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EXISTENCE OF SOLUTIONS TO A SECOND ORDER PARTIAL
DIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS
EDUARDO HERN Anppz M .
ABSTRACT . Using the cosine function theory , we prove the existence of mild
and classical solutions for an abstract second - order Cauchy problem with non -
local conditions .
1. INTRODUCTION
This paper concerns the second order nonlocal Cauchy problem

u'(t) = Au(t) + f(t,u(t),v'(t)), tel=][0,a], (1.1)
(0) = @0 + q(u, u'), (1.2)
W' (0) = y0 + p(u,u), 1

u

where A is the infinitesimal generator of a strongly continuous cosine function of bounded
linear operators , (C(t))t € R, on a Banach space X and f: R x X2 — X,
¢,p: C(I : X)? — X are appropriates continuous functions .

Motivated for numerous applications , Byszewski studied in [ 2 | a first order evo -
lution differential equation with nonlocal conditions modelled in the form

( )Au— Zo ++ 'f(z;fl ,ug, . ;,E[?;(a)])), (14)
where A is the infinitesimal generator of a Cyp— semigroup of bounded linear operators
on a Banach space X;q : [0,a]® x X — X is a continuous function and the symbol
q(t1,t, ..., tn,u()) is used in the sense that in the place of  “ -7 only the points ¢;
can be substituted ; for instance q(t1,to,...,tn,u(-)) = Y i asu(t;). In the cited
paper , Byszewski proved the existence of the mild , strong and classical solutions for
(1. 4) employing the contraction mapping principle and the semigroup theory . We
refer the reader to [2]-[6] for a complementary literature respect first order
differential equations with nonlocal conditions .

On the other hand , some second order partial differential equations with nonlocal
conditions modelled using the cosine function theory has been considered in the
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2 EDUARDO HERN ANDEZ M . EJDE-23/51 literature , see for example [ 1,13
, 14]. In general the nonlocal conditions considered
in these works are described in the form

2(0) = g(x) + 2o, 2'(0) =1,

whereg : C(I : X) — Xisappropriateandn € Xisprefixed. It’s
relevant to observe that the problems studied in these papers do not consider  “ partial
” evolution equations , since the authors proved their results under the assumption that
the cosine function (C(t))t € R, generated by A, is such that C(t) is compact

for every t > 0, which imply that dim (X) < oo, see Travis and Weeb [ 1 5, pp . 557 |
, for details .

Our goal in this work is establish the existence of mild and classical solutions for the
abstract nonlocal Cauchy problem (1. 1)- (1. 3) using the cosine function theory
and the contraction mapping principle . The abstract results in this work are appli -
cable to “ partial ” second order differential equations with nonlocal conditions , see the
examples in Section 3 .

In this paper henceforth ,C(-) = (C(t))t € R is a strongly continuous cosine func -
tion of bounded linear operators on a Banach space X with infinitesimal generator A.
We refer the reader to [ 9,15, 16 ] for the necessary concepts about cosine func -
tions .  Next , we only mention a few results and notations needed to establish our
results . We denote by S(t) the sine function associated with C(t) which is defined by

t
S(t)x ::/ C(s)xds, ze€ X,teR.
0

For a closed operator B : D(B) C X — X we denote by [D(B)] the space D(B)
endowed with the graph norm || - || B. In particular ,[D(A)] is the space

D(A) = {z € X : C(t)x is twice continuously differentiable } ,
endowed with the norm ||z || A=| z || + || Az |, € D(A). Moreover , in this work
the notation E st ands for the space formed by the vectors z € X for which the function
C(-)z is of class C''. We know from Kisi 7 ski [ 1 1], that £ endowed with the norm

[z1=lzll+ sup [ASH)z|, z€FE,

0<t<a
. . B ci) S | .
is a Banach space . The operator valued function G(t) = [ AS(H) C(b) is a
strongly continuous group of bounded linear operators on the space E x X generated
by the operator A = 21 é defined on D(A) x E. From this it follows that

AS(t) : E — X is a bounded operator and that AS(t)x — 0, as ¢ — 0, for each « € E.
Furthermore , if x : [0,00) — X is a lo cally integrable , then y(t) = fg S(t — s)z(s)ds
defines an E— valued continuous function , which is a consequence of the fact that

t
_ 0 ot St a(s)
/0 G(t—s) [ 2(s) } ds = [fot C™N —= 85" )a(s)d8ds)

defines an F x X — valued continuous function .
The existence of solutions of the second order abstract Cauchy problem

2" (t) = Az(t) + h(t), t€]0,a], (1.5)
z(0) = zo, 2'(0) = 1, (1.6)
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where h : [0,a] — X is an integrable function , has been discussed in [ 1 5] . Similarly
, the existence of solutions of the semilinear second order abstract Cauchy problem has
been treated in [ 1 6 | . We only mention here that the function z(-) given by

z(t) =C(t)xo + St)z1 + /0 S(t— s)h(s)ds, te][0,al, (1.7)

is called a mild solution of (1. 5)- (1. 6 ) and that when xy € E, z(-) is continuously
differentiable and

2'(t) = AS(t)zo + C(t)z1 + /t C(t — s)h(s)ds. (1.8)

Regularity of mild solutions of problem (1. 5)- (1. 6 ) was treated by Travis and
Weeb
in[16], by Bochenek in [ 7 ] and recently by Henriquez and Vasquez in [10 ] .
This work contains three sections . In Section 2 we discuss existence of mild and
classical solution for some second order abstract Cauchy problem with nonlocal condi-
tions . In general the results are obtained using the contraction mapping prin - ciple
and the ideas in [7],[10]and [16]. In the section 3 , the “ wave ” equation with
nonlocal conditions is studied .

The terminologies and notations are those generally used in functional analysis . In
particular , if (Z,] - || Z) and (Y, || - || Y) are Banach spaces , we indicate by £L(Z :Y)
the Banach space of the bounded linear operators of Z in Y and we abbreviate this
notation to £(Z) whenever Z =Y. B,(x:Z) denotes the closed ball with center
at « and radius r > 0 in the space (Z,| - || Z). Additionally , for a bounded function
€:[0,a] = Z and 0 < t < a we will employ the notation £Z, ¢ for

§Z,t =sup{[[ £(s) | Z : s € [0, 1]}, (1.9)

and we will write simply &t when no confusion arises . Finally , we remark that the
prefix R is used to indicate the image of a map .
2. EXISTENCE RESULTS
In this section we discuss the existence of mild and classical solutions for some
abstract second order partial differential equations with nonlocal conditions . Along
of this section , N > 1 and N are positive constants such that || C(t) || < N and
| S(t) |< N for every t € I. At first , we study the nonlocal Cauchy problem

") = Au(t) + [(tu(t)), e, 0
w'(0) = y0 + p(u)
where f ¢ RxX — Xandg,p : C(I : X) — X are appropriates
continuous
functions .

By comparison with Travis [ 1 6 ] , we introduce the followings definitions .
Definition 2 . 1. A function v € C(I : X) is a mild solution of the nonlocal Cauchy
problem (2. 1)-(2.3) if condition ( 2. 2 ) is verified and

u(t) = C(t)(zo + q(u)) + S(#)(y0 + p(u)) + /0 S(t—s)f(s,u(s))ds, tel. (24)



Definition 2 . 2. A function u(-) € C?(I: X) is a classical solution of the non
- lo cal Cauchy problem (2. 1)-(2.3),if u(-) is solution of the equation (2. 1)
and the conditions (2. 2) - (2. 3) are verified .



4  EDUARDO HERN ANDEZ M. EJDE-23/51 Now , we establish our first result .
Theorem 2.3. Let zg,y0 € X and assume that there exist positive
constants

lg, 1y, lgsuchthat

Iftz) = fEy) <ty lz=yll, zyeX,
Fa(u) =a(w) | <l lu=vlla, wveC:X),
[p(w) =p) | <l llu=vla, uveCd:X).

If 0= Nl,+ NI, + Nla < 1, then the re exist a unique mild s o lution of (2. 1) -
(2.8). Proof. On the space Y = C(I : X) endowed with the sup norm , we
define the

mapping® : Y — Y, where
Du(t) = C(t)(zo + q(u)) + S()(y0 + p(u / S(t—s)f(s,u(s))ds.

It iseasy to seethat & is well defined and with values in Y. Moreover , for

(u,w), (v, 2) € Yweget
¢

| u(t) — @u(t) | Squ||u—U||a+Nlp\\U—U\\G+le/ lu—wv| 6%
0

< (Nlg+ Nl +aNly) | u—wv |q,

which imply that ® is a contraction on Y. Thus , there exist a unique mild solution of
(2.1)-(2.3). The proof is complete . O

Remark 2 . 4 . In relation with the next result , we remark that a Banach
space Y has the Radom Nikodym property , ( abbreviated RNP ) |, respect to a finite
measure space (0, X, u); if for each continuous vector measure G : X — Y
of bounded

variation , there exists g € L(u,Y) such that G(E) = S 9dp for every E € X. We
refer to [ 8 ] for additional details respect of this matter .

Remark 2. 5. In Theorem 2. 6 , below , Ax : D(Ax) — X* is the adjoint operator
of A which is well defined since D(A) is dense in X.

Theorem 2 . 6 . Let the assumptions of Theorem 2 . 3 be satisfied . If xo+ Rq C
D(A), y0+ Rp C E and any of the fo | lowings conditions is verified ,

(a) The adjoint operator A*: D(A*) — X* is such that D(Ax) = X*;
(b) The space X has the RNP property ;
(c¢) f() is continuously differentiable ;
then the unique mild s o lution ,u(-), of (2.1 )- (2. 8 )1is a classical s o lution .
Proof . From the preliminaries we know that u(-) is continuously differentiable and
so that the function ¢ — f(¢,u(t)) is Lipschitz on I.  Let y(-) € C(I : X) be the unique
mild solution of



If (a ) holds, it follows from [ 7, Theorem 1 ] that y(-) is a classical solution . On the
other hand , if X has the RN P, then s — f(s,u(s)) € WH1(I : X) which , from [10 ,
Theorem 3 . 1], implies that y(-) is a classical solution of (2. 5)-(2.7). When
(¢ ) is verified , from [ 1 6 , Proposition 2 . 4 ] it follows that y(-) is also a classical
solution .
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Finally , from the uniqueness of solution of (2. 5) - (2. 7 ) we infer that

u(-) =y()

and so that u(+) is a classical solution of (2.1) — (2.3). O

Next , we study existence of solution for (1. 1)-(1. 3 ). Definition2. 7. A

function u € C*(I : X) is a mild solution of the nonlocal Cauchy

problem (1. 1)-(1.3)if the conditions (1.2 )- (1. 3) are verified and

u(t) = C(t)(zo + q(u, v)) + S(t)(y0 " p(u,v')) + /O S(t = s5)f(s,u(s),u'(s))ds, tel.

Definition 2 . 8 . A function u(-) € C?(I : X) is a classical solution of the nonlocal
Cauchy problem (1.1)-(1.3),if u(-) is solution of ( 1. 1) and the conditions (
1.2),(1.3) are satisfied .

Theorem 2 . 9 . Let (x9,y0) € FExX and assume that th e followings
conditions

hold :

(a) f is continuous and there exist positive constants 1,i = 1,2 such that

It o y1) = f(t o, y2) IS U llor =22 || +F Iyl — w2, @iyieX.

(b)  The functions q(-),p(-) : C(I : X)* — X are continuous ,q(-) is E— valued

and there exist positive constants l;,lf],i = 1,2 such that

la(u,w) —q(v,2) 1< u—va+ig]w==z ]
I p(u,w) = p(v,2) <8 [u—vlla+ || w—zla,

for e very w,v,w,z € C(I: X). Let O = maXi:LQ{Nlé —|—Z§7(l; —|—al})} and Oy =
HlaXz'ng{lé —+ N(l; + al})} [f

© =01+ 0Oy < 1, th en there exist a unique mild s o lutionof (1.1)-(1.3).
Proof . On the space Y = C(I : X)?, equipped with the norm

I (w,0) [ =[lula+ vl
we define the map ® : Y — Y, where ®(u,v) = (®;1(u,v), Pa(u,v)) and
®1(u,v)(t) = C(t) (2o + q(u,v)) + S(t)(y0 + p(u, v)) + /O S(t—s)f(s,u(s), v(s))ds,

Do (u, v)(t) = AS(t)(x0 + q(u,v)) + C(£)(y0 + p(u,v)) + /0 Ct = s)f(s,u(s),v(s))ds.

It follows from the assumptions that each ®; is well defined and with values in C(I : X).
Moreover , for (u,v), (w, z) € Y we get

| @1(u,v) = P1(w, 2) [|oa< (Nlg+" (I +al}) [ u—w || a™(NE+N (13 +al?)) | v—2 [la,
and so that

| ®1(u,0) — 1 (w, 2) || @ < maxihYq + N +ald)} || (u,0) = (w,2) @ (2.8)



On the other hand , from the preliminaries and condition ( b ) we get

| @2(u,v) = 2(w, 2) |la
< Ilg(uv) —q(w,2) | 1+ N +alp) | u—wlla+ N +alp | v =2 ||a,

and hence

|| P2(u,v) — Pa(w,2) || a < maxi{zmlé + NI 4 alp)} | (u,0) = (w,2) la - (2.9)
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, it follows that

| ®(u,v) = D(w,2) | a <O || (u,0) = (w, 2) |la

which imply that ® is a contraction .  Thus , there exists a unique mild solution of (
1.1)-(1.3). The proof is complete . O
To prove the next theorem we need the followings result .

Corollary 2 . 10 .  Assume that the assumptions in Theorem 2 . 9 are verified and
le t

u(-) be the mild s o lution of (1. 1)-(1.3). Suppose, furthermore , that there
ezists l?

such that

I ftzy) = f(say) | <UGlt—s|, tsel, zyeX

If (zo + q(u,v’),y0 + p(u,u’)) € D(A) x E, th en w'(-) is Lipschitz on 1. Proof .
Let t € I and h € R with t+ h € I.  Using that s — u(s) is Lipschitz on I
and that , for ¢t € I,

u'(t) = S(t)A(zo + q(u,u')) + C) (Y0 + p(u, u)) + /0 C(t = s)f(s,ul(s), u'(s))ds,

we obtain
h
| v (t+h)—d'(t)]] <Cih Jr/o | Ct+h—s)f(s,u(s),u'(s)) || ds
+N/0 [F | u(s+h)—u(s) | +F | ' (s+h) —u'(s) || +I}h]ds

t
gc2h+zw§/ | W' (s+h) —u'(s) | ds,
0

where C;,7 = 1,2, are constants independents of h and ¢ € I. The assertion is now
consequence of the Gronwall inequality . [ In what follows , for the function j : I — X
and h € R we use the notation

(t+h)—4()

Onj(t) == " (2.10)

Moreover , if j(-) : I x X — X is differentiable , we use the decomposition

](t+s,y+y1,w—|—w1) _j(t7y3w>
= (D1j(t,y, w), D2j(t, y, w), D3j(t, y,w))(s,yl,w1) (2.11)
+ || (Saylawl) || I'x X2R(j(t7y7w)787y17w1)7
where || R(j(t,y,w),s,y1,w1) || — Owhen || (s,21,y1) | I x X* =[s |+ [|a1 |+ [yl ] —0.
Theorem 2 . 1 1. Let assumptions in Corollary 2 . 1 0 be satisfied and u(-) be the
mald

solutionof (1.1)-(1.3). If (zo+q(u),y0"p(u)) € D(A) x E and any of
the following conditions ho ld :



(a)  The adjoint operator Ax: D(Ax) — X* is such that D(Ax)=X; (b)) The
space X has the RNP property ;

(¢) [ is continuously differentiable ,
then wu(-) is a classical s o lution of (1. 1)-(1.8).
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Proof.  Firstly we remark that from Corollary 2. 1 0 the function t — f(s,u(t), ' (t))
is Lipschitz on I. When (a ) or ( b ) are verified , the assertion follows using the steps in
the proof of Theorem 2 . 6 . Assume that condition ( ¢ ) holds and let v(-) € C(I : X)
be the unique solution of the integral problem

v(t) = C(t)A(zo + q(u, ) + AS()(y0 + p(u, u')) + f(0,u(0),u'(0))

+/0 C(t — s)D1 f(w(s))ds + /0 C(t — s)Daf(w(s))(u'(s))ds (2.12)

; C(t —s)Dsf(w(s))(v(s))ds, tel,

v(0) = A(zo + q(u, u')) + £(0,u(0),u'(0)), (2.13)

where £(t) = (t,u(t),u/(t)). The existence and uniqueness of a solution of (2. 12) -
(2.13) follows from the contraction mapping principle ; we omit additional details .
Next , we prove that u”(-) =v(-)onI. Letteland he€ Rwitht+hel. Since,

fort € I,
o' (t) = AS(t)(xo + q(u,u’)) + C(t)(y0 + p(u,u’) / C(t —s)f(s,u(s),u'(s))ds,

(2.14)from (2.12), we obatin

| Onu' (£) = v(2) ||

1 h
<)+ 7 / L C+h—s) | || f(s,u(s)u(s)) — F(0, u(0),e/(0)) | ds
N / | 91 (E(s)) — Drf(E(s)) — Daf(E(s))(t () — Daf(E())(w(s)) | ds
<72(h) + N / | Dsf(E()) | LX) | D' (s) — v(s) | ds

+N/ I (1, 0nu(s), O’ (s)) | I x X2 || R(f(E(5)), h, hdwuls), hopu'(s)) | ds,

where vi(h) — 0 as h — 0. It follows , from the Gronwall - Bellman inequality and
Corollary 2 . 1 0, that dpu’(-) — v(-) when h — 0 and so that u”(-) = v(-) on I.
From these remarks and Proposition 2. 4in [ 1 6 ] , we infer that the mild solution
y(-), of the abstract Cauchy problem

2 (t) = Az(t) + f(t,u(t),u'(t), tel,
z(0) =z + q(u,u’), (2.15)
'(0) = y0 + p(u, ),

is a classical solution , which from the uniqueness solution of ( 2. 15 ) permit conclude

that y(-) = u(-) and that u(-) is a classical solution of (1. 1)-(1. 3). The
proof is complete . [
3. THE WAVE EQUATION WITH NONLOCAL CONDITIONS
In this section we i llustrate some of the results of this work with the wave equa -
tion . On the space X = L?([0,7]) we consider the operator Af(£) = fr(&) with
domain D(A) = {f() € H?*O,7m) : f0) =f(m) = 0} It swel

known that A
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is the generator of strongly continuous cosine function (C(t))t € R on X. Further -
more , A has discrete spectrum , the eigenvalues are —n?,n € N, with corresponding
normalized eigenvectors z, (&) := (%)1/ 2 sin (n€) and the following conditions hold :
(a) {zn:n €N} isan orthonormal basis of X.
(b) IfgeD(A) then Ap = -3 n*<p,z, > 2.

(¢) Forpoe X, Clt)p= .2, cos(nt)<e,zy >z, Moreover, from

these expression , it follows that S(t)¢ = > ¢ sin(n) o 2, > 2,, that S(t) is

n=1 n

compact for every ¢t > 0 and that || C(¢) ||[< 1 and || S(¢) ||< 1 for every

t € [0,m].

(d) If G denotes the group of translations on X defined by G(¢)x(§) = £(§ + t),
where  is the extension of # with period 2w, then C(t) = 1(G(t) + G(—t)). Hence it
follows , see [ 9], that A = B2, where B is the infinitesimal generator of the group G
and that £ = {z € H'(0,7) : 2(0) = z(7) = 0}.

Now , we consider the boundary - value problem with nonlocal conditions

Pw(t,§) _ Pw(t,§)

R F(t, & w(t,€), tel=][0,n (3.1)
w(t,0) =w(t,m) =0, tel, (3.2)
w(0,6) = xo(&) + Y aw(t;,§), €, (3.3)
i=1
QOL _ o) + Y pivsne), €el (3.4)
k

where z0,y0 € X; F : I? x R — R is continuous and 0 < t;,s; < m,;,3; are
prefixed numbers . Under the previous conditions , the nonlocal differential problem (
3.1)-(3.4) can be modelled as the abstract nonlocal Cauchy problem

u(t) = Au(t) + f(t,u(t)), tel, 5)
u(0) = o + q(u), 6)
u'(0) = y0 + p(u), 7)

where f(t,2)(§) = F(t,&,z(§)),z € X, and p,q: C(I : X) — X are defined by

n k
q(W)(©) =D awulti, &), pu)(&) = Bi*(si,§), uweC(l:X).
i=1 i=1
Proposition 3 . 1. Assume that the previous conditions are verified and that th

ere exists a function n(-) € LY(I:L°°(I : R)) such that

|F(t,€,$1)—F(t,§,l‘2) ‘S 77(7575) | T1 — T2 |7 t,fEI,.’Ei eR.
If

i=1

1=1
@=Z|ai|+2\m|+/ n(s, )nds < 1,

™
k 0



then there exists a unique mild s o lution ,u(-), of (3.5)-(8.7). If in

addition xo+

Yo aiu(t;) € D(A) and y0+ Zle Bi%(s;) € E, then wu(-) is a classical s o lution .
For the proof of this proposition : the existence follows from Theorem 2 . 3 , and

the regularity assertion is consequence of Theorem 2 . 6 since X has the RNP property
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the nonlocal Cauchy problem

0 gi’; §_9 Igé’; O 4 P, wit,6), %’;’5)), tel, (3.8)
w(t,0) =w(t,m) =0, tel, (3.9)
w0, =20(©) + [ Quuis)(©ds, ¢, (3.10)

ow(0,¢) _ T 0w(s,-) B
L =+ [ P, cer (3.11)

where zg,y0 € X and P: X - X, @ :X — FE are Lipschitz continuous .  We
refer the reader to [ 1 2 ] for examples of operators with these properties . Under the
previous conditions , problem (3. 8 )- (3. 11 ) can be modelled as the abstract
nonlocal Cauchy problem

u’(t) = Au(t) + f(t,u(t),u'(t)), tel, (3.12)
w(0) = zo + q(u,u’), (3.13)
’U/(O) =y0+ p(uv u,)v (314)

where the substituting operators f : I x X — X and p,q: C(I : X)? — X are defined
by f(t,z)(&) = F(&,t,x(£)) and

puo) = [ PEE)E©Es and g = [ QO woe (s X),

Proposition 3 . 2. Assume that the fo | lowings conditions are satisfied .
(a) There exist a continuous function n: 13 — R such that
2

| F(t7£7xlax2) _F(87£7y17y2) |§ n(tvsvg)q t—s | +Z ‘ Ty _yl D
i=1
for every t s, €I,xz;,yi € R. (b)) There exist constants Lp,Lg such that

| Pz) =Pyl <Lplz-yl, zyeX,
Q) -QW) I1<Lolz-yl, zyeX

If ©=2(Lp+Lg)m+2 fow 7(s, s, )xds < 1, then there exist a unique mild s o lution ,
u(-), of (3.12)-(3.14). If (zo+q(u,u),y0+p(u,u')) € D(A) X E, th
en u(-) isa classical s o lution .
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