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Dirichlet problem for quasi - linear elliptic

equations *

Azeddine Baalal & Nedra BelHaj Rhouma
Abstract
We study the Dirichlet Problem associated to the quasilinear elliptic
problem

o iaax;‘li(w,u(z)7 Vu(x)) + Bz, u(x), Vu(z)) = 0.

Then we define a potential theory related to this problem and we show
that the sheaf of continuous solutions satisfies the Bauer axiomatic theory .

1  Introduction
The objective of this paper is to study the weak solutions of the following quasi -
linear elliptic equation in R?, (d > 2) :

=3 %0 (), Vu(a) + B, u(z), Vu(z)) = 0 (1.1)

where 4; : R* xR x R - R and B : R x R x R — R are given Carath é odory functions
satisfying the conditions introduced in section 2 .
An example of equation ( 1. 1) is the perturbed p— Laplace equation

—div(| Vu [P7% Vu) + B(.,u,Vu) =0, 1<p<d. (1.2)

When p = 2, equation ( 1. 2 ) reduces to the perturbed Laplace equation

—Au+ B(.,u,Vu) =0. (1.3)

Another example included in this study is the linear equation
d )
L(u)=— Z(Z a;;0%5 + dju) + Z b;07;, +cu =0,
J i J
* Mathematics Subject Classifications : 31 C15,35B65,35J60.

Key words : Supersolution , Dirichlet problem , obstacle problem , nonlinear potential theory .
circlecopyrt — ¢2002 Southwest Texas State University . Submitted April 9 , 2002 . Published October 2 ,
2002 . Supported by Grant DGRST - E 2 / C 1 5 from Tunisian Ministry of Higher Education .

1



2 Dirichlet problem for quasi - linear elliptic equations EJDE - 2002 / 82
where £ is assumed to satisfy conditions st ated in [ 25 ] (seealso [12]) .
Equation ( 1. 1) have been investigated in many interesting papers [24 ,26,11,21, 2]
. Several papers have introduced an axiomatic potential theory for the nonlinear equation ( 1 .
2 ) when B = 0; see for example [1 1] .  For equations of type (1.3 ) ,see[1,2,3,4].
The existence of weak solutions of (1. 1) in variational forms was treated by means of the
sub - supersolution argument [ 7,8 ]. Later on , Dancers / Sweers [6 |, Kura [15 ], Carl |
5], Lakshmikantham [ 1 0 | , Papageorgiou [ 23 | , Le / Schmitt [ 1 9 | , and others treated the
existence of weak extremal solutions of nonlinear equations of type (1. 1) by means of the
sub - supersolution method . Le [17]
studied the existence of extremal solutions of the problem

/ﬂ Az, Vu(z)) (Vv — Vu)dz > A Bz, u(x))(v(z) — u(x))dz, (1.4)

for all v € K,u € K, where K is a closed convex subset of ng(Q)

Note that the solutions of ( 1 . 4 ) correspond to the obstacle problem treated in section 5
of this paper . Remark that in the references cited above , often B = B(z,u(z)) and the growth
of B in w is less then p — 1 and when B = B(z,u, Vu), the growth of B in v and Vu is less then
p — 1, but in our case the growth of B in Vu is is allowed to go until p — 1 4 p,, and there is no
condition on the growth
of B in u.

Our aim in this paper is to solve the Dirichlet problem for ( 1 . 1 ) with a continuous data
boundary and to give an axiomatic of potential theory related
to the associated problem .

This paper consists of four sections .  First , we recall some definitions for the ( weak )
subsolutions , supersolutions and solutions of the equation (1. 1) . In particular , we prove
that the supremum of two subsolutions is a subsolution
and that the infinimum of two supersolutions is also a supersolution . In section
3, we give some conditions that allow us to have the comparison principle for sub and superso-
lutions . After this preparation we are able in section 4 to solve the Dirichlet problem related

to the equation (1. 1 ). So at first we prove the existence of solutions to the associated
variational problem , after what we solve
the Dirichlet problem for continuous data boundary . In the last section , we define a potential

theory related to the equation (1. 1), so we obtain that the sheaf of continuous solutions of ( 1
. 1) satisfies the Bauer axiomatic theory [ 4 ] . We prove also that the set of all hyperharmonic
functions and the set of all

hypoharmonic functions are sheaves .

Notation Throughout this paper we will use the following notation : R? is
the real Euclidean d— space , d> 2. For an open set U of R%, we denote by
C*(U) the set of functions which k— th derivative is continuous for k positive

integer ,C®(U) = Ng>1C*(U) and by C§°(U) the set of all functions in C>(U)

with compact support .L?(E) is the space of all ¢**— power Lebesgue integrable

. t whyu .
functions 1.4 i definedeneciosure 0N Mmeasurablel;cco r)in By w) relatively 18 the (1o, )i —
Wo 9 (U)is 5 ( 1,q(U)

Sobolev,orm.spaceW _ lon,qg g')
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denotes?®***Sthey dualof Wi Lebesguemsatureq—1._ort Fory,aLebesgueanduAvmeasurabledesignset B, respectively |th
=ofe
supremum and the infinimum of v and v.u™ =u V0 and u~ = u A 0. We write

— (‘resp . —) to design the weak ( resp . strong ) convergence .

2  Supersolutions of (1.1)

Let © be a bounded domain in R%(d > 2) with smooth boundary 92 and let £
be a quasi - linear elliptic differential operator in divergence form

L(u)(x) =— iaaxiAi(x,u(m), Vu(z)) + Bz, u(z), Vu(z)) aex €
d

where A4; : R x R x R —» R and B: R x R x R* — R are given Carath é odory functions . Let
A= (A,...,Ag) and 1 < p < d. We suppose that the following
conditions are fulfilled : for a . e .z € O,V € R and £,¢& € R?:

| A2, ¢, ) < kola) + bo(@) | ¢ [P~ +a | € [P (P1)

(A, ¢, &) — A, ¢, €))(E — &) > 0,if¢ # €. (P2)

A@,,8 > a| € P ~do(@) | ¢ P —e(a) (P3)

| B(2,6,€) 1< k() +b(x) | ¢ |* +¢ | £ 7,0 < 7 < (), > 0. (P4)

Here a,c and « are positive constants ,p’ = p,—1,p* = pdq_p, while ko, bo,do,e, k and b are
measurable functions on {2 satisfying : kg € LY by € Ld_ 1,k e L9,
(p*) <qg< (;‘f_g A pp)anddy, e, b € Ld_ e, (0 <e < 1).

B(.Wefs,nv“)easilyeup*)showf@i@nggg_ € 1. Whr(Q), then A(.,u, Vu) € L and that Definition
We say that a function u € WLP(Q) is a ( weak ) solution of (1. 1),
if

B(.,u,Vu) € L@

/A(.,qu)V(b—i—/B(.7u,Vu)¢:O7 (2.1)
Q Q

for We!!? ¢ say0iat, (uQe)VVl})f(Q) is a supersolution ( resp . subsolution ) of (1. 1) if
B(.,u,Vu) € L¥
/ A(.,u, Vu)Ve +/ B(.,u,Vu)p >0 (resp. <0)
Q Q

for every nonnegative function ¢ € W, ().
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a supersolution of ( 1. 1) then —u is a subsolution of the
equation
—divA+ B =0

where A\(SC, ¢,¢) = —Alx,—¢(,—¢) and E(x, ¢,§) = —B(z,—(,—¢). Further - more ,
the structure of A and B are similar to that of A and B.

We recall that if u is a bounded supersolution ( resp . subsolution ) , then u is
upper ( resp . lower ) semicontinuous in Q[21, Corollary 4. 10] .
Proposition 2 . 1 Let u and v be two subsolutions of (1. 1) in Q such that

(A(.,,v,Vu) — A(.,u,Vu))V(v —u) >0, a.ex € Q.

Then , max (u,v) is als o a subsolution . A s imilar s tatement holds for the mini - mum
of two supersolutions .
Proof . Fix $in C°(),¢>0.Let (3 ={z€Q:u>v},Q={z€Q:u<

v} and put I = [, A(,uVv,V(uVv))Ve = I + I, where

I = (wu, Vu)Vo and I = (.,v,Vo)Ve.
Ql QZ

Let pn : R — R be such that pn € C}(R),

pn(t) = {§ iffet > <ot/

)(x)). We

1/n]. defi
andseep;lthat>0nqon€]?,[’,1{££C(Q),Forea°h lo,z € andQ||Se e <qnl @y = pn((u- — VDY chengue’s

qn— qn

Theorem of dominated convergence that I; = lim, le an(., u, Vu). V¢ and

I, = lim (1 —gn)A(.,v,Vv).V¢.Hence

n—oo Q2

/Qan(.,u,Vu).V(ﬁ = -/Q.A(.,U,Vu)v.(qmﬁ)—/QA(.,u,Vu)qS.V(qn)

< —/QB(.,u,Vu)(qn@—/Q A(.,u, Vu)o.V(gn),

wherepy;Qnr, == {z / Z;;;{(,, <y, u < Vg)fv;";ldjn = /Q (1 —gn)A(.,v,Vv).V¢. Then,
similarly we have

/Q(l — qn)A(.,v,Vv).V¢ < 7/

(1 —qn)B(.,v,Vv)¢+/ A(., v, Vu)o.V(gn).
Q Q,

So , we get
IL,+J, < 7/ B(.,u, Vu)(qneo) — / (1 —gn)B(.,v,Vv)d
Q Q

+/ (A(.,v,Vv) — A(., u, Vu))p.V(gn).
Q

n
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P (u—v)V(u—v), we get

I,+J, < —/QB(.,u,Vu)(qn@—/Q(l—qn)B(.,v,Vv)qb

—/ P (1 = 0) (A, 0, Vo) — Al 1, V).V (v — u)

< —/QB(.,u,Vu)(qn(b)—/Q(l—qn)B(.,v,Vv)¢.

Finally , we have

/A(.m\/uV(u\/v)).quH—/B(.,u\/v,V(u\/v))¢§O
Q Q

which completes the proof . [ We say that £ satisfies the property (+) , if for every & >
0 and every

supersolution ( resp . subsolution )u of (1. 1), the function u + k( resp .u — k) is
also a supersolution ( resp . subsolution ) of (1. 1)

Remark 2 . 1 1 ) Suppose that for each u € Wéf(Q) and each k >0,

/(.A(.,u +k,Vu) — A(.,u, Vu)).Vo + /(B(.,u +k,Vu)

foranoteeverynonnegativethat;s o ()= function_ 5, 073, xS (E}”gl]" S;il '+Thendju)+£satisfies(zi b, 50z, utheprope

e [ lip ti ¢ operator of s econd o rder satisfying the conditions of [ 1 2], then (2. 2 ) is

equivalent to (—3_,(dj) +¢) > 0 in the distributional s ense .

3 ) Suppose that A(x,(, &) = A(z,§) and fora. e . x€Q and & € R the map :

¢ — B(x,(,€) is increasing . Then the property (£) holds .

3 Comparison principle

In this section , we will give some conditions needed for the comparison principle . This principle

makes it possible to solve the Dirichlet problem and to develop a potential theory in our case .
We say that the comparison principle holds for L, if for every supersolution u and every

subsolution v of ( 1. 1) on Q, such that

lim supv(z) < lim inf u(z)
for all y € 99 and both sides of the inequality are not simultaneously +o0o or —oo, we have v < u
a.e.in Q.
Theorem 3 . 1 Suppose that the operator L satisfies e ither one of the property
() and the following s trict monotony condition (s ee [ 22] ) :

(-A(x’ C?g) - .A(ZC, C/7£l))(€ - gl) + (B(:L Cv&) - B(:E’ Clagl))(c - CI) >0
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Let u be a supersolution and v be a subsolution of (1.1), on
Q, such that

lim supv(z) < lim inf u(z)

Ty Ty
for al 1 y € 0Q and both s ides of the inequality are not s imultaneously +oo  or —oo, then
v<u a.ce. in Q.
Proof . Let € > 0 and K be a compact subset of 2 such that v —u < e on
2\ K, then the function ¢ = (v —u—¢)* € Wol’p(Q). Testing by ¢, we obtain that

0 < / (A(,u+e,Vu) — A(,v,V))V(v —u —¢)
v>u+te

+/ (B(u+ e, V) — B(.,v, Vo)) (v — u — &) < 0.
v>u+te

Hence V(v —u—¢e)t =0and (v —u—e)t =0a.e. in Q. It follows that v <u+e¢
a.e.in Q and thereforev<wua.e.in€ O
Corollary 3 . 2 we suppose that A(x,(, &) = A(x,§) and B(x,(, &) = B(C) such
that the map ¢ — B(x, () is increasing fora.e . xin € Then , the comparison
principle holds .
Theorem 3 . 3  Suppose that i ) [A(z,(,€) — Az, &)].(E—&) >~y | &= |P for all
¢, ¢ in R, for all £,¢ € RY,
a.e .xin Q and for s ome v > 0.

ii) Fora.e .x€Qandforall &R the map ¢ — B(x,(,€) is increasing |
iii ) | (B(x,6) —B(x, (&) |<b(x, Q) | €= P fora. e . xe€Q, forall (€R

and for al 1 €,& € R, Where supicj<ar 0(,€) € L3, (), s>d, forall

loc

M > 0.
Then th e comparison principle holds .
Proof . The main idea in this proof comes from Professor J . Maly ’ . Let p > 0,
M =sup (v—wu) and put w=v —u—p. Take w™ as test function . Then , we get

/Q[A(.,u, Vu) — A(., v, Vo)].V(w) + / [B(.,u, Vu) — B(.,v, Vv)](wT) >0

Q
and by consequence

7/ | Vwt [P < / b(x,v) | Vwh \p_l wt
Q Q

< / |Vt [Plp — pl / (WP Np. | A, | s7%
Q Q

< Ol vet 9714, s7%.
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where A, = {p <v—-—u< M} Hence we get | A, |— 0 when p — M, which is
impossible if M > 0. Thus ,v <won Q O

4 Dirichlet Problem Existence of solutions for 0<a<p-1
and 0<r<p-1

Definition  Let g € W1P(Q). We say that u is a solution of problem (P) if

u—g € W()LP(Q)a
/ A(u, Vu). Ve +/ B(.,u,Vu)p =0 Yo € Wy (Q).
Q Q

Remark 4. 1 Put v=u—g, then uisas o lution of th e above problem (P) if and
only if v is a s o lution of

ue WyP(Q)
/ Ag(.,u,Vu)V(bJr/ By(.,u,Vu)p =0, Vo€ Wol’p(Q), (4.1)
Q Q
whereAy (., u, Vu) = A(,u+ ¢, V(u+ g))andB, (., u, Vu) = B(.,u+ ¢, V(u + g)).

Let T : Wy P(Q) — W(;lp’ (©) be the operator defined by

(T (u),v) = /Ag(.,u,Vu)Vv+/Bg(.,u, Vu)v Yo e WP (Q).

Next we will est ablish the existence of solution of (4. 1) when0 <a<p—1land0<r<p-1.
Let C = C(d,p) be a constant such that || u ||« < C || u ||, for

every u € VVO1 P(Q). Then , we get the following result .

Proposition 4 . 1 Suppose that 0 <a<p—1land 0<r<p-—1. If Qissmall (i.c¢e
a>C(| dolln/p + || 0llnsp)), then th e operator T is coercive .

Proof . We have

(T(u)u) = / Afu+ g,V (u+ g))Vu + / Blu+ 9.V (u+g))u
> (a—Clldolldfp—CIb] d/p) | Vu|l g — H(llwll.| Vel g 11l Vo )

where C'= C(d, p) and the growth of Hy in ~ ||w| and || Vu|  isless then p—1. So,

let © be small enough such that a > C(|| do || n/p* || b || n/p)- Hence ,<T||(Vu3”uz, — 400

as || Vu || p = +oo and therefore the operator T is coercive . [
Proposition 4 . 2 Suppose that 0 < a<p—-1 and 0<r<p-—1. Then, the
operator T is pseudomonotone and satisfies th e well known property (Sy) : If w, — u and
lim sup,, , oo (T(un) — T'(u), un, —u) <0, th en up, — u.

The proof of this proposition is found in [ 2 1] .
Theoremhus@least41~3 Supposeweak:solution that Ensatlsfzes

Then (4.1)

the

coercive condition on €.
WyP(Q)
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Proof . The operator T' is pseudomonotone , bounded continuous and coercive .
Hence , by [22]|T is surjective . O
Existence of solutions for a>0and p-1<r< (pP) Definition Let g be
an element of W)}~ 1(99).

We say that a function u is a solution of (4 . 2 ) with boundary value g if

we W(Q),B(.,u, Vu) € LI Q

loc

U= gian}_l(aQ), (4.2)
/ A(.,u, Vu)Vo +/ B(.,u, Vu)p =0 Yo e W,P(R).
Q Q

( For the definition and properties of the space W, '(99) seee. g. [20]).
We say that u is an upper supersolution of ( 4 . 2 ) with boundary value g if

ue WhP(Q), B(.,u, Vu) € LP* Q
u > ginW;_l(afl),

Al u, Vu)Vo+ | B(.,u, Vu)p >0
Q Q

for all ¢ € Wy (Q) with ¢ > 0.

Similarly , a lower subsolution is characterized by the reverse inequality signs in the above
definition .

We recall the following result given in [ 1 8 , Theorem 2 . 2] .

Theorem 4 . 4 Suppose that there exists an ordered pair ¢ < b of subsolution
and supersolution of (4. 2) satisfying th e following condition : There exists k €
L), q >p* suchthat forall ¢ € R? andall ¢ with ¢(z) < ¢ <  (z),
|B (gwg’lf,gln)gsuchk(w) + cthathfr <ayex<y Q. Then, (4.2) has atleast one s o lution
Proposition 4 . 5 Suppose that (4. 2 ) admits a pair of bounded lower subsolution wu and
upper supersolution v such that u < v, then there exists a s o lution w of

(4.2)suchthatu < w < v.

Proof . Let M be a positive real such that || % |loos || ¥ lloos|| 9 oo < M. Then
, for each ¢ such that u(z) —g(x) < (¢ < wv(z)—g(x), wehave | B(z,(,& | <
k() +b(x)M*+2"c | Vg |" +c|&|"fora. e. z€ O Inaddition, wu(resp. v)isa
lower subsolution ( resp .  upper supersolution ) of (4. 2 ). Hence by the last Theorem |,
there exists a solution w of (4. 2 ) such that u <w <wv. O

Corollary 4 . 6 Suppose that al | positive constants are supersolutions and al | negative
constants are subsolutions . Then for each g € WHP(Q) N L*°(S2), there exists a bounded s
o lution w of (4. 2 ) such that || w [|o<|| ¢ |loo -
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v =|| ¢ || is an upper supersolution and u = — || g |00 is
a lower subsolution . Hence by the Proposition given above , we get a solution

u<w<v U

4.1 Dirichlet Problem
In this section , we assume that A(.,0,0) =0 and B(.,0,0)=0a . e. in Q, that
the property (4) is satisfied , and that the comparison principle holds .

p—regular) [2 1,11 1. 1Then
satisfying ul—f ~€Wjy ~,

f e WhP(Q) N C(Q), ther
lim u(z) = f(z) Vze€ N

rT—z

Definiti . i . . . Nel(v)s
W™ O1Lr (O)solves™®® fieDirichletPecontimuens iy ctionproblemwithond. boundaryvalue Ve fif™atyyis Eas(ohztion

SUPPOse;  guwnthacit  ruis e aopensetsolutionof (¢ Lregularyy;,o( P(Q) with'™

of (1. 1) such that lim,_,, u(z) = f(z), for all z € 9.

Theorem 4 . 7 For each f € C(9Q), the re exists w in C(2)N V[/licp(ﬂ) s o lving
the Dirichlet problem with boundary value f.
Proof By the Tieze ’ s extension Theorem , we can assume that f € C°(R%).

Let (fn)n be a sequence of mollifiers of f such that || f,, — f ||< 1/2™ on Q.
let u,, denote the continuous solution of
Up — fn € WOLP(Q)a

/A(.,un,wn)er/ B(.tn, Vun)d =0, VYo € WHP(Q). (4.3)
Q Q

So , by the comparison principle , | u, —um, | < 2L +2L.  Hence , the sequence (uy),
converges uniformly on €2 to a continuous function w. Let M be a positive real such that for all
n: | fol+|fISMand|u,|+|u|<Monf.

Let G C G C Q, take ¢ as a test function in (4 . 3) such that ¢ = nPu,,n € CX(2),0<n <1
and n =1 on G. Then

/QA(.,un,Vun)an(un)

= _p/ A('yunavun)unnp_lv(n) —/B(-,Umvun)unﬁp
Q Q
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assumptions on A and B, we get

a / 7 | V() [P
Q
< pM/ko|V77|+pMp/bo|V77|+pM/a|Vun|”_177p_l|V77|
Q Q Q
+cM/ | Vg, | np+/(Mpd0+Mk+M°‘+1b+e)
Q Q

< alp- 1)*1M5pp_1(/ | Vuy, [P nP) —|—crp71Msf(/ | Vuy, [P nP)
Q Q
+C(M,Q,n,Vn).
Thus , for € small enough , we obtain
[ 19 < COLR5 Vn.2),
G

So (V) is bounded in LP(G) and therefore (Vuy,), converges weakly to Vu

in(LP(G))<.

Fix D an open subset of G and let n € C§°(G) such that 0 < n <1 and n = 1 on D. Take
¥ = n(u, —u) as test function , then

—/ NA(., un, V).V (u, — u)
Q

= /(un—u)A(.7un,Vun).V77+/ B(.tn, Vug) (un, —u)n
Q Q

Since A(., un, V) is bounded in LP (G) and B(., ty, Vi) is bounded in L9(Q),

lim [ A(,up, Vuy)(uy, —u)Vn =0,

n—oo G

lim [ B(.,upn, Vuy)(u, —u)n = 0.

n—oo G

Consequently, li_>m / A( tp, Vg )0V (uyn, — u) = Oand
n o0 G

lim [ (A(., un, Vuy) — A, tp, Vu))V(up —u) = 0.

n—roo G

To complete the proof , we need to prove that (Vu,), converges to Vu a . e . in
Q. That is the aim of the following lemma . Lemma 4 . 8  Let G C § and suppose that th e
s equence (Vuy)n  is bounded in

LP(G)and

lim [ [A(., un, Vu,) — A(., u, Vu)].V(up, — u) = 0.

n—00 G

Then A(., tn, Vun) = A(., u, Vu) weakly in L (G).
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vn = [A(, up, Vug,) — A(., tn, Vu)].V (u, —u). Since

/ vy = / [A(, tn, Vug) — A(,u, V).V (u, — u)
€] €]
—/ [A(., wn, Vu) — A(., u, Vu) .V (uy, — u),
€]
for a subsequence we get

lim [A(., up, Vu,) — A(., up, V)].V(up, —u) =0

n— oo

a.e.x € G\ N with | N |=0. Let z € G\ N. By the assumptions on A we have

un(2) > | Vg () [P =F(] Vug(2) P71, | Vu(z) [P7).
Consequently , (Vu,,(x)), is bounded and converges to some £ € R, Tt follows that ~ [A(.,u,&)—

A(,u, Vu)l.(6—Vu) = Oandhenceé = Vu. Finallywe concludeweaklythattoA(,A,(;l,’vzg“vi‘;z)p, —
(AQc 'uw,Vu) a . e. in G and A(., up, Vu,)convergel
thatN" Vue golf%‘utogie.in Qproof! | (. Theorem,, | vy, )4~ .7.Hsmg(,)5f§‘mau) L p8ity).concluderence,
/ A(.,u,Vu)qu—i—/ B(.,u,Vu)p =0 Vo e C5°(Q).
D D
Moreover , using the fact that
—2b — 2l <, —wu, <2L 420 Vn,om
we obtain

—Z}L—l—ungug?;—}—un, Vn.

So , we deduce that for all n and all z € 99,

inf sup
—2) 4 fn(2) < Tim o ou(z) < Timoou(z) < 20 + fnl(z)

which implies lim,_,, u(z) = f(z) and completes the proof of Theorem 4.7. O

Remark 4 . 2 Using the same techniques as in the proof of Theorem 4 . 7 we can show that
every increasing and lo cally bounded sequence (uy,),, of supersolu -

tions of (1. 1) in  is lo cally bounded in W1?(Q) and that u = lim,, u,, is a supersolution of
(1.1)inQ.
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5  Sheaf property for Superharmonic functions

The obstacle Problem

Definition  Let f,h € WP(Q) and let

Kin={ucW'(Q):h<ua.e.inQu~—feW,?(Q)} If f=h, we denote K, = K.
We say that a function u € Ky, is a solution to the obstacle problem in

Ky pif
/ A, u, Vu). V(v —u) +/ B(.,u,Vu)(v—u) >0
Q Q

whenever v €  Kyp.  This function u is called solution of the problem with obstacle h and
boundary value f.

Remark 5 . 1 Since u + ¢ € Ky for all nonnegative ¢ € Wol’p(Q), the solution
u to the obstacle problem is always a supersolution of (7 . 1 ) in . Conversely ,
a supersolution of (1 . 1 ) is always a solution to the obstacle problem in K, (D) for all open
DcDcqQ.

Theorem 5 . 1 Let h and f be in WHP(Q) N L>(Q). If v is an upper bounded
supersolution of (4.2 ) with boundary value f such that v > h, then there exists a so lution
u to the o bstacle pro b lem in Ky with u <.

Proof . Asin [ 18], we introduce the function
B(z,¢,€) i < ()
9(z,¢,¢) = ~ .
B(z,v,Vv) if¢ > v(x).

Asin [ 1 3], we define the function

Alz,¢,§) if¢ <w(x)

a(r,(,§) = { Az, v, Vo) if¢ > v(x).

Note that a satisfies the conditions (P 1), (P 2),and (P 3).

L¥ A(QLemma)isbounded ™" p.52]andprovesthatcontinuous.  Without'™ ™y, — loss,tg(x, u, Vu)fromgenerality ocq,

that » > p — 1. Let I = max {¢/,pp_r} — 1, and define the following penalty term

v(z,8) = [(s —v(x) ]! VxeQ,secR.
Let M > 0 and consider the map T : Ko 5 — W‘l’p/(Q) defined by

(T(u)m}):/Qa(.,u,Vu)Vw+/Qg(.,u,Vu)w+M/Qv(.,u)w.
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we have

|/9($7U7VU)w [<allwl[l+1+c | Vulllw|l+1,
Q

|/7($7U)w [<esllwll+1+calulipllwlli+1,
Q

and for each u € Ky — f, we have

/ Y uw)u > s || u | lli} —cs.
Q

An easy computation shows that for € > 0,

l l
(T(u)ou) > (a—coe) | Vullp? = (c|lulbh+er [l ullfy +eaele) | u i)
+Meces || u ||§ﬁ —Mcg — cre7.
where c¢(¢) is a constant which depends on ¢ and ¢ > 0. Now , we choose M large to get

the operator T' coercive .  Since T is bounded , pseudomonotone and continuous , then by a
Theorem in [ 22 ] , there exists w € Ky, such that

(T(w),u — w) > Oforallu € Ky .

Next , we show that w <wv. Since w — ((w —v) V0) € Ky, and since v is a supersolution
of (4. 2),it follows that

/ LAG, w, Vo) — A(, 0, V)]V (w — v) < M/ v (w) (0 — w).
{w>v} {w>v}

Thus by (P 2),(w—v)T =0a.e. in © and hence ,w < v on Q. Finally , if we
take w; = w + f, we obtain a supersolution of the obstacle problem Ky ). [0

Nonlinear Harmonic Space Definition Let V be a regular set . For every f €
C(0V), we denote by Hy f

the solution of the Dirichlet problem with the boundary data f.

Proposition 5. 2 Let f and gin C(OV) be such that f <g. Then

Hyf <Hyg i)

ii) For e very k>0, we have Hy(k+ f) < Hy(f)+k and Hy(f)—k < Hy(f —k).
Definition  Let U be an open set .  We denote by U(U) the set of all open , regular subsets
of U which are relatively compact in U.

We say that a function w is harmonic on U, if u € C(U) and u is a solution
of (1.1). We denote by H(U) the set of all harmonic functions on U. Then ,

H(U) ={u e C(U) : Hyu = uforeveryV € U(U)}.

A lower semicontinuous function u is said to be hyperharmonic on U, if
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o —oxo<u

ey, #* 0o in each component of U
e For each regular set V.C V C Q and for every f € H(V) N C(V), the
inequality f < w on 9V implies f < u in V. We denote by *%(U) the set of all hyperharmonic
functions on U.
An upper semicontinuous function u is said to be hypoharmonic on U, if

oy < +00

ey # oo in each component of U
e For each regular set V. C V C Q and each f € H(V) N C(V), the inequality
f > won 9V implies f > u in V. We denote by H.(U) the set of all hypoharmonic functions on
U.
Proposition 5 . 3 Let w € *y(U) and v € Ho(U), then for each k > 0 we have

u+k € xy(U)andv — k € H.(U).

Proposition 5 . 4 Let wu be a superharmonic function and v be a subharmonic function
on U such that

sup v(z)
lim _,, <lim inf u(z)
xr r—rz
forall z € AU, and bo th s ides of the previous inequality are not s imultaneously +oo or —oo,
then v <wuin U.
Proof . Let x € U and € > 0. Choose a regular open set V' C V C U such that x € V and
v<u-+eondV. Let (¢i) € C®() be a decreasing sequence
converging to v in V. Then ¢i < u+ ¢ on dV for i large . Let h = Hy (¢i), then
v<h<u+eonV.By letting € — 0, we get v(z) < wu(z). O
Theorem 5 . 5 The space (RY,H) satisfies the Bauer convergence property .

Proof . Let (un)n be an increasing sequence in H(U) locally bounded . By
Theorem 4 . 1 1in [21],forevery V.C V C U, the set {uy(z),z € V,n € N} is
equicontinuous . Then the sequence converges lo cally and uniformly in U to a continuous

function u. Take e > 0, since u —e <wu, <u-+e, weget

Hy(u) —e <up < Hy(u) +eand . Hy(u) =u O

Theorem 5. 6  Suppose that the conditions in subsection 4 . 1 are satisfied kg =e=k =20
and a>p—1. Then (R H) is a nonlinear Bauer harmonic space .
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Proof . It is clear that H is a sheaf of continuous functions and by Theorem 4 . 7 there
exists a basis of regular sets stable by intersection . The Bauer convergence property is fulfilled
by Theorem 5. 5. Since kg = e =k = 0 and o > p — 1, we have the following form of the
Harnack inequality (e.g. [21],[26]or[24]): For

every non empty open set U in R, for every constant M > 0 and every compact K in U, there
exists a constant C = C(K, M) such hat

supu < Cinfu
K K

for every w € HT(U) with u < M. Tt follows that the sheaf H is non degenerate .

O
Theorem 5 . 7 Suppose that the condition of s trict monotony holds . Let u €
H*(Q)NL>®(Q). Then wu is a supersolution on U.
Proof . Let V.C V C Q. Let (¢)i be an increasing sequence in C2°() such that

u = sup; ¢t on V. Let

Kgi={weWrP(Q): ¢i <w, w—¢icWyP(V)}.

We know by Theorem 5 . 1 that there exists a solution u; to the obstacle problem Kgy;  such
that || % o0 < || @i loo - We claim that  (u;)é is increasing . In fact

Ui N\ Uj41 € Km,then

/ (A(,ui, Vi) — A, wig1, VUig1))V(dipr — u;)

{Ui>uz‘+1}

+/{ }(B(,UZ,VUZ) —B(.,uiH,VuiH))(uiH —ui) > 0.
Ui >Ui41

Hence V(ujy1 —u;)™ =0 a . e . which yields that u; <wu;y1a.e.inV.

On the other hand , for each 7 the function u; is a solution of (1. 1) in D; := {¢i < u;}.
Indeed , letyp € CX(W), W < W <C D;, ande > 0suchthate | ¢ |
<infyw (u; — ¢i). Then , we get u; + 9 € Ky, and

/ A(.,ui,Vui).Vzb—i—/ B(.,u;, Vui)p = 0.
w w

Since

o > > bife) = Tom i

liminf u(e)  u(y) = gily) = lim i()
for all y € 0D;, it yields , by the comparison principle , that w > u; in D;. Hence u > w; in D.
Thus u = lim; 00 ¢t < lim;_oo u; < u.  Finally , using Remark 4 . 2 we complete the proof
. O
Theorem 5 . 8 Suppose that the condition of s trict monotonicity ho lds . Then x4 is a
shea [ — period
The proof of this theorem is the same as in [ 2, Theorem 4 . 2] .
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