ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS , Vol. 2002 (2002) , No . 82 , pp . 1-18 . I SSN : 1072-6691 . URL : http : / / ejde . math . swt . edu or http : / / ejde . math . unt . edu ftp ejde . math . swt . edu (login : ftp)

Dirichlet problem for quasi-linear elliptic

equations *

Azeddine Baalal & Nedra BelHaj Rhouma Abstract

We study the Dirichlet Problem associated to the quasilinear elliptic problem

$$-\sum_{i=1}^{i=1} \partial^{\partial} x_{i}^{\mathcal{A}_{i}(x,u(x),\nabla u(x))} + \mathcal{B}(x,u(x),\nabla u(x)) = 0.$$

Then we define a potential theory related to this problem and we show that the sheaf of continuous solutions satisfies the Bauer axiomatic theory.

1 Introduction

The objective of this paper is to study the weak solutions of the following quasi-linear elliptic equation in \mathbb{R}^d , $(d \ge 2)$:

$$-\sum_{i=1}^{i=1} \partial^{\partial} x_{i}^{\mathcal{A}_{i}(x, u(x), \nabla u(x))} + \mathcal{B}(x, u(x), \nabla u(x)) = 0$$

$$(1.1)$$

where $\mathcal{A}_i: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ and $\mathcal{B}: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ are given Carath \acute{e} odory functions satisfying the conditions introduced in section 2.

An example of equation (1 , 1) is the perturbed p- Laplace equation

$$-\text{div}(|\nabla u|^{p-2} \nabla u) + \mathcal{B}(., u, \nabla u) = 0, \quad 1
(1.2)$$

When p=2, equation (1 . 2) reduces to the perturbed Laplace equation

$$-\Delta u + \mathcal{B}(., u, \nabla u) = 0. \tag{1.3}$$

Another example included in this study is the linear equation

$$\mathcal{L}(u) = -\sum_{j} \left(\sum_{i} a_{ij} \partial^{\partial u}_{x_{i}} + d_{j} u\right) + \sum_{j} b_{j} \partial^{\partial u}_{x_{j}} + cu = 0,$$

* Mathematics Subject Classifications : $~3~1~C~1~5~,\,35~B~65~,\,35~J~60~.$

 $\label{eq:continuous} \textit{Key words:} \ \ \text{Supersolution , Dirichlet problem , obstacle problem , nonlinear potential theory .} \\ \textit{circlecopyrt}-c2002 \ \ \text{Southwest Texas State University .} \ \ \text{Submitted April 9 , 2002 .} \ \ \text{Published October 2 , 2002 .} \\ \text{Supported by Grant DGRST - E 2 / C 1 5 from Tunisian Ministry of Higher Education .} \\$

2 Dirichlet problem for quasi - linear elliptic equations EJDE – 2002 / 82 where \mathcal{L} is assumed to satisfy conditions st ated in [25] (see also [12]).

Equation (1.1) have been investigated in many interesting papers [24, 26, 11, 21, 2]. Several papers have introduced an axiomatic potential theory for the nonlinear equation (1.2) when $\mathcal{B} = 0$; see for example [11]. For equations of type (1.3), see [1, 2, 3, 4].

The existence of weak solutions of (1.1) in variational forms was treated by means of the sub-supersolution argument [7,8]. Later on , Dancers / Sweers [6], Kura [15], Carl [5], Lakshmikantham [10], Papageorgiou [23], Le / Schmitt [19], and others treated the existence of weak extremal solutions of nonlinear equations of type (1.1) by means of the sub-supersolution method . Le [17]

studied the existence of extremal solutions of the problem

$$\int_{\Omega} A(x, \nabla u(x))(\nabla v - \nabla u)dx \ge \int_{\Omega} \mathcal{B}(x, u(x))(v(x) - u(x))dx, \tag{1.4}$$

for all $v \in K$, $u \in K$, where K is a closed convex subset of $W_0^{1,p}(\Omega)$.

Note that the solutions of (1.4) correspond to the obstacle problem treated in section 5 of this paper. Remark that in the references cited above, often $\mathcal{B} = \mathcal{B}(x, u(x))$ and the growth of \mathcal{B} in u is less then p-1 and when $\mathcal{B} = \mathcal{B}(x, u, \nabla u)$, the growth of \mathcal{B} in u and ∇u is less then p-1, but in our case the growth of \mathcal{B} in ∇u is allowed to go until $p-1+p_n$ and there is no condition on the growth of \mathcal{B} in u.

Our aim in this paper is to solve the Dirichlet problem for (1 . 1) with a continuous data boundary and to give an axiomatic of potential theory related to the associated problem .

This paper consists of four sections . First , we recall some definitions for the (weak) subsolutions , supersolutions and solutions of the equation (1 . 1) . In particular , we prove that the supremum of two subsolutions is a subsolution

and that the infinimum of two supersolutions is also a supersolution . In section

3, we give some conditions that allow us to have the comparison principle for sub and supersolutions. After this preparation we are able in section 4 to solve the Dirichlet problem related to the equation (1 . 1). So at first we prove the existence of solutions to the associated variational problem, after what we solve

the Dirichlet problem for continuous data boundary . In the last section , we define a potential theory related to the equation (1 . 1) , so we obtain that the sheaf of continuous solutions of (1 . 1) satisfies the Bauer axiomatic theory [4] . We prove also that the set of all hyperharmonic functions and the set of all

hypoharmonic functions are sheaves.

Notation Throughout this paper we will use the following notation: \mathbb{R}^d is the real Euclidean d- space, $d\geq 2$. For an open set U of \mathbb{R}^d , we denote by $C^k(U)$ the set of functions which k- th derivative is continuous for k positive integer, $C^\infty(U)=\cap_{k\geq 1}C^k(U)$ and by $C_0^\infty(U)$ the set of all functions in $C^\infty(U)$ with compact support $L^q(E)$ is the space of all $q^{th}-$ power Lebesgue integrable functions $W_0^{1,q}(U)$ is defined the closure on measurable $C_0^\infty(U)$ in $E_W^{1,q}(U)$ is the $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ is the $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ is the $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ is the $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ is the $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ in $C_0^\infty(U)$ is the $C_0^\infty(U)$ in $C_0^$

 $\mathrm{denotes}^{\mathrm{denotes}} \mathrm{the_{the}} \mathrm{dualof} W_0^1 \mathrm{Lebesgue}_{\mathrm{measure}}^{q_{(U)}} q - 1 := \inf_{\substack{q' \\ q' E}}^{u} \mathrm{For}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mid_{\mathrm{the}}^{E|} \mathrm{for}_{\vee v} \mathrm{aLebesgue} \mathrm{and} u \wedge v \mathrm{measurabledesignse} tE, \mathrm{respectively} \mathrm{for}_{v} \mathrm{fo$

supremum and the infinimum of u and $v.u^+ = u \lor 0$ and $u^- = u \land 0$. We write \rightharpoonup (resp. \rightarrow) to design the weak (resp. strong) convergence.

2 Supersolutions of (1.1)

Let Ω be a bounded domain in $\mathbb{R}^d (d \geq 2)$ with smooth boundary $\partial \Omega$ and let \mathcal{L} be a quasi - linear elliptic differential operator in divergence form

$$\mathcal{L}(u)(x) = -\sum_{i=1}^{i=1} \partial^{\partial} x_{i} \mathcal{A}_{i}(x, u(x), \nabla u(x)) + \mathcal{B}(x, u(x), \nabla u(x)) \quad \text{a.e.} x \in \Omega$$

where $\mathcal{A}_i : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ and $\mathcal{B} : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ are given Carath \acute{e} odory functions. Let $\mathcal{A} = (\mathcal{A}_1, ..., \mathcal{A}_d)$ and $1 . We suppose that the following conditions are fulfilled: for a. e. <math>x \in \Omega, \forall \zeta \in \mathbb{R}$ and $\xi, \xi' \in \mathbb{R}^d$:

$$|\mathcal{A}(x,\zeta,\xi)| \le k_0(x) + b_0(x) |\zeta|^{p-1} + a |\xi|^{p-1}$$
 (P1)

$$(\mathcal{A}(x,\zeta,\xi) - \mathcal{A}(x,\zeta,\xi'))(\xi - \xi') > 0, \text{if } \xi \neq \xi'. \tag{P2}$$

$$\mathcal{A}(x,\zeta,\xi)\xi \ge \alpha \mid \xi \mid^p -d_0(x) \mid \zeta \mid^p -e(x) \tag{P3}$$

$$|\mathcal{B}(x,\zeta,\xi)| \le k(x) + b(x) |\zeta|^{\alpha} + c |\xi|^{r}, 0 < r < (p^{p_*})', \alpha \ge 0.$$
 (P4)

$$(p^*)' < q < (_{p-\varepsilon}^d \wedge p_r)$$
 and $d_0, e, b \in Ld_{-p}\varepsilon, (0 < \varepsilon < 1)$.

 $\mathcal{B}(.\text{We}^{\text{can}}_{,u,\nabla u)}\text{easily}_{\in L^{(p^*)}}\text{show}^{\text{that if }u}_{\text{when }\alpha\leq p^-}\in 1.W^{1,p}(\Omega), \text{ then }A(.,u,\nabla u)\in L^{p'} \text{ and that } \textbf{Definition}$ We say that a function $u\in W^{1,p}_{\text{loc}}(\Omega)$ is a (weak) solution of (1 . 1) , if

$$\mathcal{B}(., u, \nabla u) \in L^{(p^*)'}$$

$$\int_{\Omega} \mathcal{A}(., u, \nabla u) \nabla \phi + \int_{\Omega} \mathcal{B}(., u, \nabla u) \phi = 0,$$
(2.1)

for $\mathrm{We}^{\mathrm{all}\phi} \in \mathrm{say0}^{\mathrm{that}}_{W^{1,p}}({}_{u}\Omega_{\in}).W^{1,p}_{\mathrm{loc}}(\Omega)$ is a supersolution (resp . subsolution) of (1 . 1) if

$$\mathcal{B}(., u, \nabla u) \in L^{(p^*)'}$$

$$\int_{\Omega} \mathcal{A}(., u, \nabla u) \nabla \phi + \int_{\Omega} \mathcal{B}(., u, \nabla u) \phi \ge 0 \quad (\text{resp.} \le 0)$$

for every nonnegative function $\phi \in W_0^{1,p}(\Omega)$.

4 Dirichlet problem for quasi - linear elliptic equations EJDE – 2002 / 82 Note that if u is a supersolution of (1 . 1) then -u is a subsolution of the equation

$$-\mathrm{div}\widehat{A} + \widehat{B} = 0$$

where $\widehat{A}(x,\zeta,\xi) = -\mathcal{A}(x,-\zeta,-\xi)$ and $\widehat{B}(x,\zeta,\xi) = -\mathcal{B}(x,-\zeta,-\xi)$. Further - more, the structure of \widehat{A} and \widehat{B} are similar to that of \mathcal{A} and \mathcal{B} .

We recall that if u is a bounded supersolution (resp. subsolution), then u is upper (resp. lower) semicontinuous in $\Omega[21,$ Corollary 4 . 1 0].

Proposition 2.1 Let u and v be two subsolutions of (1.1) in Ω such that

$$(\mathcal{A}(.,v,\nabla u) - \mathcal{A}(.,u,\nabla u))\nabla(v-u) \ge 0, \quad a.e.x \in \Omega.$$

Then , $\max{(u,v)}$ is als o a subsolution . A s imilar s tatement holds for the mini - mum of two supersolutions .

Proof. Fix ϕ in $C_0^{\infty}(\Omega)$, $\phi \geq 0$. Let $\Omega_1 = \{x \in \Omega : u > v\}$, $\Omega_2 = \{x \in \Omega : u \leq v\}$ and put $I = \int_{\Omega} \mathcal{A}(., u \vee v, \nabla(u \vee v)) \nabla \phi = I_1 + I_2$ where

$$I_1 = \int_{\Omega_1} \mathcal{A}(., u, \nabla u) \nabla \phi$$
 and $I_2 = \int_{\Omega_2} \mathcal{A}(., v, \nabla v) \nabla \phi$.

Let $\rho n : \mathbb{R} \to \mathbb{R}$ be such that $\rho n \in \mathcal{C}^1(\mathbb{R})$,

$$\rho n(t) = \{ \{ \}_{0}^{1} \text{ if } if^{if}t^{t} \geq \leq 0^{1/n} \}$$

 $\mathrm{and}_{\mathrm{see}}\rho_n'\mathrm{that}^{>}0_{n_q}\mathrm{one}]_{W\,1,p\mathrm{loc}\,(\Omega),}^{0,\,1/n[.}\mathrm{For}_{qn\to}^{\mathrm{each}}1_{\Omega_1}x\in\mathrm{and}\Omega\|_{qn}^{\mathrm{define}}\|_{\infty}\\ \leq qn1_{.}^{(x)}\mathrm{It}=\rho n((u\succ-v\mathrm{by}_{\mathrm{Lebesgue's}}^{)(x)).}$

Theorem of dominated convergence that $I_1 = \lim_{n \to \infty} \int_{\Omega_1} q n^{\mathcal{A}}(., u, \nabla u) . \nabla \phi$ and

$$I_2 = \lim_{n \to \infty} \int_{\Omega_2} (1 - qn) \mathcal{A}(., v, \nabla v) . \nabla \phi. \text{Hence}$$

$$\int_{\Omega} qn^{\mathcal{A}}(., u, \nabla u) . \nabla \phi = \int_{\Omega} \mathcal{A}(., u, \nabla u) \nabla . (qn\phi) - \int_{\Omega} \mathcal{A}(., u, \nabla u) \phi. \nabla (qn)$$

$$\leq -\int_{\Omega} \mathcal{B}(., u, \nabla u) (qn\phi) - \int_{\Omega_n} \mathcal{A}(., u, \nabla u) \phi. \nabla (qn),$$

where_{Put}
$$\Omega_{nI_n} = \{x \int_{\Omega}^{\epsilon} \frac{\Omega : v}{qn \mathcal{A}(.)} < u, u < \nabla_{u).\nabla \phi}^{v+1_n} \}$$
 and $J_n = \int_{\Omega} (1-qn) \mathcal{A}(.,v,\nabla v).\nabla \phi$. Then,

similarly we have

$$\int_{\Omega} (1 - qn) \mathcal{A}(., v, \nabla v) \cdot \nabla \phi \le -\int_{\Omega} (1 - qn) \mathcal{B}(., v, \nabla v) \phi + \int_{\Omega_{rr}} \mathcal{A}(., v, \nabla v) \phi \cdot \nabla (qn).$$

So , we get

$$I_n + J_n \leq -\int_{\Omega} \mathcal{B}(., u, \nabla u)(qn\phi) - \int_{\Omega} (1 - qn)\mathcal{B}(., v, \nabla v)\phi$$
$$+ \int_{\Omega_n} (\mathcal{A}(., v, \nabla v) - \mathcal{A}(., u, \nabla u))\phi \cdot \nabla(qn).$$

EJDE – 2002 / 82 Azeddine Baalal & Nedra BelHaj Rhouma 5 Using that $\nabla(qn) = \rho'_n(u-v)\nabla(u-v)$, we get

$$I_{n} + J_{n} \leq -\int_{\Omega} \mathcal{B}(., u, \nabla u)(qn\phi) - \int_{\Omega} (1 - qn)\mathcal{B}(., v, \nabla v)\phi$$
$$-\int_{\Omega_{n}} \rho'_{n}(u - v)(\mathcal{A}(., v, \nabla v) - \mathcal{A}(., u, \nabla u))\phi.\nabla(v - u)$$
$$\leq -\int_{\Omega} \mathcal{B}(., u, \nabla u)(qn\phi) - \int_{\Omega} (1 - qn)\mathcal{B}(., v, \nabla v)\phi.$$

Finally, we have

$$\int_{\Omega} \mathcal{A}(., u \vee v, \nabla(u \vee v)).\nabla \phi + \int_{\Omega} \mathcal{B}(., u \vee v, \nabla(u \vee v))\phi \leq 0$$

which completes the proof . \square We say that \mathcal{L} satisfies the property (\pm) , $\$ if for every k > 0 and every

supersolution (resp. subsolution)u of (1 . 1), the function u + k(resp. u - k) is also a supersolution (resp. subsolution) of (1 . 1)

also a supersolution (resp . subsolution) of (1 . 1) Remark 2 . 1 — 1) Suppose that for each $u \in W^{1,p}_{\mathrm{loc}}(\Omega)$ and each k>0,

$$\int (\mathcal{A}(.,u+k,\nabla u) - \mathcal{A}(.,u,\nabla u)).\nabla \phi + \int (\mathcal{B}(.,u+k,\nabla u)$$

 $for_{2)Note} every nonnegative that_{if\mathcal{L}(u)} = function_{-\sum_{j}\partial^{\partial}x_{j}}\phi \in (\sum_{i=a_{ij}}^{W} 0^{1,p} (\Omega) + Then_{d_{j}u}) + \mathcal{L}satisfies(\sum_{i}b_{i}\partial\partial_{x_{i}}uthe properties) + Change of the properties of the properties$

e l lip ti c operator of s econd o rder satisfying the conditions of [12], then (2.2) is equivalent to $(-\sum_i (d_j) + c) \ge 0$ in the distributional s ense.

3) Suppose that $\mathcal{A}(x,\zeta,\xi) = \mathcal{A}(x,\xi)$ and for a. e. $x \in \Omega$ and $\xi \in \mathbb{R}^d$ the map: $\zeta \to \mathcal{B}(x,\zeta,\xi)$ is increasing. Then the property (\pm) holds.

3 Comparison principle

In this section , we will give some conditions needed for the comparison principle . This principle makes it possible to solve the Dirichlet problem and to develop a potential theory in our case .

We say that the *comparison principle* holds for \mathcal{L} , if for every supersolution u and every subsolution v of (1, 1) on Ω , such that

$$\lim_{x \to y} \sup v(x) \le \lim_{x \to y} \inf u(x)$$

for all $y \in \partial \Omega$ and both sides of the inequality are not simultaneously $+\infty$ or $-\infty$, we have $v \leq u$ a . e . in Ω .

Theorem 3.1 Suppose that the operator \mathcal{L} satisfies e ither one of the property (\pm) and the following s trict monotony condition (s ee [22]):

$$(\mathcal{A}(x,\zeta,\xi) - \mathcal{A}(x,\zeta',\xi')).(\xi - \xi') + (\mathcal{B}(x,\zeta,\xi) - \mathcal{B}(x,\zeta',\xi'))(\zeta - \zeta') > 0$$

6 Dirichlet problem for quasi - linear elliptic equations EJDE – 2002 / 82 for $(\zeta, \xi) \neq (\zeta', \xi')$. Let u be a supersolution and v be a subsolution of (1.1), on Ω , such that

$$\lim_{x \to y} \sup v(x) \le \lim_{x \to y} \inf u(x)$$

for all $v \in \partial \Omega$ and both s ides of the inequality are not s imultaneously $+\infty$ or $-\infty$, then $v \leq u$ a.e. in Ω .

Proof. Let $\varepsilon > 0$ and K be a compact subset of Ω such that $v - u \le \varepsilon$ on $\Omega \setminus K$, then the function $\phi = (v - u - \varepsilon)^+ \in W_0^{1,p}(\Omega)$. Testing by ϕ , we obtain that

$$0 \leq \int_{v>u+\varepsilon} (\mathcal{A}(.,u+\varepsilon,\nabla u) - \mathcal{A}(.,v,\nabla v))\nabla(v-u-\varepsilon) + \int_{v>u+\varepsilon} (\mathcal{B}(.,u+\varepsilon,\nabla u) - \mathcal{B}(.,v,\nabla v))(v-u-\varepsilon) \leq 0.$$

Hence $\nabla (v-u-\varepsilon)^+=0$ and $(v-u-\varepsilon)^+=0$ a . e . in Ω . It follows that $v\leq u+\varepsilon$ a . e . in Ω and therefore $v\leq u$ a . e . in Ω

Corollary 3.2 we suppose that $\mathcal{A}(x,\zeta,\xi) = \mathcal{A}(x,\xi)$ and $\mathcal{B}(x,\zeta,\xi) = \mathcal{B}(\zeta)$ such that the map $\zeta \to \mathcal{B}(x,\zeta)$ is increasing for a. e. x in Ω . Then, the comparison principle holds.

Theorem 3.3 Suppose that **i**) $[\mathcal{A}(x,\zeta,\xi) - \mathcal{A}(x,\zeta',\xi')].(\xi - \xi') \geq \gamma \mid \xi - \xi' \mid^p \text{ for all } \xi, \xi' \in \mathbb{R}^d,$

 $a. e. x in \Omega and for s ome \gamma > 0.$

- **i i**) For a. e. $x \in \Omega$ and for all $\xi \in \mathbb{R}^d$, the map $\zeta \to \mathcal{B}(x,\zeta,\xi)$ is increasing,
- $\begin{array}{lll} \mathbf{i} \ \mathbf{ii} &) & \mid (\mathcal{B}(x,\zeta,\xi)-\mathcal{B}(x,\zeta,\xi')\mid \leq b(x,\zeta)\mid \xi-\xi'\mid^{p-1} \textit{for } a.\ e & . & x\in\Omega, \textit{for al } l \ \zeta\in\mathbb{R} \\ & \textit{and for al } l \ \xi,\xi'\in\mathbb{R}^d. & \textit{Where} \ \sup_{\mid \zeta\mid \leq M} b(.,\zeta) & \in L^s_{\mathrm{loc}}(\Omega), & s>d, \textit{for al } l \end{array}$

$$M > 0$$
.

Then the comparison principle holds.

Proof. The main idea in this proof comes from Professor J . Maly '. Let $\rho > 0$, $M = \sup (v - u)$ and put $w = v - u - \rho$. Take w^+ as test function . Then , we get

$$\int_{\Omega} [\mathcal{A}(.,u,\nabla u) - \mathcal{A}(.,v,\nabla v)] \cdot \nabla(w^{+}) + \int_{\Omega} [\mathcal{B}(.,u,\nabla u) - \mathcal{B}(.,v,\nabla v)](w^{+}) \ge 0$$

and by consequence

$$\gamma \int_{\Omega} |\nabla w^{+}|^{p} \leq \int_{\Omega} b(x, v) |\nabla w^{+}|^{p-1} w^{+} \\
\leq C[\int_{\Omega} |\nabla w^{+}|^{p}] p - p1[\int_{\Omega} (w^{+})^{p^{*}}] 1p_{*} |A_{\rho}| s_{s}^{-d}{}_{d} \\
\leq C ||\nabla w^{+}|| p^{p} |A_{\rho}| s_{s}^{-d}{}_{d}.$$

EJDE – 2002 / 82 Azeddine Baalal & Nedra BelHaj Rhouma 7 where $A_{\rho} = \{ \rho < v - u < M \}$. Hence we get $|A_{\rho}| \to 0$ when $\rho \to M$, which is impossible if M > 0. Thus $, v \le u$ on Ω

4 Dirichlet Problem Existence of solutions for $0 \le \alpha \le p-1$ and $0 \le r \le p-1$

Definition Let $g \in W^{1,p}(\Omega)$. We say that u is a solution of problem (P) if

$$u - g \in W_0^{1,p}(\Omega),$$

$$\int_{\Omega} \mathcal{A}(., u, \nabla u) \cdot \nabla \phi + \int_{\Omega} \mathcal{B}(., u, \nabla u) \phi = 0 \quad \forall \phi \in W_0^{1,p}(\Omega).$$

Remark 4.1 Put v = u - g, then u is a solution of the above problem (P) if and only if v is a solution of

$$u \in W_0^{1,p}(\Omega)$$

$$\int_{\Omega} \mathcal{A}_g(., u, \nabla u) \nabla \phi + \int_{\Omega} \mathcal{B}_g(., u, \nabla u) \phi = 0, \quad \forall \phi \in W_0^{1,p}(\Omega), \quad (4.1)$$

 $where \mathcal{A}_q(., u, \nabla u) = \mathcal{A}(., u + g, \nabla(u + g)) and \mathcal{B}_q(., u, \nabla u) = \mathcal{B}(., u + g, \nabla(u + g)).$

Let $T: W_0^{1,p}(\Omega) \to W_0^{-1p'}(\Omega)$ be the operator defined by

$$\langle T(u), v \rangle = \int \mathcal{A}_g(., u, \nabla u) \nabla v + \int \mathcal{B}_g(., u, \nabla u) v \quad \forall v \in W_0^{1,p}(\Omega).$$

Next we will est ablish the existence of solution of (4 . 1) when $0 \le \alpha \le p-1$ and $0 \le r \le p-1$. Let C = C(d,p) be a constant such that $||u||_{p*} \le C ||u||_p$ for every $u \in W_0^{1,p}(\Omega)$. Then , we get the following result .

Proposition 4.1 Suppose that $0 \le \alpha \le p-1$ and $0 \le r \le p-1$. If Ω is small (i.e. $\alpha > C(\parallel d_0 \parallel_{n/p} + \parallel b \parallel_{n/p}))$, then the operator T is coercive.

Proof. We have

$$\langle T(u), u \rangle = \int \mathcal{A}(u+g, \nabla(u+g)) \nabla u + \int \mathcal{B}(u+g, \nabla(u+g)) u$$

$$\geq (\alpha - C \parallel d_0 \parallel d/p - C \parallel b \parallel d/p) \parallel \nabla u \parallel p^p - H_1(\parallel u \parallel, \parallel \nabla u \parallel, \parallel g \parallel, \parallel \nabla g \parallel)$$

where C=C(d,p) and the growth of H_1 in $\parallel u \parallel$ and $\parallel \nabla u \parallel$ is less then p-1. So , let Ω be small enough such that $\alpha > C(\parallel d_0 \parallel n/p^+ \parallel b \parallel n/p^-)$. Hence , $\langle T \parallel_{\nabla u \parallel}^{(u),u} \stackrel{}{p} \to +\infty$

as $\|\nabla u\| p \to +\infty$ and therefore the operator T is coercive. \square **Proposition 4. 2** Suppose that $0 \le \alpha \le p-1$ and $0 \le r \le p-1$. Then, the operator T is pseudomonotone and satisfies the well known property (S_+) : If $u_n \to u$ and $\limsup_{n\to\infty} \langle T(u_n) - T(u), u_n - u \rangle \le 0$, then $u_n \to u$.

The proof of this proposition is found in [21].

Theorem_{has@least}4₁.3 Suppose_{weaksolution} that T_{in} satisfies^{the}_{W₀^{1,p}(Ω)} coercive condition on Ω . Then (4.1) **Proof .** The operator T is pseudomonotone , bounded continuous and coercive . Hence , by $\lceil 22 \rceil T$ is surjective . \square

Existence of solutions for $\alpha \geq 0$ and $p-1 < r < (p^{p_*})'$ Definition Let g be an element of $W_p^{1-1}(\partial\Omega)$.

We say that a function u is a solution of (4.2) with boundary value g if

$$u \in W^{1,p}(\Omega), \mathcal{B}(., u, \nabla u) \in L^{p*'}_{loc}\Omega$$

$$u = ginW_p^{1-1}(\partial\Omega),$$

$$\int_{\Omega} \mathcal{A}(., u, \nabla u)\nabla\phi + \int_{\Omega} \mathcal{B}(., u, \nabla u)\phi = 0 \quad \forall \phi \in W_0^{1,p}(\Omega).$$
(4.2)

(For the definition and properties of the space $W^{1-1}_p(\partial\Omega)$ see e . g . [20]) . We say that u is an upper supersolution of (4 . 2) with boundary value g if

$$\begin{split} u \in W^{1,p}(\Omega), \mathcal{B}(.,u,\nabla u) \in L_{Loc}^{p*'}\Omega \\ u &\geq g\mathrm{in}W_p^{1-1}(\partial\Omega), \\ \int_{\Omega} \mathcal{A}(.,u,\nabla u)\nabla\phi + \int_{\Omega} \mathcal{B}(.,u,\nabla u)\phi \geq 0 \end{split}$$

for all $\phi \in W_0^{1,p}(\Omega)$ with $\phi \geq 0$.

Similarly , a lower subsolution is characterized by the reverse inequality signs in the above definition .

We recall the following result given in [18, Theorem 2.2].

Theorem 4.4 Suppose that there exists an ordered pair $\phi \leq \psi$ of subsolution and supersolution of (4.2) satisfying the following condition: There exists $k \in L^q(\Omega)$, $q > p^{*'}$ such that for all $\xi \in \mathbb{R}^d$ and all ζ with $\phi(x) \leq \zeta \leq \psi(x)$, $|\beta_u^{\mathcal{B}}(x,\zeta,\xi)| \leq \operatorname{such}^{k(x)} + \operatorname{cthat}^{|\xi|^r}_{\phi} \leq a_u.e.x \leq \frac{\epsilon}{\psi}$. Ω . Then, (4.2) has at least one so lution **Proposition 4.5** Suppose that (4.2) admits a pair of bounded lower subsolution u and upper supersolution v such that $u \leq v$, then there exists a so lution v of

$$(4.2)$$
 such that $u \leq w \leq v$.

Proof. Let M be a positive real such that $\|u\|_{\infty}, \|v\|_{\infty}, \|g\|_{\infty} \leq M$. Then , for each ζ such that $u(x) - g(x) \leq \zeta \leq v(x) - g(x)$, we have $|\mathcal{B}(x,\zeta,\xi)| \leq k(x) + b(x)M^{\alpha} + 2^{r}c |\nabla g|^{r} + c|\xi|^{r}$ for a . e . $x \in \Omega$. In addition , u(resp. v) is a lower subsolution (resp. upper supersolution) of (4 . 2). Hence by the last Theorem , there exists a solution w of (4 . 2) such that $u \leq w \leq v$. \square

Corollary 4.6 Suppose that all positive constants are supersolutions and all negative constants are subsolutions. Then for each $g \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$, there exists a bounded s o lution w of (4.2) such that $\|w\|_{\infty} \leq \|g\|_{\infty}$.

 $EJDE-2002 \ / \ 82$ Azeddine Baalal & Nedra BelHaj Rhouma 9 **Proof**. We see that $v=\parallel g\parallel_{\infty}$ is an upper supersolution and $u=-\parallel g\parallel_{\infty}$ is a lower subsolution . Hence by the Proposition given above , we get a solution

$$u \leq w \leq v \quad \Box$$

4.1 Dirichlet Problem

In this section , we assume that $\mathcal{A}(.,0,0)=0$ and $\mathcal{B}(.,0,0)=0$ a . e . in Ω , that the property (\pm) is satisfied , and that the comparison principle holds .

 $\text{Suppose}_{\text{knownthat}} \text{if}^{\text{that}} u \text{is}^{\text{the}} \text{aopensetsolutionof}^{\Omega} (^{\text{is}} 1. \text{regular}_{1) \text{in} \Omega} (^{p-\text{regular}}_{\text{satisfying}} u [^{2}_{-f}, 1^{1}_{\in W_0}]^{-1}, \text{Then}_{p(\Omega)} \text{with}^{\text{itis}} f \in W^{1,p}(\Omega) \cap C(\Omega), \text{then}_{p(\Omega)} f \in W^{1,p}(\Omega) \cap C(\Omega), \text{then}_{p(\Omega)} f \in W^{1,p}(\Omega) \cap C(\Omega), \text{then}_{p(\Omega)} f \in W^{1,p}(\Omega)$

 $\lim_{x \to z} u(x) = f(z) \quad \forall z \in \partial \Omega$

 $W_{\text{loc}}^{\textbf{Definition}_{1,p}}(\Omega) \text{solves}^{\text{Let}} f_{\text{the}} \text{Dirichlet}^{\text{beacontinuous}} \text{function} \text{problem withon} \partial \Omega. \text{boundary} \text{value}^{\text{Wesay}} f \text{if}^{\text{that}} uu \text{is} \in {}^{C(\Omega) \cap \text{asolution}}_{\text{asolution}} (\Omega) \text{ of } (\Omega) \text{ of$

of (1.1) such that $\lim_{x\to z} u(x) = f(z)$, for all $z\in\partial\Omega$.

Theorem 4.7 For each $f \in C(\partial\Omega)$, the re exists u in $C(\Omega) \cap W^{1,p}_{loc}(\Omega)$ so lying the Dirichlet problem with boundary value f.

Proof By the Tieze 's extension Theorem , we can assume that $f \in C_c^{\infty}(\mathbb{R}^d)$. Let $(f_n)_n$ be a sequence of mollifiers of f such that $||f_n - f|| \le 1/2^n$ on Ω . let u_n denote the continuous solution of

$$u_n - f_n \in W_0^{1,p}(\Omega),$$

$$\int_{\Omega} \mathcal{A}(., u_n, \nabla u_n) \nabla \phi + \int_{\Omega} \mathcal{B}(., u_n, \nabla u_n) \phi = 0, \quad \forall \phi \in W_0^{1,p}(\Omega).$$

$$(4.3)$$

So , by the comparison principle , $|u_n-u_m| \le 2^1_n+2^1_m$. Hence , the sequence $(u_n)_n$ converges uniformly on Ω to a continuous function u. Let M be a positive real such that for all $n: |f_n|+|f|\le M$ and $|u_n|+|u|\le M$ on Ω .

Let $G \subset G \subset \Omega$, take ϕ as a test function in (4.3) such that $\phi = \eta^p u_n, \eta \in C_c^{\infty}(\Omega), 0 \le \eta \le 1$ and $\eta = 1$ on G. Then

$$\int_{\Omega} \mathcal{A}(., u_n, \nabla u_n) \eta^p \nabla(u_n)$$

$$= -p \int_{\Omega} \mathcal{A}(., u_n, \nabla u_n) u_n \eta^{p-1} \nabla(\eta) - \int_{\Omega} \mathcal{B}(., u_n, \nabla u_n) u_n \eta^p$$

1 0 Dirichlet problem for quasi - linear elliptic equations EJDE - 2002 / 82 Using the assumptions on \mathcal{A} and \mathcal{B} , we get

$$\alpha \int_{\Omega} \eta^{p} \mid \nabla(u_{n}) \mid^{p}$$

$$\leq pM \int_{\Omega} k_{0} \mid \nabla \eta \mid + pM^{p} \int_{\Omega} b_{0} \mid \nabla \eta \mid + pM \int_{\Omega} a \mid \nabla u_{n} \mid^{p-1} \eta^{p-1} \mid \nabla \eta \mid$$

$$+ cM \int_{\Omega} \mid \nabla u_{n} \mid^{r} \eta^{p} + \int_{\Omega} (M^{p}d_{0} + Mk + M^{\alpha+1}b + e)$$

$$\leq a(p-1)^{-1}M\varepsilon pp_{-}1(\int_{\Omega} \mid \nabla u_{n} \mid^{p} \eta^{p}) + crp^{-1}M\varepsilon_{r}^{p}(\int_{\Omega} \mid \nabla u_{n} \mid^{p} \eta^{p})$$

$$+ C(M, \Omega, \eta, \nabla \eta).$$

Thus , for ε small enough , we obtain

$$\int_{G} |\nabla(u_n)|^{p} \leq C(M, \Omega, \eta, \nabla \eta, \varepsilon).$$

So $(\nabla u_n)_n$ is bounded in $L^p(G)$ and therefore $(\nabla u_n)_n$ converges weakly to ∇u

$$\operatorname{in}(L^p(G))^d$$
.

Fix D an open subset of G and let $\eta \in C_0^{\infty}(G)$ such that $0 \le \eta \le 1$ and $\eta = 1$ on D. Take $\psi = \eta(u_n - u)$ as test function, then

$$-\int_{\Omega} \eta \mathcal{A}(., u_n, \nabla u_n) . \nabla (u_n - u)$$

$$= \int_{\Omega} (u_n - u) \mathcal{A}(., u_n, \nabla u_n) . \nabla \eta + \int_{\Omega} \mathcal{B}(., u_n, \nabla u_n) (u_n - u) \eta$$

Since $\mathcal{A}(., u_n, \nabla u_n)$ is bounded in $L^{p'}(G)$ and $\mathcal{B}(., u_n, \nabla u_n)$ is bounded in $L^q(G)$,

$$\lim_{n\to\infty}\int_G \mathcal{A}(.,u_n,\nabla u_n)(u_n-u)\nabla\eta=0,$$

$$\lim_{n\to\infty}\int_G \mathcal{B}(.,u_n,\nabla u_n)(u_n-u)\eta=0.$$
 Consequently,
$$\lim_{n\to\infty}\int_G \mathcal{A}(.,u_n,\nabla u_n)\eta\nabla(u_n-u)=0 \text{and}$$

$$\lim_{n\to\infty}\int_G (\mathcal{A}(.,u_n,\nabla u_n)-\mathcal{A}(.,u_n,\nabla u))\nabla(u_n-u)=0.$$

To complete the proof, we need to prove that $(\nabla u_n)_n$ converges to ∇u a. e. in Ω . That is the aim of the following lemma. **Lemma 4.8** Let $G \subset \Omega$ and suppose that the e sequence $(\nabla u_n)_n$ is bounded in

$$\lim_{n \to \infty} \int_{G} [\mathcal{A}(., u_n, \nabla u_n) - \mathcal{A}(., u, \nabla u)] \cdot \nabla (u_n - u) = 0.$$

Then $\mathcal{A}(., u_n, \nabla u_n) \to \mathcal{A}(., u, \nabla u)$ weakly in $L^{p'}(G)$.

EJDE - 2002 / 82 Azeddine Baalal & Nedra BelHaj Rhouma 1 1 **Proof**. Put $v_n = [\mathcal{A}(., u_n, \nabla u_n) - \mathcal{A}(., u_n, \nabla u)] \cdot \nabla (u_n - u)$. Since

$$\int_{G} v_{n} = \int_{G} [\mathcal{A}(., u_{n}, \nabla u_{n}) - \mathcal{A}(., u, \nabla u)] \cdot \nabla(u_{n} - u)
- \int_{G} [\mathcal{A}(., u_{n}, \nabla u) - \mathcal{A}(., u, \nabla u)] \cdot \nabla(u_{n} - u),$$

for a subsequence we get

$$\lim_{n \to \infty} [\mathcal{A}(., u_n, \nabla u_n) - \mathcal{A}(., u_n, \nabla u)] \cdot \nabla (u_n - u) = 0$$

a. e. $x \in G \setminus N$ with |N| = 0. Let $x \in G \setminus N$. By the assumptions on \mathcal{A} we have

$$v_n(x) \ge \alpha |\nabla u_n(x)|^p - F(|\nabla u_n(x)|^{p-1}, |\nabla u(x)|^{p-1}).$$

Consequently, $(\nabla u_n(x))_n$ is bounded and converges to some $\xi \in \mathbb{R}^d$. It follows that $[\mathcal{A}(., u, \xi) - \mathcal{A}(., u, \nabla u)] \cdot (\xi - \nabla u) = 0$ and hence $\xi = \nabla u$. Finally we concludeweakly that $(\mathcal{A}(., u, \nabla u), \nabla u) \cdot (\mathcal{A}(., u, \nabla u), \nabla u) \cdot (\mathcal{A}(., u, \nabla u), \nabla u) \cdot (\mathcal{A}(., u, \nabla u), \nabla u)$ a. e. in G and $\mathcal{A}(., u, \nabla u)$ converge \square

 $\text{that}^{\text{Now}} \nabla u_n^{\text{we}} \text{go}_{\rightarrow \nabla u}^{\text{back}} \text{to}_{\text{e.a.in}}^{\text{the}} \Omega \text{proof}_{\text{and}\mathcal{A}(.,}^{\text{of}} \text{Theorem}_{u_n, \nabla u_n)} 4 \bot.7. \\ \mathcal{A}^{\text{Using}} \underset{(., u, \nabla)}{\text{Lemma}} \underset{u) \text{in} Lp}{4.} p 8;_{(D)}^{\text{we}}. \text{conclude}_{\text{Hence}}, \\ \mathcal{A}^{\text{lemm}} \underset{(., u, \nabla)}{\text{Hence}} \underset{($

$$\int_D \mathcal{A}(.,u,\nabla u)\nabla \phi + \int_D \mathcal{B}(.,u,\nabla u)\phi = 0 \quad \forall \phi \in C_0^{\infty}(\Omega).$$

Moreover, using the fact that

$$-2_n^1 - 2_m^1 \le u_m - u_n \le 2_n^1 + 2_m^1 \quad \forall n, m$$

we obtain

$$-2_n^1 + u_n \le u \le 2_n^1 + u_n, \quad \forall n.$$

So , we deduce that for all n and all $z \in \partial \Omega$,

$$-2_n^1 + f_n(z) \le \lim_{x \in \Omega, \ x \to z} u(z) \le \lim_{x \in \Omega, \ x \to z} u(z) \le 2_n^1 + f_n(z)$$

which implies $\lim_{x\to z} u(x) = f(z)$ and completes the proof of Theorem 4.7. \square

Remark 4.2 Using the same techniques as in the proof of Theorem 4.7 we can show that every increasing and lo cally bounded sequence $(u_n)_n$ of supersolu-

tions of (1.1) in Ω is lo cally bounded in $W^{1,p}(\Omega)$ and that $u = \lim_n u_n$ is a supersolution of (1.1) in Ω .

functions

12 Sheaf property for Superharmonic

The obstacle Problem

Definition Let $f, h \in W^{1,p}(\Omega)$ and let

 $K_{f,h} = \{u \in W^{1,p}(\Omega) : h \le u \text{ a. e. in } \Omega, u - f \in W_0^{1,p}(\Omega)\}$. If f = h, we denote $K_{f,h} = K_f$. We say that a function $u \in K_{f,h}$ is a solution to the obstacle problem in

$$K_{f,h}$$
if
$$\int_{\Omega} \mathcal{A}(.,u,\nabla u).\nabla(v-u) + \int_{\Omega} \mathcal{B}(.,u,\nabla u)(v-u) \ge 0$$

whenever $v \in K_{f,h}$. This function u is called solution of the problem with obstacle h and boundary value f.

Since $u + \phi \in K_{f,h}$ for all nonnegative $\phi \in W_0^{1,p}(\Omega)$, the solution Remark 5.1 u to the obstacle problem is always a supersolution of (1 . 1) in Ω . a supersolution of (1.1) is always a solution to the obstacle problem in $K_u(D)$ for all open $D \subset D \subset \Omega$.

Theorem 5.1 Let h and f be in $W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. If v is an upper bounded supersolution of (4.2) with boundary value f such that $v \ge h$, then there exists a so lution u to the o bstacle pro b lem in $K_{f,h}$ with $u \leq v$.

As in [18], we introduce the function

$$g(x,\zeta,\xi) = \begin{cases} & \widetilde{B}(x,\zeta,\xi) & \text{if } \zeta \leq v(x) \\ & \widetilde{B}(x,v,\nabla v) & \text{if } \zeta > v(x). \end{cases}$$

As in [13], we define the function

$$\mathbf{a}(x,\zeta,\xi) = \begin{cases} & \mathcal{A}(x,\zeta,\xi) & \text{if } \zeta \leq v(x) \\ & \mathcal{A}(x,v,\nabla v) & \text{if } \zeta > v(x). \end{cases}$$

Note that **a** satisfies the conditions (P1), (P2), and (P3).

 $L^{p'} \\ A (\Omega \\ \text{Lemma}) \\ \text{is bounded} \\ ^{\text{in}[7]} \\ \text{p.52]} \\ \text{and proves that continuous.} \\ \\ \text{Without} \\ ^{\text{themap}} \\ u \rightarrow \\ \text{loss} \\ \text{of} \\ g(x,u,\nabla u) \\ \text{from generality} \\ \\ \text{we can be also be$

that $r \ge p-1$. Let $l = \max\{q', pp_r\} - 1$, and define the following penalty term

$$\gamma(x,s) = [(s - v(x))^+]^l \quad \forall x \in \Omega, s \in \mathbb{R}.$$

Let M>0 and consider the map $T:K_{0,h}\to W^{-1,p'}(\Omega)$ defined by

$$\langle T(u), w \rangle = \int_{\Omega} \mathbf{a}(., u, \nabla u) \nabla w + \int_{\Omega} g(., u, \nabla u) w + M \int_{\Omega} \gamma(., u) w.$$

EJDE - 2002 / 82 Azeddine Baalal & Nedra BelHaj Rhouma 1 3 Then for any $u, w \in K_{0,h}$, we have

$$|\int_{\Omega} g(x, u, \nabla u) w| \le c_1 \| w \| l + 1 + c_2 \| \nabla u \|_p^r \| w \| l + 1,$$
$$|\int_{\Omega} \gamma(x, u) w| \le c_3 \| w \| l + 1 + c_4 \| u \|_{l+1}^l \| w \| l + 1,$$

and for each $u \in K_{f,h} - f$, we have

$$\int_{\Omega} \gamma(., u) u \ge c_5 \| u \| l_{+1}^{l+1} - c_6.$$

An easy computation shows that for $\varepsilon > 0$,

$$(T(u), u) \geq (\alpha - c_2 \varepsilon) \| \nabla u \| p^p - (c \| u \|_p^p + c_1 \| u \|_{l+1}^{l+1} + c_2 c(\varepsilon) \| u \|_{l+1}^{l+1}) + Mc_5 \| u \|_{l+1}^{l+1} - Mc_6 - c_1 c_7.$$

where $c(\varepsilon)$ is a constant which depends on ε and c>0. Now , we choose M large to get the operator T coercive . Since T is bounded , pseudomonotone and continuous , then by a Theorem in [22], there exists $w \in K_{0,h}$ such that

$$(T(w), u - w) \ge 0$$
forall $u \in K_{0,h}$.

Next , we show that $w \leq v$. Since $w - ((w - v) \vee 0) \in K_{0,h}$ and since v is a supersolution of (4.2), it follows that

$$\int_{\{w>v\}} [\mathcal{A}(.,w,\nabla w) - \mathcal{A}(.,v,\nabla v)] \nabla (w-v) \le M \int_{\{w>v\}} \gamma(.,w) (v-w).$$

Thus by $(P 2), (w - v)^+ = 0$ a. e. in Ω and hence $w \le v$ on Ω . Finally, if we take $w_1 = w + f$, we obtain a supersolution of the obstacle problem $K_{f,h}$.

Nonlinear Harmonic Space Definition Let V be a regular set . For every $f \in C(\partial V)$, we denote by $H_V f$

the solution of the Dirichlet problem with the boundary data f.

Proposition 5. 2 Let f and g in $C(\partial V)$ be such that $f \leq g$. Then

$$H_V f \le H_V g$$
 i)

i i) For every $k \geq 0$, we have $H_V(k+f) \leq H_V(f) + k$ and $H_V(f) - k \leq H_V(f-k)$. **Definition** Let U be an open set. We denote by $\mathcal{U}(U)$ the set of all open, regular subsets of U which are relatively compact in U.

We say that a function u is harmonic on U, if $u \in C(U)$ and u is a solution of (1.1). We denote by $\mathcal{H}(U)$ the set of all harmonic functions on U. Then,

$$\mathcal{H}(U) = \{ u \in C(U) : H_V u = u \text{ for every } V \in \mathcal{U}(U) \}.$$

A lower semicontinuous function u is said to be hyperharmonic on U, if

•
$$-\infty < u$$

 $\bullet u \neq \infty$ in each component of U

• For each regular set $V \subset V \subset \Omega$ and for every $f \in \mathcal{H}(V) \cap C(V)$, the inequality $f \leq u$ on ∂V implies $f \leq u$ in V. We denote by $*_{\mathcal{H}}(U)$ the set of all hyperharmonic functions on U.

An upper semicontinuous function u is said to be hypoharmonic on U, if

$$\bullet u < +\infty$$

 $\bullet u \neq \infty$ in each component of U

• For each regular set $V \subset V \subset \Omega$ and each $f \in \mathcal{H}(V) \cap C(V)$, the inequality $f \geq u$ on ∂V implies $f \geq u$ in V. We denote by $\mathcal{H}_*(U)$ the set of all hypoharmonic functions on U.

Proposition 5.3

Let $u \in *_{\mathcal{H}}(U)$ and $v \in \mathcal{H}_*(U)$, then for each $k \geq 0$ we have

$$u + k \in *_{\mathcal{H}}(U)$$
 and $v - k \in \mathcal{H}_*(U)$.

Proposition 5. 4 Let u be a superharmonic function and v be a subharmonic function on U such that

$$\lim_{x \to z} \frac{\sup v(x)}{\sum_{x \to z} u(x)} \leq \lim \inf_{x \to z} u(x)$$

for all $l \in \partial U$, and bo the sides of the previous inequality are notes imultaneously $+\infty$ or $-\infty$, then $v \leq u$ in U.

Proof. Let $x \in U$ and $\varepsilon > 0$. Choose a regular open set $V \subset V \subset U$ such that $x \in V$ and $v < u + \varepsilon$ on ∂V . Let $(\phi i) \in C^{\infty}(\Omega)$ be a decreasing sequence

converging to v in V. Then $\phi i \leq u + \varepsilon$ on ∂V for i large . Let $h = H_V(\phi i),$ then

 $v \le h \le u + \varepsilon$ on V. By letting $\varepsilon \to 0$, we get $v(x) \le u(x)$. \square

Theorem 5 . 5 The space $(\mathbb{R}^d,\mathcal{H})$ satisfies the Bauer convergence property .

Proof. Let $(u_n)_n$ be an increasing sequence in $\mathcal{H}(U)$ locally bounded. By Theorem 4.11 in $[2\ 1]$, for every $V\subset V\subset U$, the set $\{u_n(x),x\in V,n\in\mathbb{N}\}$ is equicontinuous. Then the sequence converges locally and uniformly in U to a continuous function u. Take $\varepsilon>0$, since $u-\varepsilon\leq u_n\leq u+\varepsilon$, we get

$$H_V(u) - \varepsilon \le u_n \le H_V(u) + \varepsilon$$
 and $H_V(u) = u \quad \Box$

Theorem 5.6 Suppose that the conditions in subsection 4.1 are satisfied $k_0 = e = k = 0$ and $\alpha \ge p - 1$. Then $(\mathbb{R}^d, \mathcal{H})$ is a nonlinear Bauer harmonic space.

Proof. It is clear that \mathcal{H} is a sheaf of continuous functions and by Theorem 4. 7 there exists a basis of regular sets stable by intersection. The Bauer convergence property is fulfilled by Theorem 5. 5. Since $k_0 = e = k = 0$ and $\alpha \ge p - 1$, we have the following form of the Harnack inequality (e.g. [21], [26] or [24]): For every non-empty open set U in \mathbb{R}^d , for every constant M > 0 and every compact K in U, there

every non empty open set U in \mathbb{R}^d , for every constant M > 0 and every compact K in U, there exists a constant C = C(K, M) such hat

$$\sup_K u \le C \inf_K u$$

for every $u \in \mathcal{H}^+(U)$ with $u \leq M$. It follows that the sheaf \mathcal{H} is non degenerate.

П

Theorem 5. 7 Suppose that the condition of s trict monotony holds. Let $u \in \mathcal{H}^*(\Omega) \cap L^{\infty}(\Omega)$. Then u is a supersolution on U.

Proof . Let $V \subset V \subset \Omega$. Let $(\phi i)i$ be an increasing sequence in $C_c^{\infty}(\Omega)$ such that $u = \sup_i \phi i$ on V. Let

$$K_{\phi i} = \{ w \in W_{\text{loc}}^{1,p}(\Omega) : \phi i \le w, \quad w - \phi i \in W_0^{1,p}(V) \}.$$

We know by Theorem 5 . 1 that there exists a solution u_i to the obstacle problem $K_{\phi i}$ such that $\|u_i\|_{\infty} \leq \|\phi i\|_{\infty}$. We claim that $(u_i)i$ is increasing . In fact

$$u_{i} \wedge u_{i+1} \in K_{\phi i}, \text{ then}$$

$$\int_{\{u_{i}>u_{i+1}\}} (\mathcal{A}(., u_{i}, \nabla u_{i}) - \mathcal{A}(., u_{i+1}, \nabla u_{i+1})) \nabla(u_{i+1} - u_{i})$$

$$+ \int_{\{u_{i}>u_{i+1}\}} (\mathcal{B}(., u_{i}, \nabla u_{i}) - \mathcal{B}(., u_{i+1}, \nabla u_{i+1})) (u_{i+1} - u_{i}) \ge 0.$$

Hence $\nabla (u_{i+1} - u_i)^+ = 0$ a. e. which yields that $u_i \leq u_{i+1}$ a. e. in V.

On the other hand, for each i the function u_i is a solution of (1.1) in $D_i := \{\phi i < u_i\}$. Indeed, let $\psi \in C_c^{\infty}(W)$, $W \subset W \subset D_i$, and $\varepsilon > 0$ such that $\varepsilon \parallel \psi \parallel \leq \inf_W (u_i - \phi i)$. Then, we get $u_i + \varepsilon \psi \in K_{\phi i}$ and

$$\int_{W} \mathcal{A}(., u_i, \nabla u_i) \cdot \nabla \psi + \int_{W} \mathcal{B}(., u_i, \nabla u_i) \psi = 0.$$

Since

$$\lim_{x}\inf_{\to y}u(x)\geq u(y)\geq \phi i(y)=\lim_{x\to y}i(x)$$

for all $y \in \partial D_i$, it yields , by the comparison principle , that $u \geq u_i$ in D_i . Hence $u \geq u_i$ in D. Thus $u = \lim_{i \to \infty} \phi_i \leq \lim_{i \to \infty} u_i \leq u$. Finally , using Remark 4 . 2 we complete the proof . \square

Theorem 5.8 Suppose that the condition of s trict monotonicity holds. Then $*_{\mathcal{H}}$ is a sheaf - period

The proof of this theorem is the same as in [2, Theorem 4.2].

References

- $\it Lin~\acute{e}~aires~du~Second~Ordre~\grave{a}~Coefficients~Discontinus~$. Potential Analysis . 1 5 , no 3 , (200 1) 255 271 .
- - Elliptic Equations, Electron. J. Differ. Equ., no 3.1, (200.1) 1 20.
- $[\ 3\]$ N . Belhaj Rhouma , A . Boukricha and M . Mosbah , $Perturbations\ e\ t\ Espaces\ Harmoniques\ Non\ Lin\ \ \acute{e}\ aires\$. Ann . Acad . Sci . Fenn . Math . , no . 23 , (1998) 33 58 .
 - [4] A . Boukricha , Harnack Inequality for Nonlinear Harmonic Spaces , Math . Ann , (3 1 7) , no 3 , (2000) 567 583 .
- $[\ 5\]$ S . Carl and H . Diedrich , The weak upper and lower so lution method for quasilinear elliptic equations with generalized subdifferentiable perturbation ns , Appl . Anal . 56 ($1\ 995$) 263 278 .
 - [6] E.N. Dancer and G. Sweers, On the existence of a maximal weak s o lution for a s emilinear e l lip ti c equation, Differential Integral Equations 2 (1989) 533 540.
- [7] J. Deuel and P. Hess , A Criterion for the Existence of Solutions of Nonlin ear Elliptic Boundary Value Problems , Proc . Roy . Soc of Edinburg Sect . A 74 (3) , (1 974 / 1 975) 49 54 .
 - [8] J. Deuel and P. Hess, Nonlinear parabolic boundary value problems with upper and lower s o lutions, Isra. J. Math. 29 (1978) 92 14.
 - [9] D. Feyel and A. De La Pradelle, Sur Certaines Perturbations Non Liné aires du Laplacian, J. Math. Pures et Appl., no. 67 (1988) 397 404.
- [1 0] S . Heikkil \ddot{a} and V . Lakshmikantham , Extension of the method of upper and lower s o lutio ns for discontinuous differential equations , Differential Equa tions Dynam . Systems . 1 (1 993) 73 85 .
- [11] J. Heinonen, T. Kilpel ä inen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarenden Press, Oxford New York Tokyo, (1993).
- [1 2] R. M. Herv é and M. Herv é, Les Fonctions Surharmoniques Associ é es à un Op é rateur Ellip tique du Second Ordre à Coefficients Discontinus , Ann . Ins . Fourier , 1 9 (1) , (1 968) 305 359 .
- [1 3] P. Hess, On a Second Order Nonlinear Elliptic Problem , Nonlinear Analysis (ed. by L. Cesari , R. Kannanand HF . Weinberger) , Academic Press , New York (1 978) , 99 1 7 .

- [1 4] M. Krasnoselskij , Topological Methods in the Theory of Nonlinear Integral Equations , Pergamon , New York , (1 964) .
- [1 5] T. Kura, The weak supersolution subsolution method for s econd order quasi linear e l lip ti c equations, Hiroshima Math. J. 1 9 (1 989) 1 36.
- [1 6] I. Laine, Introduction to Quasi linear Potential Theory of Degenerate El lip ti c Equations, Ann. Acad. Sci. Fenn. Math., no. 10, (1986) 339 348.
- [1 7] V . K . Le , Subsolution supersolution method in variational inequalities , Nonlinear anlysis . 45 ($200\ 1$) 775 800 .
- [18] M. C. Leon, Existence Results for Quasi linear Problems via Ordered Suband Supersolutions , Annales de la Facult \acute{e} des Sciences de Toulouse , Math ematica , S \acute{e} rie 6 Volume VI . Fascicule 4 , (1997) .
- [1 9] V . K . Le and K . Schmitt , On boundary value problems for degenerate quasilin ear e l lip ti c equations and in equalities $\,$, J . Differential equations 1 44 (1 998) 1 70 2 1 8 .
- [20] J. L. Lions , Quelques M é th odes de R é s o lution des Pro b l è mes aux Limites Nonlin é aires , Dunod Gautheire Villans , (1969) .
- $[\ 2\ 1\]$ J. Maly , W. P. Ziemer , Fine Regularity of Solutions of Elliptic Partial Dif ferential Equations , Mathematical Surveys and monographs , no . 5 1 , Amer ican Mathematical Society , ($1\ 997$) .
- [22] J. Ne \check{c} as , Introduction to the Theory of Nonlinear Elliptic Equation , John Wiley & Sons , (1983) .
- [23] N . Papageorgiou , On the existence of s o lutions for nonlinear parabolic problems with nonmonotonous discontinuities , J . Math . Anal . Appl . 205 ($1\ 997$) 434 453
- [24] J. Serrin, Local behavior of Solutions of Quasi linear Equations, Acta Mathematica, no. 1 1 1, (1 964) 247 - 302.
- [25] G. Stampacchia , Le Pro b l è me de Dirichlet pour le s Equations Elliptiques du Second Ordre à Coefficients Discontinus , Ann . Ins . Four , no . 1 5 (1) , (1 965) 1 89 258 .
- [26] N. S. Trudinger, On Harnack type Inequalities and their Application to Quasilinear Elliptic Equations , Comm. Pure Appl. Math., no. 20, (1967) 721-747.

AZEDDINE BAALAL

D é partement de Math é matiques et d' Informatique , Facult é des Sciences A $\ddot{\imath}$ n Chock , Km 8 Route El Jadida BP 5366 M \hat{a} arif , Casablanca , Maroc . E - mail : baalal @ facsc - achok . ac . ma

Institut Pr \acute{e} paratoire aux Etudes d
 ' Ing \acute{e} nieurs de Tunis ,

 $2\ \mathrm{Rue}\ \mathrm{Jawaher}\ \mathrm{Lel}\ \mathrm{Nehru}$, $1\ 8\ \mathrm{Montfleury}$, Tunis , $\mathrm{Tunisie}$.

 ${\bf E}$ - mail : Nedra . Bel Haj
Rhouma @ ipeit . rnu . tn