s <t <Ts(xg)} is an open s
etin [s,400)x Xo, andthemap (t,x) = U(t,s)x from D to Xo is continuous

Furthermore , for ea ch s >0, and each xg € Xoy, there exists a unique s o
lution U(.,s)xo € C([s,+00),X0) of (6. 2 ) (i. e .Ts(xg) =+00),

U(t,S)XO+ C XOJ,_,Vt > s> O7
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1 Ut 8)ao | L0, 400)N < [ 2o || L0, +00)NC0e™ "t > 5 > 0,V € Xy
(6.3)

Proof . From Theorem 6 . 1 , we know that Assumption 3 . 1 a ) is satisfied
with M =1, and w = 0. By using Assumption 6 . 1 b ) it is not difficult to see that
Assumption 3. 1 b)) is satisfied . By using Theorem 6 . 1, and Assumption 6. 1¢ ),
one can easily see that Assumption 3 . 2 is satisfied . Finally , we define V¢t > 0,V € Y

B 0 B Fi(t,¢)
Gi(t, ¢) = < él(t,@ >7 andGs(t, ¢) = < ﬁ2(t,¢) —él(t,qﬁ) ) ’

wherefor: = 1, ..., N,
Gi(t,¢)i = —myi(t, )" i

where m;;(t, ¢)” (a) = max (—my;(t, ¢)(a),0), a . e .a > 0. Then clearly Assumption 3
. 3 is satisfied . O
Assumption 6 . 2.

e ) ( Differentiability of the solutions )  For

i,j = 1,..N, Bj : RyxY —

L>(0,400) and m;; : Ry XY — L*°(0, +00) are continuously differentiable . The-
orem 6 . 3. Under Assumptions 6 . 1 and 6 . 2 ,1let s > 0, and le t
To = 0 € Xy

¢

be such that

ro € {y € D(A): Ay + F(s,y) € D(A)},

namely
uleol
1202

¢ €Y NW (0, +00), uop = ' € L}0,+00)",  andg(0) = Fi(s,9).
uNoN

Then the map t — U(t, s)xq is continuously differentiable , and

dU (t, s)dtzg = AU(t, s)zo + F(t,U(t, s)x0), Vt[s, Ts(xo)).

Moreover , for th e domain D(An,os) = {zo € D(A) : Axg+ F(s,z9) € D(A)}  we
have that D(An,0,s) N Xoy is dense in Xo.

Proof . The proof of the first part of Theorem 6 . 3 is a direct consequence of the
results of section 4 . It remains to show that we can approximate an element of X
by an element of D(An ) N Xo+. We denote Fy(x) = F(s,x),Vs > 0,Vx € Xj. Let
y € Xo4+. Then as in section 4 , we consider the following fixed point problem ,

(Id+ Apld — XA — N(Fs + pld))zr, =y
& g = (14— N(A— uTd)) "y + A(Td — N(A — puId)) ™ (F, + puTd) ()

By fixing p > 0, large enough , such that



(Fu+ pld)(2) € X1,z € B(©,2 || y ) N Xo,
then for all A > 0 small enough , the map

D) = (Id = MA — pId)) "'y + A(Id = M(A — uId)) " (F, + pld) (),



EJDE 2001 /65 TIME - PERIODIC AGE - STRUCTURED POPULATION MODELS 29
maps B(0,2 || y ||) N Xo4+ into it self , and for all A > 0 small enough @) restricted to
B(0,2 || y ||) N Xo4 is a contraction . The result follows . O

Assumption 6 . 3.
f) ( Eventual Compactness ) For all C' > 0,VT > 0, for i,j7 = 1,..., N, there

exists kfij(C, T) > 0, such that V¢,l € [0,T],

| Bij (t,6) — Bij (1, 8) || Loo(0, +00) < K{7(C,T) [t —1].
g) Fori,j=1,.,N,Vt>0,Y¢ €Y, one has 3;;(t,¢)u; € L>(0,+00), and

vC > 0,VT > 0,

¢ € sup ,C) || Bi;(t, @)u; || Loo(0, +00) < +o0;
YNB(0

te[0,7T)

h) Fori,j=1,..,N,Vt>0,V¢ €Y, one has B(t,¢) € WH>(0,+00), and

vC > 0,VT > 0,
¢ €Y NnBsup(0,C)t € [0,T] || da®s® ) || Loo(0, +00) < +o0;
i) There exists M € N\ {0}, for 4,5 =1,..., N, for all C > 0, for all T > 0, there
exists kéﬁj(C’, T) > 0, suchthatforallte [0,7], for all ¢1,¢2 €
B(0,0)NY,
| Bij(t, #1) = Bij(t, ¢2) |loo
=1 +o0
<HYET) Y | [ AL @1, - 62a),)dal,
sty 0
wherefori, j,p=1,...N,l =1,..., M,
£i2(t, 61, 62)(.) € WH(0, +00),
1p () f (8 81, 62)(.) € L(0, +00),
61 sup |I<C [ da¥is®1,62) | Loo(0, +00) < +o0,

<C,l¢2
0<t<T
[ @1l sup (< C || ppfy (t,¢1,2) | Loo(0,+00) < +00.
<Cllig2
0<t<T

Lemma 6 . 4 . Under Assumptions 6 . 1 and 6 . 3, Assumptions 5. 3a )-¢€)
are satisfied
wlthEo = X0+.
Proof . Assumptions 5 . 3 a ) - d ) are clearly satisfied , and we only have to prove
As - sumption 5. 3 e ). We must prove that given a bounded set B C Xy, and
given s > 0, and T > s, there exists a constant k = k(B,s,T) > 0, such that
|| Fl(t7 U(t,S)SCo) - Fl(lv U(Z,S)Iﬂo) || <k | t—1 |7Vtvl € [SaT]aV:EO € B.

We assume that s = 0, the case s > 0 being similar , and we denote



Uz, (t) = U(t, 0).’E07 YVt > 0,Vxg € X0+.
Let g € B. It is sufficient to consider , for each 7,7 =1,..., N,

+oo
=1 B, j "ty (1)) (@)t (D)(@) = B § 11y (1)) (@) g (1) (a) dal,
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with g, (t) = < SRI;?[) ) . Then
To

“+o0
<] /0 B j "ty (1)) (@) [t () (@) — a5 (1) ()] e
+oo
+|/O (B, 5 ey (1) (@) = Bi j "ty (1) (@)t (1) (@)dal

Note that

t t
Ug, (t) = 20 + A/ Ug, (s)ds + / F(s,ug,(s))ds, ¥t >0,
0 0
and we know that there exist two constants Cy > 0, and C; > 0, such that

||ty () |< Co || 2o || €“1Fe2", vt > 0.
So

Uz, (t) — Uz (l)
t l t l
A /0 o, (5)ds — /O oy (5)ds] + | /O F(s, s, (5))ds — /O F(s, s, (5))ds].

Therefore ,

+o0 t !
IQA mx%wmmwéwwwmw<éwdmeM|
+oo t

+%§ﬂm%dmwwm%um@ww—%um@wwm|

+oo t l
1 B @I o (69025 = ([ Flsyy(5)) g

0 0 0
1ty () | ZMO, 4000 || B %t (£)) — i, %ty (1)) || Loof0, +o0)

and since (f(;t Uz (8)ds)(ja;) = 0,9t > 0, and Bi, jug, () (ia,) = O( because of As-
sumptions 6 . 1a ) 6.3 g )and 6. 3h) ), by integrating by parts we get

l

Iﬁwwwwmw%um@mw—qﬁm@M@u

0

+00 t t
[P g )@ iy (95)@) = ([ s (315 @)
1

+oo t
+ | /0 Bivj, Ugg (t))(a>ﬂj(a)[(/o Uzej(5)ds)(a) — (/0 Uz, (s)ds)(a)]da |
o0 t 1
i, i a S, Uz, (5))ds)2§( @ — s.u. (8))ds)2q(@]dal
+|/0 Bis 3 uay (1)) )[(/0 F (s, uay(5))ds)2j (/0 F(s,ua,(5))ds) 2§

|t (1) ) L0, 400) ™ || B, 5%t (1)) — Bi, j 1 (D) || Loo(0, +-00)"
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, one has

t
I< sup || Bi,jugy (1)) || Loo(0,+00) | /l 17 15, 10 ()) || ds |

<ot<T

t
+ sup || %7 gy (1)) || Loo(0, +00) | / | 40 (5) 1| L*(0, +00) !
<ot<T l

t
+ sup | 1B, § iy (1)) || Loo(0, +00) I/l It (5) || L* (0, +00) ™!

<ot<

t
+ sup I Bi, 5y (1)) ] Loo(0, +00) | /l | F (5,1 (5))24 || L'(0, +00) "]

<ot<

o g () 1] L0, +00)N || Bi, 5P, (£)) = Bi, Tty (1)) || Loo(0, 400)
It remains to consider

J =] Bi, My (8)) — Bi, j g, (1)) || Loo(0, +00)
<|| Bi, 5 Mgy (£)) — Bi, § s, (1)) || Loo(0, +00)
+ 11 Bi, By (1) — Bi, g, (1) || Loo(0, +00):

By using Assumption 6 . 3 ) , it remains to consider

K =[] i, j % (1)) = Bi, j " (1)) || Loo(0, +o00)

But by using Assumption 6 . 3 1), and arguments similar to the previous part of the
proof , the result follows . [
Assumption 6 . 4 .

(1)j) ( Eventual Compactness ) For ¢,j =1,...,N,m;; : Ry xY — L*(0,400) is
completely continuous .
Theorem 6 . 5. Under Assumptions 6. 1, 6. 8, and 6 . 4 , Assumptions 5 . 3
a)-g)are
satisfied with Eo = Xoy, and T" = max;=1,.. n(ia;). Moreover for each s >0, for
each bounded s e t B C Xoy, and for each T > max;—1, . n(ia;), theset

{U(t+s,8)z0 1 i =" 1,....,nl"1) <t < T,z € B}

has compact closure . Proof . By taking into account Lemma 6 . 4 , it only remains
to show Assumptions
5.3f)and g ). We denote

Z = L(0, +o0)™".
We define H : Z x Xo — Xo, for all a = (a;;) € L(0, +00)N", and all ¢ € Y by

H(“’( " )): ( Hln o )

with
N
Hy(o, ¢)i =Y aij(a)g;(a).
j=1

Under Assumption 6.4,G : Ry X Y — Z defined by



G(t, ¢)i; = mij(t, @),



32 P.MAGAL EJDE-201/65 is completely continuous , and we have

F2(t,( 2) )) :H(G(t,¢),< g >),V¢EY,WZO.

So Assumption 5 . 3 f) is satisfied by Fs. It remains to prove Assumption 5. 3 g ) .
We assume that s = 0, the case s > 0 being similar , and we denote

Uy, (t) = U(t,0)xo, ¥t > 0,Vao € Xot.
Let zg € Xo4+. We must show that if wy, (¢) is solution of
¢
Wy, (£) = To(t)zo + / To(t — s)H(G(S, Uz, (5)), Wy, (s))ds, ¥Vt > 0,
0
then wy, (t) = 0 for all ¢ > max;—1,... N (ia;). We have

W (t) = To(t)xo + LZL’O (wl’o('))(t)?Vt >0,

where
t
Lo = [ Tolt = 9H(Gsv 1, (5)) 0(5)ds. ¥ 2 0,
0
thus
way (t) =Y LE (To(.)0) (1), ¥t > 0,
k=0
where
k k
LY =1Id, andLit' =L, oLk  fork>0.

So , it remains to prove that ,

LE (way ())(t) = 0, >4 =2 1, NUet)wk > 0.

For k = 0, the result follows from the explicit formulation of Ty (t) given in Theorem 6
. 1. For k =1, we have

I Loy (To(-)z0) () || L1(0, +00)™

S/O | To(t — s)H(G(s, uay (5)), To(s)zo) || L (0, +00) V"
S/O Il To(t — 5)H (G(s, ua, (5)), To(s)xo) ||| L*(0, +00)"
S/O I To(t = 5) | H(G(s, ua, (5)), To(s)xo) ||| L*(0,+00) ™

t
< ke(C,T) / | Tolt — )7To(s) | 2o |[| L*(0, +00) N
0

where



[ Ji Jiz o Jin

o
withi,j = 1,..., N,V$; € Y;

Jij(65)(a) = { ;0 arga® €€ ((§ @D
H,T7 o).
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using the explicit formulation of Ty(t) given in Theorem 6 . 1 , we get for i,j =

1 N

g ey 5

if tl Z O,tQ Z 0, and tl + tg > zmax 1 "')’ then Toi(tl)JijToj(tQ) = O, and we
deduce that

Ly, (To()xo)(t) =0, fort > rlr(lax -

,,,,,

Fork > 2, the result follows from the fact that V(iq,i2,...,4%) € {1,..,N},

Y(t1, o, ... ty) € RE
ift, >0,Vi=1,....k, andt; +to+-- +1t > I{laXN<iaT>7
i=1,...,

thenTo;, (t1)Jiyis T0ip (62) - Jip i Toix (tk) = 0,

and by using similar arguments we deduce that

L8 (To(Jao)(t) = 0, fort > i wiax 1)

=1,...,

O

Assumption 6 . 5 .
k) ( Existence of absorbing set ) For i = 1, ..., N, there exists ¢; > 0, such that

+oo
mzz(t ¢ >5 / da V¢€Y+

Theorem 6 . 6 . Under Assumptions 6 . 1,6. 2,6. 3, 6.4,and 6. 5,

Bii o mis
Let us denote 6 = N? ZZ ; max;— mml’ ’N(]I:f’(gjkg >0, Then for each € >0,

for any bounded s et B C Xoy, and for each s > 0, there exists tg = to(e,B) > 0,
such that

U(t+s,s)B C B(0,6+¢) N Xo4, VYt > to,
U(t+s,5)B(0,0 +¢) N Xor C B(0,6+¢) N Xo4,VEt > 0.

Proof . To prove the theorem we consider the case s =0, the case s > 0 being
~. Letp € D(Ano)NXox = {weD(A):AYp+F(0,¢) € D(A)}N Xoy.
Then from Theorem 6.3, u(t) = U(t,0)¢ satisfies
i=1
dugigr = — 012 o, — i*2i + Zm” (t, u(t))ug; (t)
SO
+oo
it / was (1) (a)da
0
+oo i=1 +oo
= u2;(t)(0) —/ m(a)wz(t)(a)daJrZ/ m;(t, u(t))(a)uz;(t) (a)da
0 ~ Jo
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i=1 j=1

dtd§/+oo u2;(t)(a)da < (Z i— Imax (k/%j + kmij))Z/—ir(>C uay(f)(a)da
~ Jo ' N SR ’ N /0 ’

7]\/‘(51')]']\72: = l(fo OQUQj(t)(a)da)2

g =ming

i=1 N - J=1 it
< - a7+ KNS [ uns @) (@da
N N
. 5 i1 +oo
N2 —min N i><23;/0 sy (1) (a)da)>.

From this inequality , we deduce that

lu@) <]l ¢l +/0 Cr(6= [luls) ) I u(s) || ds, vt >0, (6.4)

with C; = Zfil maszl,m,]v(kgij + k3. By density of D(An,0) N Xo+ in Xo4,
we deduce that inequality ( 6 . 4 ) holds for all ¢ € Xg 4, and the result follows . O
Assumption 6 . 6 .

1)  ( Periodicity ) There exists w > 0,Vi,j =1,..., N,¥t > 0,m;;(t + w,.) =

mij(t7 .), andﬁij (t + w, ) = Bij (t, )

The next result gives the existence of a family of compact attracting subsets .
Theorem 6 . 7 . Under Assumptions 6 . 1 -6 . 5, th e non - autonomous s
emiflow U(t,s)

restricted to Xoy is w— periodic , that is to say that

U(t4+w,s+w)xg =Ul(t,s)zg, for all xg € Xoy, forall t>s>0. Moreover , there
exists a family {A;}i>0 of subsets of Xoi, satisfying :

i) A=Ay, vt >0.

ii) Forall t > 0,A; is compact and connected . iii) Forall t>s >
0,U(t,s)As = Apiv)A = Up<i<w At s compact . v ) The map t — Ay is continuous
with respect to the Hausdorff metric , that is to say that

h(Athto) — 0, ast — to,

where h(A, B) = max (dist (A, B), dist (B, A)).vi) For each bounded s et B C Xo4,
and for each s >0,

_)1}14{100 dist(U(t,s)B, A¢) = 0.
Proof . To prove Theorem 6 . 7 it is sufficient to apply Theorem 5 . 3 with Ey = Xo4,
T = max;=1,... n(ia;), and By = B(0,6 +¢), for a certain € > 0, where § > 0 is the
constant introduced in Theorem 6.6. [
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