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OSCILLATION OF THIRD ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH DELAY
TUNCAY CANDAN & RAJBIR S . DAHIYA
ABSTRACT . We consider third order functional differential equations with dis -
crete and continuous delay . We then develop several theorems related to the
oscillatory behavior of these differential equations .
1. INTRODUCTION
Our goal in this paper is to study functional differential equations of the form

(b(8)(a()2' (1)) + Y qi(t) f(x(o3(1))) = h(t), (1.1)
i=1

where a,b, h € C([to,),R),a(t),b(t) >0, f:R — R continuous ,o;(t) — oo, as

t —oo, 1=1,2,...,m,and

(b(t)(a(t)x’(t))’)'+/ q(t, &) f(x(a(t,€)))dE =0, (1.2)

C

where a,b € C([ty,0),R), f € C(R,R). The oscillations of solutions of third order

equations were studied by Rao and Dahiya [8], Tantawy [9], Waltman |
10] and

Zafer and Dahiya [ 1 1 | . The results in this paper for equation ( 1 . 1) are more
general comparing to Zafer and Dahiya [11]. The results for equation (1. 2 ) are
essentially

new .

As is customary , a solution of equations (1. 1) and (1. 2) is called oscillatory
if it
has arbitrarily large zeros , otherwise it is called nonoscillatory . The solution of equa -
tions (1. 1)and (1. 2)is called almost oscillatory if it is oscillatory or lim; ., (9 (t) =
0,

i=0,1,2.

2.  MAIN RESULTS
Oscillatory behavior of third order differential equations with discrete
delay . Assume that zf(x) > 0,2 # 0,¢i(t) > 0 is not identically zero in any half
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80 T .CANDAN & R.S.DAHIYA EJDE/CONF /10 line of the form (7,00) for some
7>0,i=1,2,...,m and o0;(t) < t,0'i(t) > 0,
i=1,2,.., m,b(t) >0, and

o oo
/ At = 00, / dt = 00. (2.1)
b(t) a(t)
Theorem 2 . 1. Let f(z) = x and h(t) = 0. Suppose that there exist a

differentiable function p € C([to,0),R),p(t) > 0 such that

* IOV 0)
|ttt S e (2.2)

where q(t) = min{ql(t), q2(t),...,qm(¢t)}, for every T >0, and that

t r 1 r 1 =1 '
/g(t) [/G(t) a(u)du(/u mdv)] ;qz(r)dr > 1, (2.3)

where o(t) = max{o(t),o2(t),...,om(t)}.  Then the equation (1. 1 )is os cil latory

Proof . Let x(t) be a non - oscillatory solution of (1. 1 ).  Assume xz(t) is
eventually positive .  Since o;(t) — oo as t — oo for i = 1,2,...,m, there exist a
t1 > to such that z(t) > 0 and x(o;(t)) > 0 for t > ¢;. From (1. 1), we have

m

(b#) (a2 (1)) = =Y ait)z(0i(t)). (2.4)
i=1

Since ¢i(t) is not negative and x(o;(t)) > 0 is positive for ¢ > t1, the right - hand side
becomes non - positive . Therefore , we have

(b(t)(a(t)z’ (1)) < 0
for t > t;.  Thus ,z(t),2'(t), (a(t)z’(t))’ are monotone and eventually one - signed .
Now we want to show that there is a 9 > ¢; such that for ¢ > t,

(a(t)a'(t)) > 0. (2.5)
Suppose this is not true , then (a(t)z’'(t)) < 0. Since ¢i(t),s = 1,2,..,m

are not identically zero and b(t) > 0, it is clear that there is
ts >ty such that b(t3)(a(ts)z’(t3))’ < 0. Then , for ¢t > t3 we have

b(t)(a(t)2’(1))" < b(ts)(a(ts)z'(t5))" <O. (2.6)

Dividing ( 2 . 6 ) by b(¢) and then integrating between ¢3 and ¢, we obtain

a(t)z'(t) — a(ts)a’(t3) < b(tg)(a(tg)x(tg)')’/ Wls)ds' (2.7)

t3



Letting t — coin (2. 7 ), and because of ( 2 . 1) we see that a(t)z'(t) - —oo as
t — oo. Thus there is a t4 > t3 such that a(t4)z’(t4) < 0. Using (a(t)2'(t)) <0, we
have

fort > t4
a(t)z'(t) < a(ty)z'(ts). (2.8)
If we divide ( 2. 8 ) by a(t) and integrate from ¢4 to ¢ with ¢ — oo, the right - hand
side becomes negative . Thus , we have x(¢) — —oo. But this is a contradiction ()
being eventually positive and therefore it proves that ( 2. 5 ) holds . Now we consider

two cases .
Suppose ’(t) is eventually positive , say z'(¢) > 0 for ¢t > t5. Define the function

z(t)by
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It is obvious that z(t) > 0 for t > t5 and 2/(t) is

S aia(en)

mi—1x(c;(t))

2(t) =
Then

_ X ¥(oi(t)e’it)
ity x(oi(t))

where ¢(t) = min{q1(t), ¢2(t), ...,gm(t)}. On the other hand , using (b(t)(a(t)z'(t))’) <
0,b/(t) >0and (2.5 ), we can find that

(1), (2.9)

(a(t)x'(t))" <O0. (2.10)
Using (2. 10 ) and the equality
a(t)x'(t) = a(T)2'(T) —l—/ (a(s)x'(s))'ds, (2.11)
T
we have
a(®)' () > (¢ — T) (a(H)e' (1)) (2.12)

for T > to. Since (a(t)z’(t))" is non - increasing , we obtain

a(oi(t)x' (oi(t)) > (oi(t) — T)(a(t)z'(t)) for i=1,2,...,m. (2.13)
Multiplying both sides of (2. 13 ) by

a'i(t)

a(oi(t))

and t aking the summation from 1 to m, we have

i=1 i=1
Za'i(t):r’(ai(t)) > Z (Ul(t)l(;)?) a'i(t)(a(t)z' (1)) (2.14)

a(o
Then , using (2. 14)in (2. 9), it follows that

i Ma'it
2(1) < —q(t)p(t) +p],)((tt))z(t) Py sty ®

and completing the square will leads to




' _ b(t)(P)* ()
2'(t) < —q(t)p(t) + ST BT ap(t) (2.15)

Integrating (2. 15 ) between T and t and letting t — oo, we see that lim;_,, 2(t) =
—o0. This contradicts z(t) being eventually positive .
If 2/(t) is eventually negative . We integrate (1. 1) from ¢ to oo and since

b(t)(a(t)2' (1)) > 0,

we have

o0 =1

—b(t)(a(t)z'(t)) + / Zqi(r)x(ai(r))dr <0. (2.16)

t m



82 T.CANDAN & R.S.DAHIYA EJDE/CONF /10 Now integrating (2. 16 ) from
t to oo after dividing by b(t) and using a(t)z'(t) < 0,
will lead to

a(t)x'(t) —|—/too / —du Zqz ))dr < 0. (2.17)

Dividing ( 2. 1 7 ) by a(t) and integrating again from ¢ to co gives

o] T 1 T 1 Kt .
/t [/t a(u)du(/u Wv)dv)] ;qz(r)x(oi(r))dr < (). (2.18)

Replacing ¢ by o(¢) in (2. 18 ), where o(t) = max {o1(t), 02(t), ..., om (1)}, will give

/a(t) /(t) a(u 7dv qu ))dr < z(o(t)). (2.19)

Using the fact that o;(t) < ¢t and x(t) is decreasing in (2. 19 ) , we obtain
i=1

/G;)[/U;)a(lwdu(/u Tdv Zqz Ydr < 1.

This is a contradiction to ( 2. 3) . Therefore , the proof is complete Example 2 . 2
Consider the following functional differential equation 2

(e™*a') + > (2i — e~ a(t — (i+ 1)m) = 0.

1=1

Nowa(t) = e " b(t) = 1,q1(t) = e7*,q2(t) = 3e ‘o1 (t) =t — 27, 09(t) =t — 37,
p(t) =€

We can easily see that the conditions of Theorem 2 . 1 are satisfied . It is easy to
verify that z(t) = cost is a solution of this problem .
Theorem 2 . 3. Let f'(z) > X for s ome A >0, and h(t)=0. Suppose
that th ere exist a differentiable function p € C([tg,00),R),p(t) > 0 such that

* . e @?
/ oo S Gt e (220)

where q(t) = min{ql(t), q2(t),...,qm(¢t)}, for every T >0, and that

t r 1 r 1 =1 , B
tlg(r}lc sup/a(t)[/a(t) mdu(/ﬂ mdv)] ;qz(r)dr = 00, (2.21)

where o(t) = max{o1(t),o2(t),....,om(t)}.  Then the equation (1. 1 )is os cil latory

Proof . The beginning part of the proof is similar to the proof of Theorem 2 . 1 until
we reach at two possible cases .  Suppose 2/(t) is eventually positive .  Then , we
can define



b(t) (a(t)'(1))"

=S ety
It is obvious that z(t) > 0 for ¢ > t5 and 2/(t) is
, S a0 o)
/) micafGetoi)
P0) o 2iea [ (@(oi(t))a’(0i(t)"ilt)
NoRK e 0]
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ey f1(=(oi(t)2’ (04 (t))0"i(2)
Yimq fx(oi(t)))

where ¢(t) = min {¢1(t), q2(¢), ..., gm(¢) }. On the other hand , since (b(t)(a(t)z'(t))) <
0, (2.5) holds and ¥'(t) > 0, we can obtain

=(t), (2.22)

(a(t)2'(t))" <. (2.23)
Using ( 2. 23 ) and the equality
a(t)z'(t) = a(T)2'(T) + /T (a(s)x'(s)) ds (2.24)
will lead to
a(t)z'(t) > (t —T)(a(t)2' (1)) (2.25)

Now using non - increasing nature of (a(t)z’(t))’, we obtain

a(o;(t)x' (oi(t)) > (oi(t) = T)(a(t)2' (1)) for i=1,2,...m. (2.26)
Multiplying both sides of ( 2. 26 ) by

a'i(t)

a(oi(t))

and t aking the summation from 1 to m, we have

i a'i(t)z’ (os(t)) > z_: Ma’i(t)(a(t)x'(t))'. (2.27)

Then , using (2. 27 ) in (2. 22) , it follows that

PO, T S i)
b(t)p(t) L o

and then completing the square leads to

b(t)(p'(t))?
2(t) < —a(tp(t) + LU0 . (2.28)
MY Semy oi()Ap(t)
Integrating (2. 28 ) between T to t and letting t — oo, we see that limy_, o, 2(t) = —o0.

This contradicts z(t) being eventually positive .
If 2/(t) is eventually negative and proceeding as in the proof of Theorem 2 . 1 we
will end up with

) r 1 r 1 =1 .
/U N / o / ey ) S ) el < (o 0),



where o(t) = max {o1(t),01(t), ...,0,(t)}. Thus we have

t T 1 L | i=1 '
/g N / o / oy ) S a0 o) < (o0, (2.29)

Using the fact that o;(t) < t, f(x) is increasing and z(t) is decreasing in (2. 29 ) , we
obtain

L L S ity < Eo ()
[,<t>[[,<t> s ) 2 aindr < sy
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positive , it is approaching a finite non - negative number
as t — oo. In view of ( 2. 2 1) and the last equation , it is not possible that

0.Suppose tlg(r)lo x(t) = 0, then
L 1Ci0) I S
t=oo f(z(o(t)) t—=oe f'(2(a(t))  f(0)

This is a contradiction to ( 2. 2 1) . Therefore , the proof is complete . Theorem 2
. 4. Suppose that f'(x) > X\ for s ome A >0 and

1
< =
DY

) t T 1 L | t=1 ) B
tliglc sup /U(t) [/a(t) mdu(/u mdv)] ;qz(r)dr = 0. (2.30)

In  addition ,  suppose  that there  exist a  continuously  differentiable
function p € C([tg,00),R),p(t) > 0 and an os cil la to ry function (t) such that

o0 , ]
/ [a(t)p(t) — b (1) dt = 00 (2.31)

i, @D ovi(t)ardp(t)

for s ome d € (0,1) and for every T >0, and
OV @) =A@, Jm OO =0, i=012 (232

Then the equation (1. 1) is almost os cillatory .

Proof . Let x(t) be a non - oscillatory solution of (1. 1) . Without loss of
generality

we may assume that x(t) is eventually positive . Consider

y(t) = a(t) - (0). (2.33)

Obviously y(t) is eventually positive , otherwise ,z(t) < #(t) and it is a contradiction
with oscillatory behavior of 1(¢). We know that ,

(b(t)(at)y'(t)") < 0. (2.34)
Proceeding as in the proof of Theorem 2 . 1 , there is a t; > 0 such that for ¢ > ¢;

(a®)y'(t)) >0 and (a(t)y'(t))" <0.
Consider again two cases .  Suppose that y'(¢) is eventually positive , then y(t) is
increasing and eventually positive . On the other hand | since ¥(t) - 0 as t — oo
and y(t) = x(t) — 1 (t), there exists a to > t; such that
x(o;(t)) > dy(oi(t)) for t>ts and de(0,1), i=1,2,...,m.

Since f is an increasing function , we obtain



f(x(o:i(t)) > fdy(oi(t))) for t>ty, i=1,2,...m
Definez(t)by
b(t)(at)y (1))’ o(8)

0= S F (o))

then obviously z(t) > 0 for t > t5 and 2/(¢) is

S qi(t) fla(oi(1)) n

mi— (dy(o:(0))

Tyt
S

Z(t) =

)
)y ’(Jz( ))a'it)
y(o
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using f'(z) > A > 0, we obtain

P Sy et
p(6) " TS (o (0)

where ¢(t) = min{q1(¢), ¢2(t), ..., gm(t)}. We can now show that

Z(t) < —q(t)p(t) + 2(t), (2.35)

=1 i=1

. ) —=T) .
it (i) 2 3 T ity ey () (2.36)
2 )
as in proof of Theorem 2 . 1. Using (2. 35 ) and (2. 36 ) , we have
m (oi(t)=T) 1,
(1) dit1 “atoiy O (1)
2'(t) < —q(t)p(t) + p—%2(t) — dA : 208,
(1) < ~al0p(0) + p 5200 o 20
Completing the square in the above equation leads to
b(t)(p')%(t
2(t) < —g(Oplt) + =PI (237)
Y2t Satouy O i(t)4Adp(t)
Integrating (2 . 37 ) from T to ¢ and letting ¢ — oo, we see that lim; ,o 2(t) = —o0.
This contradicts z(t) being eventually positive .
Now suppose y'(t) is eventually negative .  Since y is eventually positive and de-
creasing , lim;_,o y(t) = ¢, where cis a nonnegative number .  Therefore , lim; o 2(t) =

c. Integrating (1. 1) three times as we did in the proof of Theorem 2 . 1, we will end
up with

oo r 1 T 1 = '
/ N / o | i > i) el ) < (0,

where o(t) = max {o1(t),01(t), ...,0,(t)}. Thus we have

t r 1 r 1 =1 .
[, N / ot / iy ) S o) Sy (239)

Hence , we conclude that lim;_, . inf z(¢) = 0. But z(t) is monotone , so we have

limy 00 #(t) = 0. Thus ¢ = 0 and by ( 2. 32 ) and (2.33) limy 00 V() = 0,i = 0,1, 2,
which means that z(t) is almost oscillatory . This completes the proof .

Oscillatory behavior of third order differential equations with continuous
deviating arguments . Suppose that the following conditions hold unless stated
otherwise

(a) a(t)>0,b(t)>0,b’(t)20,/ooa(?;oo,/oob((iz)oo,

(b) q(t,€) € C([to, 00) x [¢, d], R), q(t, ) > 0,
f(x)

(c) — >e>0,forx #0,e is a constant,
(d) o€ € C([to, o) x [¢,d],R),0(t, &) < t,& € [¢,d],o(t,&) is nondecreasing
with respect to t and £ and

lim min o(t, &) = oco.
t~>oo§e[C7d]U( g)
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Theorem 2 . 5 . If

/ OO / " 4(s, €)deds = o0 (2.39)
and
: /g ;)[ /g ;) ﬁdu( /u ' ﬁdv)] / o )dedr > 1. (2.40)

where g(t) = o(t,d). Then the equation (1. 2 ) is os cil latory .

Proof . Suppose that z(t) is non - oscillatory solutionof (1. 2 ).  Without loss
of generality we may assume that z(t) is eventually positive .  ( If z(¢) is eventually
negative solution , it can be proved by the same arguments ) . From (1. 2 ), we have

d
(b(t)(a(t)2'(t))") = —/ q(t, &) f(x(a(t, €)))dE. (2.41)
Proceeding as in the proof of Theorem 2 . 1 , we have

(b(t)(a(t)2'(t))")" <0,
(a(t)z'(t)) >0 and (a(t)z'(t))” <0

for large enough ¢t.  Thus , z(t),2'(t) and (a(t)2’(t))" are monotone and eventually one
- signed . From condition (c),

f(2(o(t,€))) = ex(a(t,€)) > 0.

Therefore ,

d
0> (b(t)(a(t)2’(t))) + 6/ q(t, §)x(o(t,8))dE. (2.42)
Now consider again two cases .
Suppose that z/(t) is eventually positive , say z'(t) > 0 for t > to. Now we can
choose a constant k > 0 such that z(k) > 0. By (d), there exist a sufficiently large T
such that o(t,€) >k for t > T, ¢ € [¢, d]. Therefore ,

z(o(t,€)) = z(k).
Thus ,

d
(b(t)(a(t)2'(t))")’ +6$(’€)/ q(t, £)dg < 0. (2.43)

Integrating this last equation from t; to ¢, we get

b(t)(a(t)a' (1)) < b(tl)(a(tl)w’(h))'—Gx(k)/t / q(s, §)deds. (2.44)

Taking the limit of both sidesast — ocoandusing (2.39), the last inequality
above leads to a contradiction to (a(t)z’(t))’ > 0. Now suppose x’'(t) is eventually



negative . Proceeding as in the proof of Theorem 2 . 1 and integrating equation ( 1. 2

)

three times , we get

%) r 1 r 1 d
/t [ / i / ) / 4O f (e(o(r.)dedr < z(t)  (2.45)

Using (¢ ) in (2. 45 ), we obtain

R et /cdw, Or(o(n&)dsdr <z(t).  (246)
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by g(t)in ( 2. 46 ) , where g(t) = o(t,d), then we have

t r 1 r 1 d
¢ /g(t)[ / o / M) / o, ©)x(o(r,O)dedr < z(g(t)).  (2.47)

Since z(t) is decreasing and positive ,

E/th) [/g;) a(lu)du(/ur %U)dv)] /Cd q(r,&)deédr < 1.

This is a contradiction to ( 2 . 40 ) . Therefore , the proof is complete . Example 2 .

6 . Consider the following functional differential equation
1/2m 2671/5 1

" +/ ——a(t—=)dé=0
2/7m 52 6

so that a(t) =1,b(t) =1, f(z) =x,q(t,&) = 26;21/570(@5) =t— % We can
easily see that the conditions of Theorem 2 . 5 are satisfied . It is easy to verify that
x(t) = e~! sin ¢ is a solution of this problem .

Theorem 2 . 7. Suppose (2. 4 0 ) holds . In addition to that suppose there exist
p e

C([to, ), R), p(t) > Osuchthat

o ala(t.c ’ 2
/ [T ()p(t) — (J(E,C(; ’)%I;(j,)((i Si;(t) dt = co, (2.48)

where T'(t) = efcdq(t,f)df. Then the equation (1. 2 ) is os cillatory .

Proof . Suppose that z(t) is non - oscillatory solution of ( 1. 2 ). We can assume
that

x(t) is eventually positive . The case of x(t) is eventually negative can be proved by
the same arguments . Proceeding as in the proof of Theorem 2 . 1 , we have

(b(t)(a(t)2'(t))") <0,
(a(®)z'(t)) >0 and (a(t)z'(t))” <O0.

Thus , 2(t), 2/ (£) and (a(t)2/()) are monotone and eventually one - signed . From
condition(c),
Fa(o(t.) = ea(o(t,)) > .
00O+ [ atelot.)E <0 (19
If /(t) is eventually positive , then we can define

b (alt) ()Y
0= o)

It is obvious that z(t) > 0 for t > t5 and 2/(¢) is

p(t).

o)+ p ) oy - Tlolt0)o'(t0)

o0 2(t). (2.50)

s (O()(a(t)x' (1))
)= = G0

From proof of Theorem 2 . 1, we have



a(t)z’(t) = (t = T)(a(t)2'(t))".

Since (a(t)z(t))" is non - increasing , we have

a(o(t,c))a’(o(t,c)) = (o(t,c) = T)(a(t)2'(t))",
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(o(t,¢) = T)(a(t)2' ()’

7' (o(t,c)) > (0 (t.0) (2.51)
Plug (2.51)in (2. 50), then we obtain
i D@ ry (ol Tk
) B TO MU TOU DT R
Completing the square leads to
() < —T(op() + —DUTEDE D) (2.52)

Integrating (2 . 52 ) from T to t and letting t — oo, we see that lim; o 2(t) = —o0.
This contradicts z(t) being eventually positive .

If 2/(t) is eventually negative , the proof is exactly the same as in the second part
of the proof of previous Theorem .
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