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Strongly nonlinear parabolic initial - boundary

value problems in Orlicz spaces =«
Abdelhak Elmahi
Abstract
We prove existence and convergence theorems for nonlinear parabolic
problems . We also prove some compactness results in inhomogeneous
Orlicz - Sobolev spaces .
1  Introduction
Let © be a bounded domain in RV, T > 0 and let

Aw) = > (1) D* Ay (2, t,u, Vu)
la|<1

be a Leray - Lions operator defined on LP(0,T; W1P(Q)),1 < p < co. Boccardo
and Murat [ 5 ] proved the existence of solutions for parabolic initial - boundary value problems
of the form

% 4 A(w) + (o, t,u, V) = f inQ x (0,T), (1.1)

where ¢ is a nonlinearity with the following growth condition

g(x,t,5,8) <b(| s [)(e(z, )+ [E|7), g<p, (1.2)

hand™* ™" side satisfies f is assumed‘™ classical ( in [5])sign{opaiic? to L¥' g(((f’T; t’WS_’?;/ > (2)0) This ™ right, g,
generalizes the analogous one of Landes - Mustonen [ 1 4 | where the nonlinearity g depends only

onz,tandu. In[5]and[14], the functions A, are assumed to satisfy a polynomial growth

condition with respect to v and Vu.  When trying to relax this restriction on the coefficients

A,, we are led to replace

LP(0,T; WHP(Q)) by an inhomogeneous Sobolev space W® Ly, built from an Orlicz space Ly

instead of LP?, where the N - function M which defines L), is related to the actual growth of

the A, 's.  The solvability of ( 1. 1) in this
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204 Strongly nonlinear parabolic initial - boundary value problems
setting is proved by Donaldson [ 7 ] and Robert [ 1 6 ] in the case where g = 0. It is our purpose
in this paper , to prove existence theorems in the setting of
the inhomogeneous Sobolev space W1* L, by applying some new compactness
results in Orlicz spaces obtained under the assumption that the N - function
M (t) satisfies A’— condition and which grows less rapidly than | ¢ |[V/(N=1  These compactness
results , which we are at first established in [ 8 | , generalize those
of Simon [ 1 7], Landes - Mustonen [ 1 4 | and Boccardo - Murat [ 6] . It is not clear whether
the present approach can be further adapted to obtain the same results
for general N - functions .

For related topics in the elliptic case , the reader is referred to [2 ] and [ 3] .
2  Preliminaries
Let M : RY — RT beanN- function, i.e. M iscontinuous, convex, with
M(t)>0f0rt>0,@—>0&st—>0and%t)
M admits the representation : M (t) = fg a(t)dT where a : Rt — RT is non -
decreasing , right continuous , with a(0) = 0,a(t) > 0 for ¢t > 0 and a(t) — o

— 00 as t — oo. Equivalently ,

: —functi . . Figoi
where O ooy e = Tnetion preonjugatetoMisdefinedby™ isgivenby.

o(t)=sup{s:a(s)<t}[1,1-M (1) = /t

1, 12].

The N - function M is said to satisfy the Ay condition if , for some k& > 0 :

M(2t) < kM(t) forallt > 0, (2.1)

when this inequality holds only for ¢t > ¢, > 0, M is said to satisfy the Ay condition near
infinity .

Let P and @ be two N - functions . P < ) means that P grows essentially less rapidly
than Q; 1. e . , for each € > 0,

P(t)
— 0 ast — oo.
Q(et)
This is the case if and only if
Q)
lim ——* =0.
R T R

An N - function is said to satisfy the A’ — condition if , for some kg > 0 and some

to Z 0:
M (kott') < M(t)M(t'), forallt,t’ > toq. (2.2)

It is easy to see that the A’ — condition is stronger than the A — condition .  The following
N - functions satisfy the A’ — condition : M (t) = t?(Log?t)®, where 1 <
p < 400,0 < s < 400 and ¢ > 0 is an integer (Log? being the iterated of order
q of the function log ) .

We will extend these N - functions into even functions on all R. Let Q be an
open subset of RV, The Orlicz class £/ (2)( resp . the Orlicz space Ly (Q)) is
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defined as the set of ( equivalence classes of ) real - valued measurable functions u

on (2 such that :

JoM(u(z))de < 400 (resp. [, M
Banach space under the norm

). Note that Ly (Q) is a

| M,Q=inf{A>0: / M(@)dx <1
Q
and L/(2) is a convex subset of Lz (). The closure in Lp;(Q) of the set of
bounded measurable functions with compact support in -2 is denoted by Ej/(€2). The equality
EnN(Q) = L () holds if and only if M satisfies the Ag condition , for all ¢ or for ¢ large according
to whether 2 has infinite measure or not .
The dual of E)j(£2) can be identified with L M () by means of the pairing
Jo u(x)v(z)dz, and the dual norm on L_p(f2) is equivalent to || . |57 The space
L M(Q) is reﬂelee if and only if M and -M satisfy the As condition , for all ¢ or for t large ,
according to whether 2 has infinite measure or not .
We now turn to the Orlicz - Sobolev space . WLy (Q)( resp . WLE)(Q)) is the space
of all functions w such that v and its distributional derivatives up to order 1 lie in Lj;(2)( resp
Ep(9)). This is a Banach space under the norm

Jul1,M,Q= > | D] M,Q.
o |<1

Thus WLy () and WEEp () can be identified with subspaces of the product of N +1 copies of
Ly (). Denoting this product by ITL s, we will use the weak topologies o(IIL s, ITE — lineyy)
and o (1L, I L7; ). The space W3 Ep(Q) is

defined as the ( norm ) closure of the Schwartz space D(Q2) in W1 E);(2) and the space W¢ L (£2)
as the o(IIL s, IIE — lineys) closure of D(Q) in WLy (). We say

o (1L JIL77—).If MsatisfiestheAscondition
thatu,, convergestouforthemodularconvergenceinV

D, — D~
A>0 / M( %)dw — Oforall | o |[< 1. ThlSlmphesconvergencefor

has finite measure ) , then modular convergence coincides with norm convergence . Let W 1L —
linep (Q)(resp. W lline—Ep () denote the space of distributions on € which can be written
as sums of derivatives of order < 1 of functions in L 3;(Q) ( resp .E — linep (). It is a
Banach space under the usual quotient norm .

If the open set Q has the segment property , then the space D() is dense in WL (Q)
for the modular convergence and for the topology o(IILp,IIL77—) (cf. [9,10]).
Consequently , the action of a distribution in W=1L_p/(Q) on an
element of W L (Q) is well defined .

For k > 0, we define the truncation at height k, 7Ty : R — R by

Ti(s) = (e 7 (13 > 1F (2.3)

The following abstract lemmas will be applied to the truncation operators .
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Lemma 2 . 1 Let F :R—R  be uniformly lips chitzian , with F(0) =0. Let
M be an N - function and le t uw € WLy (Q) (resp . WIEpN()). Then F(u) €
WILar(Q)( resp WEEpN ().  Moreover , if the s e t of dis continuity points of F' is finite ,
then

ou
F/
8ii Flu) = v O

0 ae. in{zeQ:u(x)e D}

a.e. in{x € Q: u(x)element — slashD}

Lemma 2 . 2 Let F :R — R be uniformly lips chitzian , with F(0) =0. We sup - pose
that the s e t of dis continuity points of F' is finite . Let M be an N - function , then the
mapping F : WLy (Q) — WLy (Q) is s equentially continuous with respect to th e weak *
topology o(IILp, IIE — linepy).

Proof By the previous lemma , F'(u) € WLy (Q) for all u € WLy (Q) and

| F(u) | 1, M, Q< C | u] 1,M,Q,

which gives easily the result . [ Let Q be a bounded open subset of RN, T > 0 and set Q =
Ox]0,T[. Let

m > 1 be an integer and let M be an N - function . For each o € NV denote by

D¢ the distributional derivative on @) of order o with respect to the variable

x € RV, The inhomogeneous Orlicz - Sobolev spaces are defined as follows

W™ Ly(Q) ={u € Ly(Q) : Diu € Ly (Q)Y | ov [< m}
Wm’xE]\/[(Q) = {u S EM(Q) : D:u S EM(Q)V | o |§ m}

The last space is a subspace of the first one , and both are Banach spaces under the norm

[ ]|

> IDgu | M,Q.
|a|<m

We can easily show that they form a complementary system when (2 satisfies the

segment property . These spaces are considered as subspaces of the product space I1L (@) which
have as many copies as there is a— order derivatives , | a | < m. We shall also consider the
weak topologies o(I1Ly, IIE — linepr) and o (1L, TIL_py).

If u € W™*Lp(Q) then the function : t — wu(t) = wu(t,.) is defined on [0,T] with values in
W™Ly ().  If |, further ,u € W™*E)(Q) then the concerned function is a W™E)y(Q2)—
valued and is strongly measurable .  Furthermore the

following imbedding holds : ~ W™*Ep(Q) C LY(0,T; W™Ey(Q)). The space W™ L (Q)
is not in general separable , if w € W™ *L,(Q), we can not con - clude that the function u(t) is
measurable on [0, T]. However , the scalar function

t =l u(t) || M,Qis in L'(0,T). The space W Ep(Q) is defined as the ( norm ) closure in
W™ Ey (Q) of D(Q). We can easily show as in [ 1 0 | that when €2 has the segment property then
each element u of the closure of D(Q) with respect of the weak * topology o(ILL s, IIE — lineyy)
is limit , in W™® L,(Q), of some subse -

quence (u;) C D(Q) for the modular convergence ; i. e . , there exists A > 0 such
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D¢u; — DY )
/ M(M)dwdt — Oasi — 00,
Q

this implies that (u;) converges to u in W™% L (Q) for the weak topology

o(IIL s, TIL_pr).Consequently

o(TILy ,TIE M) o(IIL g JIL M)
D(Q) - D(Q) )

this space willbe  denoted by Wi "Ly (Q). Furthermore, W ""EnN(Q) =W "Ly (Q)N
IIEy,. Poincar é ’ s inequality also holds in Wi Ly (Q) 1. e . there is a constant C' > 0 such
that for all u € Wi""Ly(Q) one has
S o IDsulMQ<C > | Diul M,Q.
la|<m |al=m

Thus both sides of the last inequality are equivalent norms on Wy"* Ly (Q). We have then the
following complementary system

( Wy Ly (Q) F >
W En(Q) Fo )’

F being the dual space of Wy " Ep(Q). It is also , except for an isomorphism , the quotient
of TIL-M by the polar set Wy"* Epr(Q)+, and will be denoted by F' = W="%[_,/(Q) and it is
shown that

W™ L@ ={f= Y, Difa:faclu(@}
la|<m
This space will be equipped with the usual quotient norm

Il =inf Y | fallizg—

| o

<m

where the infimum is taken on all possible decompositions

f= >, Difar fa€Llu@.
|a|<m

The space Fj is then given by
Fo={f=] Y Difa:fa€E—linen(Q)}
al<m

and is denoted by Fp = W~"™%E — linej;(Q). Remark 2 . 3 We can easily check , using [ 1 0
, lemma 4 . 4], that each uniformly

3 L mapping . Fy ., with F(O) . s in inhomogeneous .
lipschitziang . cocororderl * W LMY and = 0W017actstM(Q)_ Orlicz — Sobolev
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3 Galerkin solutions
In this section we shall define and state existence theorems of Galerkin solutions

for some parabolic initial - boundary problem .
Let Q be a bounded subset of R, T > 0 and set Q = Q2x]0, T[. Let

Aw) = > (-DIDI(Au(w))
|a|<m

be an operator such that
A(z,t,6) : Q% [0,T] x RN0 — R is continuous in (,&), for a . e .x € Q
and measurable in z, for all (t,£) € [0,7] x RN0, (3.1) where , Ny is the number of all
a— order ’ s derivative , | o |[< m.
| Ao(z,5,8) |< x(2)®(] £ |) with x(z) € LY(Q) and ® : Rt — RT increasing .
(3.2)

> Aa(w,t,)éa > —d(x, t)withd(x,t) € LN(Q), d >0. (3.3)
|al<m
Consider a function ¢ € L?(Q) and a function - € L*(Q) N W™ (). We choose an

orthonormal sequence (w;) C D(Q) with respect to the Hilbert space L?(£2) such that the closure
of (w;) in C™( Q) contains D(Q2). C™( Q) being

the space of functions which are m times continuously differentiable on 2. For

V,, = span{wy, ..., w,)and

ou
[ ull Cm(Q) = sup{| DFu(z,t) |, | @b [al<m, (2,1) € Q}
we have
chm(Q)

D(Q) C

this implies that for ¢ and -u, there exist two sequences (¢,,) and (

{usz. (0,1, V) }

Up) such that

¥n € CH[0,T],V2), 9o — YinL?(Q). (3-4)
Uy € Vi, <y, — —uinL?(Q) nWH(Q).

Consider the parabolic initial - boundary value problem

a ou +A u) = in
Dxu = Oonaiatﬂx( ])O,T[vgér glia\ S m — 1, (36)
u(0) = —uinQ.

In the sequel we denote A, (z,t,u, Vu, ..., V™u) by A,(x,t,u) or simply by

Aq(u).
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Galerkin solution of
(3.6)if

ou
ndac+/ Ao (un).DE dx:/ n(t)odx
e QIZ (un)-DS | nlt)e

al<m
for all ¢ € V,, and all t € [0, T]; u,(0) = -up.
We have the following existence theorem .
Theorem 3 . 2 ( [13]) Under conditions (3. 1)- (8. 38), there exists atleast one
Galerkin s o lution of (3. 6 ) .
Consider now the case of a more general operator

Af)= Y (=1)"*IDg (Aa(w)

|a|<m

where instead of (3. 1) and ( 3. 2 ) we only assume that
An(2,t,6) : Q@ x [0,T] x RY0 — R is continuous in &, fora.e. (x,t)€Q
and measurable in (z,t) for all £ € RN0. (3.7)

| Aa(,5,€) |< Cla, )@(] € )withC(z,t) € L1(Q). (3-8)

(14 1)

ny)and There exists a

We have also the following existence theorem TheoremiSMLl(O,B.Tf’(
function w, in C([0,T],V,) such that 24~

ot
/ %dde/ | Aa(a,t,un).DS dmdt—/w dzdt
QT atgo (e PR Bl (A $()0 - QT n@

T al<m

forall 7€[0,T] and all ¢ € C([0,T],V,,), where Qr = Q x [0,7];un(0) = <y,

4  Strong convergence of truncations

In this section we shall prove a convergence theorem for parabolic problems which allows us to
deal with approximate equations of some parabolic initial - boundary problem in Orlicz spaces (
see section 6 ) . Let , be a bounded subset

of RV with the segment property and let T > 0,Q = Q2x]0, 7. Let M be an
N - function satisfying a A’ condition and the growth condition

N

and let P be an N - function such that P < M. Let A : WULYLy(Q) —
W= L — linepr(Q) be a mapping given by

A(u) = —diva(z, t,u, Vu)
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Qx[0,T]xRxRY — RN isa Carath é odory function
satisfying for a . e . (x,t) € 2x]0,T[ and for all s € R and all £,¢* € RV :

la(x,t,5,8) |< cz,t) + ki P M (ks | s|) + k3 M™'M(ks|€]) (41

)
[a(x,ta57§) —a(x,t,s,f*)}[f—f*] >0 lff#g* (42)

(Sl “de ) <ale 5.0 @03

wherec(x,t) € E — liney (Q), ¢ > 0,d(x,t) € L(Q), k1, ko, k3, ks € RTanda, A €

R;. Consider the nonlinear parabolic equations

0
% — diva(z, t, up, Vu,) = f + gn  inD'(Q) (4.4)
and assume that :
up, —u  weakly in WH* Ly (Q) for o(ILL s, TTE pf),  (4.5)
fn— f stronglyinW Y% E — liney (Q), (4.6)

gn — g weaklyinL'(Q).

We shall prove the following convergence theorem .
Theorem 4 . 1 Assume that (4. 1)- (4. 7)hold. Then, for any k>0, th e trunca -
tion of w, at he ight k( s ee (2. 38 ) for the definition of th e truncation ) satisfies

VTi(un) = VTe(u) s tro ngly in (LYF(Q)N. (4.8)
Remark 4 . 2 An elliptic analogous theorem is proved in Benkirane - Elmahi [ 2] .
Remark 4 . 3 Convergence (4 . 8 ) allows , in particular , to extract a subsequence
n' such that :

Vup,/ - Vu a.e.in@Q.
Then by lemma 4 . 4 of [ 9], we deduce that
a(x,t, un! Vupt) — a(x,t,u, Vu)  weakly in L_p(Q))" for o(TIIL — linep ILE ).

Sincep“’ofT,?fisTheoremélcontinuous;1forStepan16 cWlerieeachp, (£Q)>0; havedeﬁnessk(s) _ Eof Ti(7)dr.

L (Q)
an S = w)V . hat,b; mollifying __ . o™ 6], it i eas
for dvaﬁg(owep(gk; ) ;Umlanvsotewt lyzLM(Q Y g)Wlthael E/V] ltrIfM( VQ)+t0L§eeE}c§)t7we
have
v 3(,0
T, — dxdt. 4.9
(i #1om = - | S5 (1.9

where  ((,)) means for the duality pairing between W, *Ly(Q) + L'(Q) and W—H*L —
linepr (Q) N L>=(Q). Fix now a compact set K with K C @ and a function
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Usingin (4. 4)
= oK (T (un) — Ti(u)) € WHZLp (Q) N L%°(Q) as test function yields

((Fin Oou, Oou,
ot ot

+/QLpKa(a:,t,un,Vun)[VTk(un) — VT (u)|dxdt (4.10)

oK k(un))) — (0 oK k(w)))

+/ (Tk (un) — Ti(w))al(x, t, upn, Vi) VoK dzdt
Q
= ((frs vn)) + ((gr2;0n)).

Since u, € WLy (Q) and %= € W=HL 5 (Q) + LH(Q) then by (4. 9) ,

Oin kT h(un))) = — | 225

Cor ¢ Jo ot

Sk (up)dzdt.

On the boundedotherhandlanmce1 (Q)(ch)iisboundedisgin/\/l(@)al’ldWl ziM (Q) and (LC unatt u; h VZf)iw}lilefniS

gnls , = div

boundedinW Consequently Ti (UL )M (g)Tk Eg? and by [8 Scomnary(un)ﬂ’sk (w)Un — ing, ulo e strongly(Q).

So thati"Lr (@)

ot

and also fQ(Tk(un)ka(u))a(x, t, Un, Vu,)VoKdxdt — 0 asn — oco. Further - more ((fp,, vn)) —
0,by (4.6 ). Since gn € L(Q) and Ty (u,) — Tx(u) € L>=(Q),

/ OPK g, (wn)dudt — / 00K o (w)dudt

({gn, oK (Tk (un) — Ti(u)))) = /ansoK(Tk(un) — T (u))dzdt

which tends to 0 by Egorov ’ s theorem .

. - ; A, ™,
boundedsnmecpfngn’f 1(: %/Vtiefo; AR Wg;d LM gﬁ{) ﬂLOOWhlch‘(fé;klyWhlleconvergesa—tn in®** L2 1(Q)of a

has

<<6gtnlgoKTk(u)>> — <<% oK k(u))) = _/Q‘Z‘fsk(u)dmdt

s

We have thus proved that

/ OK*(x,t, up, Vun)[VTk(un) — VI (u)]dzdt — 0 asn — oo. (4.11)
Q

Step 2 : Fix a real number 7 > 0 and set Q(y = {z € Q :| VT (u) |[<r} and
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acteristic function of Q). Taking s > r one has :

0< / oKla(x, t, upn, VI (un)) — a(z, t, upn, VI (u))]
Qry

X [VTk(uy) — VT (u)]dxdt

< / oKla(x, t, up, VI (un)) — a(z, t, upn, VI (u))]
Qs)

X [VTi(un) — VT (u)]|dxdt

= /Q eKla(x, t, u,, VT (uy)) — alx, t, upn, VI (u)xs)]

()
X[VT(uy) — VT (uw)xs]dzdt
< /ngK[a(x,t,un,VTk(un)) —a(z,t,up, VI (u)xs)] (4.12)
X [VT(uy) — VT (uw)xs]dzdt

_ / K (@, , i, Vi) [V T (1) — VT ()] dadt
Q

—/QapK[a(m,t,un,Vun) —a(x,t, un, Vg (un))]
X [VTi(un) — VTg(u)xs]dzdt

+/ YK (x,t, Up, V) [V (u) — VT (u)xs|dzdt

Q

—/ Kz, t, up, VI (w)xs)[VTk(un) — VT (w)xs]dzdt.
Q

Now pass to the limit in all terms of the right - hand side of the above equation . By (4. 11
), the first one tends to 0 .  Denoting by xG,,  the characteristic
function of G,, = {(z,t) € Q :| un(z,t) |> k}, the second term reads

/@K[a(x,t,un,Vu”)—a(x,t,un,O)]ngTk(u)Xsdxdt (4.13)
Q

: nds to( 40k o3 vt un, Vun , o b
whichby (4.1 )and®® (4 BSmce)[\avhile;xcnv;k(u)l;s) —a(z,t, unconvergesstmngly0)]1S7b3;undedm<E = @)y
in M to
Lebesgue ’ s theorem . The fourth term of (4. 12 ) tends to
g
_ a (s) VVTR(u) (u)xs]
/Q oK (x’tvuapf:(‘;g\‘Qt,u,VTk(u)xs’O)VTk(“) VTidz X dedt  (4.14)
1St sty un, VIk(u)xs) trongl (x, t, u, VT, (u)xs) in:. (E Mm@y
while™“a(z Vo, (un)— VTZ(u)Xs tendS&S:orr?vneg’rrgyestoweakly‘m)VTk(u) 7vak(u)Xs n' (L M(Q)N

fora (1L, TIE — lineyy).



Abdelhak Elmabhi 213
Since a(x,t, un, Vu,) is bounded in (L (@)Y one has ( for a subsequence
still denoted by wu,)
a(x,t,un, Vuy) = h  weakly in (L_p(Q))N for o(IIL_pr,I1Ey).  (4.15) Finally , the third
term of the right - hand side of (4. 1 2 ) tends to

/ oK"YV k(u)dxdt. (4.16)
Q\Q(s)
We have , then , proved that

sup

0<lim o / oK@, £, 1, VTi (1)) — a(, t, 1, V(1))
" Q(r
X[VTi(upn) — VI (u))dzdt (4.17)

< / eK[h —a(z,t,u,0)] VI (u)dedt.
Q\Q(s)

Using the fact that [h — a(z,t,u,0)]VT(u) € L*(Q) and letting s — +o00 we

get, since | Q \ Q(s) | = 0,
/ oK[a(z,t, upn, VI (uy)) — alz, t, un, V()] [VTk(uy) — VT (w)]dzdt
Qry

(4. 18) which approaches 0 as n — co. Consequently
/ [a(x,t, un, VTk(un)) — a(x, t,tun, VI ()] [V (un) — VI (u)]dzdt — 0
Q(,.)ﬂK

as n — 00. Asin [ 2 | , we deduce that for some subsequence VT (u,) — VT(u) a . e . in
Q) N K. Since r, k and K are arbitrary , we can construct a subsequence
( diagonal in 7, in k and in j, where (K;) is an increasing sequence of compacts
sets covering @), such that

Vu, > Vu a.e.in@Q. (4.19)
Step 3 : Asin [ 2] we deduce that

/ WK (x,t, upn, V) VT (uy,)dedt — / oK (x,t, u, Vu) VT (u)dxdt
Q Q
as n — oo, and that

a(x, t, un, VT (un))VTk () — a(, t,u, VT (1)) VT (u)stronglyin L (K).

(4.20)
This implies that ( see [ 2 ] if necessary ): VT (un) — VTk(u) in (Lp(K))N for the modular
convergence and so strongly and convergence (4 . 8 ) follows .
Note that in convergence ( 4 . 8 ) the whole sequence ( and not only for a subse - quence )
converges since the limit V7j(u) does not depend on the subsequence .
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5 Nonlinear parabolic problems
Now , we are able to establish an existence theorem for a nonlinear parabolic initial - boundary
value problems . This result which specially applies in Orlicz spaces generalizes analogous
results in of Landes - Mustonen [ 14 ] . We start by giving the statement of the result .

Let Q be a bounded subset of RY with the segment property ,T' > 0, and Q = Q2x]0, T[. Let
M be an N - function satisfying the growth condition

N
M(t t| ——

< It 5=
and the A’ — condition . Let P be an N - function such that P < M. Consider an operator
A W(}JLM(Q) —W-b=L M (Q) of the form

A(u) = —diva(z, t,u, Vu) + ap(z,t,u, Vu) (5.1)
wherea @ Qx[0,T]xRxRY RN anday : Qx[0,T]xRxR¥ — R

are Carath é odory functions satisfying the following conditions , for a . e . (z,t) € Q x [0,7]
for all s € R and € # & € RV :

a(z, t s, €)l (@, 1) 4,17 M (kals D 4.3 M (hale),
||a( 0(z,t, s, &) s< c(z, t) Kik, 2,M;f<k2ls\) k+k3 - M—1pglen, (5.2)
la(z,t,8,€) —alz,t,5,E)][§ -] >0, (5.3)
a(x,t,s,f)«f + ao(x,t,s,f)s Z O‘M(Q) - d(.]?,t) (54)

wherec(z,t) € E — liney (Q),c > 0,d(z,t) € LY(Q), k1, ko, k3, ks € RTanda, A €

R} . Furthermore let

feWME —liney(Q) (5.5)

We shall use notations  of section 3 . Consider , then , the parabolic initial -
boundary value problem

ou + A(U): fin Q (56)

8t($,t )= 0 onaﬂx]o,T[
u(z,0) = (z)infd.

where 1 is a given function in L?(2).  We shall prove the following existence theorem .

hat (5.2)—(5.5 hol

Theoremg,ytionude-1 AssumeVVél,,ELM(Q)m s (Q)%C(diO’T]VThentL}ée(Tgf))ofexists(5.6),@inleastthefouowmg1weak

s ense !

0 u(t 2]T
- / uaﬁdmﬂ / / 2N Gy o+ / dzgra=(z, (5 u, ) Vu) Vodrdt — (5.7)
Q ot aJ Qaol Q
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c LI(O, T; W_l’l(Q)). Thenu 6thhcont1nu1ty0fthe1mbe(é(?;;1g7;1 Wt . Wl’l(O, T; W_l’l(
QueW 1o L—linen (Q) - 2-6),  wehaveu € Wy Lu(Q) C

Remark5.2In (5

sibly after modification on a set of zero measure , continuous from [0, 7] into
W=L1(Q) in such a way that the third component of ( 5. 6 ) , which is the initial condition ,
has a sense .

Proof of Theorem 4 . 1 Tt is easily adapted from the proof given in [ 1 4 ] . For convenience
we suppose that ©» = 0. For each n, there exists at least one solution u,, of the following problem
( see Theorem 3 . 3 for the existence of uy,) :

un € C([0,T), V), % € LY(0,T;V;), un(0) =1, =0 and,
forallrT € [0, T, / %gpdwdt +/ a(x,t, up, Vi, ).Vodrdt (5.8)
QT 1>

—|—/ ao(x,t,un,Vun).godxdtz/ fapdzdt, Yo e C(10,T),Vy).
QS

€

where fk C U, C([0,T],V,,) with fk — fin W™L2E — linep (Q).  Putting ¢ = u,, in (5. 8
(

),and using (5.2 )and (5. 4) yields
un|Wg % Unp, 00(0,T; 1.2 <
|| ao(IL',t,’LLDL s van) LM(Q)HLiM(Q) S SCC’ ”and”HL a(i7 t, 57]59@””)_0”[‘71\/[(@) S C
(5.9)

Hence , for a subsequence
u, — u weakly in Wy'" L (Q) for o(IIL s, IIE — lineys) and weakly in L2(Q),
ag(z, b, U, Vuy) = ho,a(x, t, uy, Vu,) = hinL_y (Q)foro (ILL — line s IIE )

(5.10)wherehg € Ly(Q) andh € (L.y(Q)YN. Asin [14], we get
that for some subsequence u,(z,t) — wu(z,t) a.e. in@Q (it sufficesto apply Theorem
3.9
instead of Proposition 1 of [ 14 ] ) . Also we obtain

_/ uaﬁdxdtﬂ/ u(t)@(t)dx]g—i—/ hV(pdﬂJdt-‘r/ hopdzdt = (f, @),

for all o € C1([0,T]; D(Q)). The proof will be completed , if we can show that

/ (hV o + hop)dzdt = / (a(z,t,u, Vu)Vo + ag(x, t,u, Vu)p)dzdt (5.11)
Q Q

for all ¢ € C1([0,7]; D()) and that u € C([0,7], L*(R)). For that , it suffices to show that

lim | (a(z,t, un, Vug)[Vu, — Vu] + ao(z, t, un Vg ) [un, — u])dzdt < 0. (5.12)

n— oo
Q
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5.12) holds and let s > r > 0 and set Q" = {(z,t) € @ :
| Vu(z,t) |< r}. Denoting by xs the characteristic function of Q*, one has

0< /T[a(m, tyUn, Vg) — a(x, t, up, Vu)][Vu, — Vu]dzdt

< / [a(z, t,un, Vuy) — a(z, t,u,, Vu)]|[Vu, — Vu|dzdt

= / [a(z,t, un, V) — a(z, t, ty, Vu.xs)|[Vu, — Vu.xs|dzdt

< /Q[a(x,t,un, V) — a(z, t, un, Vu.xs)|[Vu, — Vu.xs|dzdt

= /an(x,t,un, Vg ) (ty —u) — /Qa(x,t,un, V. x8) [V, — Vu.xs|dzdt
+ /Q[a(ac7 tyUn, V) (Vi — V) + ag(x, t, tn, Vg ) (u, — u)]dedt

+/ a(x,t, un, Vu,)Vudzdt.
Q\Q®

(5. 13) The first term of the right - hand side tends to 0 since  (ag(x,t, un, Vuy,)) is
bounded in L_p(Q) by (5.2) andu, — wstronglyin Ly (Q). The sec-
ond term tends to fQ\QS a(x,t, un, 0)Vudzdt since a(x, t, up, Vi, xS) tends

strongly in (f[”"e(Q))N to a(x,t,u, Vu.xs) and Vu, — Vu weakly in (L (Q))N

o(II .
for/ éM "huds ILE— line%wdt'sinceThcthirdterm satigfies )~ (5.1 2)whiletheweakly,, fourth(j; L (Q)) tends'y

a(z,tsun,V

Q\
o(ITL_p, IIE)) and M satisfies the Ay — condition . We deduce then that

0 < lim sup/ [a(z, t, upn, Vu,) — a(z, t, upn, Vu)|[Vu, — Vuldzdt

n—oo

< / [h —a(z,t,u,0)|Vudzdt - 0 ass — oo.
Q\Q*

and so , by (5. 3 ), we can construct as in [ 2 | a subsequence such that Vu,, - Vu a . e.
in Q. This implies that a(z,t,un, Vu,) —  al(z,t,u,Vu) and that ag(z,t, up, Vu,) —
ao(xz,t,u,Vu) a. e. in@Q. Lemmad4. 40f[9] shows that h = a(x,t, u,Vu) and
ho = ag(z,t,u, Vu) and (5. 1 1) follows . The remaining of the proof is exactly the same as in
[14]. O

Corollary 5 . 3 The function wu can be us ed as a t esting function in (5.6 )i. e.
1
5[/Q(u(zt))2cz;zz]g+/ [a(x,t,u, Vu).Vu + ag(x, t, u, Vu)u]drdt = g fudaxdt

for al 1 7€ [0,T]. The proof of this corollary is exactly the same as in [ 14 ] .

for
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6 Strongly nonlinear parabolic problems
In this last section we shall state and prove an existence theorem for strongly nonlinear parabolic
initial - boundary problems with a nonlinearity g(x,t, s,§) having growth less than M (| £ |). This
result generalizes Theorem 2 . 1 in Boccardo - Murat [ 5] . The analogous elliptic one is proved
in Benkirane - Elmahi [ 2] .

The notation is the same as in section 5.  Consider also assumptions (5. 2 ) -
(5.5 ) to which we will annex a Carath é odory function g : Q x [0,7] x R x RN —
RY satisfying , fora. e. (z,t) € 2x [0,7T] and for all s € R and all £ € RV :

g(z,t,8,&)s >0 (6.1)
| g(@,t,5,8) [<b(| s ) (z,t) + R(I € ) (6.2)

where ¢’ € L}(Q) and b : Rt — R* and where R is a given N - function such that R < M.
Consider the following nonlinear parabolic problem

ot e T= 90,00 t,u, Vu)dax = (0f,1)in,Q, (6.3)

We shall prove the following existence theorem .

Theorem 6 . 1 Assumethat (5.1)-(5.5),(6.1)and (6. 2 ) hold. Then , there
exists

at least one distributional s o lution of (6. 3 ) .

Proof It is easily adapted from the proof of theorem 3 . 2 in [ 2 | Consider first

g(x7 t? 87 5
n(xz,t, s, §) = ——~ 12
g ( i 75) 1_‘_%‘9(1‘,1/_’6
A, , . - 5.2)—
and(5,4)pUtsot}(1§,t,)by = A(u) + gnTheoremthheret, Uy Vexiststh), weseeQ@oqsithaty Apsolutionsatisfies,, condltlons(ewil_,mLN

of the approximate problem

Oou,

o AU @ 92 (0%, ton, un, O 7o) =T inQ (6.4)

Up(z,0) =¢(x) nQ
and , by Corollary 5. 3 |, we can use u,, as testing function in ( 6 . 4 ) . This gives
/Q[a(:c,t,un, Vun).Vu, + ag(@, t,un, Vuy).uydedt < (f,u,)
and thus (u,) is a bounded sequence in W, L/ (Q). Passing to a subsequence

if necessary , we assume that

u, —=u weakly in Wol"”LM(Q) for o(IILps, IIE — lineps)  (6.5)
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Going back to (6 . 4 ) , we have

/ gn(x, t, up, Vi, )uydedt < C.
Q

We shall prove that gn(x, t, u,, Vu,) are uniformly equi - integrable on ).  Fix m > 0. For each
measurable subset £ C ), we have

/ | gn(m,t,um \%
E

< / | gn(z, t, un, Vuy,) | —|—/ | gn(z, t, u,, V
En{|un|<m} En{|un|>m}
1
< b(m) [ [¢(0.0) + R Vun D)dndt + - | g, bty Vi) |
E m JEA{|u,|>m}

1
< b(m) / (¢! (2,4) + R(| Vi, |)|dwdt + — / Ungn (2, 1, V)
E mJjq

< b(m) /E ¢ (. t)dadt + b(m) /E R(. V;f" dzwat

. is c<s e 5
there™* > 0, thereexistsd; > 0m > suchOthatsuchZ}(le o (003 dgTurthermere, O sinceghoc” € otherLy,,
me’ ™’ t) 3.

let p > 0 such that || Vu, || M,Q < u,¥n. Since R < M, there exists a constant K. > 0
depending on € such that

€s
bm)R(s) < M(E2) 1 K.
6p
for all s > 0. Without loss of generality , we can assume that € < 1. By convexity we deduce that

b(m)R(s) < M(%HKE

| ™

for all s > 0. Hence

| Vuy, |

M( Jdxdt + K. | E |

| Vu, |

IN

M( )dzdt + K. | E |

=
2
s
=
>
=
8
U
=
IN
S M

S5

<-+K.|E]|.

[« N0}

When | E |< e/(6K.), we have

| Vu, | €
b(m)/ER( Y )d:z:dtﬁi vn.

Consequently , if | £/ |< ¢ = inf (61, g&—) one has

/ | gn(z,t,up, Vuy,) | dedt <e, Vn,
E



Abdelhak Elmahi 2 1 9 this shows that the gn(x,t, u,, Vu,) are uniformly equi - integrable
on ). By

Dunford - Pettis ’ s theorem , there exists h € L1(Q) such that
gn(z,t, Uy, Vu,) — h  weaklyinL*(Q). (6.6)

Applying then Theorem 4 . 1 , we have for a subsequence , still denoted by u,,,
Up — u, Vi, = Vua . e . in Q and u, — u strongly in Wy " Li¢(Q).  (6.7)

( nd;, V' ou” (
deduce that T, tu U n) alz, tu, Vu)
Wea(HL,M, 1L, Jaand n —

. kly - L coir) N (f
since gz = Ot D(Q) then passing™ " Ving, (o M @limit) N (r6.4)

as n — +00, we obtain

0
a—? + A(u) + g(z,t,u, Vu) = f  inD'(Q).
This completes the proof of Theorem 6 . 1 .
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