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OPTIMAL CONTROL OF COMBINED THERAPY IN A SINGLE
STRAIN HIV -1 MODEL
WINSTON GARIRA , SENELANI D . MUSEKWA |, TINEVIMBO SHIRI
ABSTRACT . Highly active antiretroviral therapy ( HAART ) is administered to
symptomatic human immunodeficiency virus ( HIV ) infected individuals to im -
prove their health . Various administration schemes are used to improve pa -
t ients ’ lives and at the same t ime suppressing development of drug resistance ,
reduce evolution of new viral strains , minimize serious side effects , improve pa -
t ient adherence and also reduce the costs of drugs . We deduce an optimal drug
administration scheme useful in improving patients ’ health especially in poor
resourced settings . In this paper we use the Pontryagin > s Maximum Principle
to derive optimal drug dosages based on a mathematical dynamical model .
We use methods of optimal control to determine optimal controls analytically ,
and then use the Runge - Kutta scheme of order four to numerically simulate
different therapy effects . We simulate the different effects of a drug regimen
composed of a protease inhibitor and a nucleoside reverse transcriptase in -
hibitor . Our results indicate that for highly toxic drugs , small dosage sizes
and allowing drug holidays make a profound impact in both improving the
quality of life and reducing economic costs of therapy . The results show that
for drugs with less toxicity , continuous therapy is beneficial .
1. INTRODUCTION
Recently , there has been a rollout of antiretroviral ( ARV ) therapies in many
countries around the world , but availability of ARVs in poor resourced settings is
a major concern .  The cost of these drugs is beyond reach of many infected pa - tients
, hence there is need to come up with a comprehensive drug administration scheme that
makes a significant impact in conferring clinical benefits and cost ef - fectiveness .  Clinical
benefits of drug therapy for HIV infected individuals include restoration of CD 4+ T cells
levels , suppressing viral levels below detection limits
and minimizing detrimental side effects such as risk of cardiovascular , acute retrovi - ral
syndrome , fat loss , lactic acidosis , abnormal fat distribution and mitochondrial
damage [ 3] . There are more than twenty anti - HIV - 1 drugs available and these are
administered in many different combinations of three or four drugs . The drugs fall into
three main categories , that is , reverse transcriptase inhibitors ( RTIs ) ( nucleo -
side , nucleotide and nonnucleoside ) , protease inhibitors ( PIs ) and fusion inhibitors
(FIs) . RTTs prevent new HIV - 1 infections by disrupting the conversion of viral
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RNA into DNA that can be incorporated into the host cell s genome . PIs function by
preventing the assembly of key viral proteins after they have been mistakenly produced by

infected host cells [1 5] .  FIs function by preventing the fusion of the

virus and the host cells . HAART consists of combined drug regimens that in - cludes
two or three nucleoside agents alone or two nucleoside agents combined with a protease
inhibitor or a nonnucleoside reverse trancriptase inhibitor [3]. Exam -

ples of such regimen combinations include EFV ( Efavirenz ) + (3 TC ( Lamivudine )

or FTC ( Emtricitabine )) + ( AZT ( Zidovudine ) or TDF ( Tenofovir Disoproxil Fu -
marate ) ) , a combination of a nonnucleoside reverse transcriptase inhibitor ( EFV )

and two nucleoside reverse transcriptase inhibitors ( 3 TC or FTC and AZT ) and

LPV / r ( Lopinavir ) + (3 TC or FTC )+ AZT , a combination of a protease inhibitor
(LPV / r ) and two nucleoside reverse trancriptase inhibitors ( 3 TC or FTC and AZT
) and other options that are selected by government agencies , although these options are
limited by generic formulations [ 7].  In this paper we explore the effects of a combination
of a protease inhibitor and a nucleoside reverse transcriptase inhibitor , that is , we only
look at effects of two types of drugs that are used in a HAART regimen .  Suppression
of viremia to less than detection limits or maintenance of even partial viremic suppression
by selection of an optimal regimen remains the goal of therapy . The ultimate goal is
to prevent further immune deterioration . The new chemotherapies offer added dosing
convenience and improved safety profiles . Various chemotherapies for patients with HIV
- 1 are being examined to determine the optimal scheme for treatment [ 6 ] .

The primary attention of this paper is to establish when and how treatment should be
initiated , dosage size and means to continue clinical benefit in the face of challenges like
antiretroviral drug failure and antiretroviral resistances .  The optimal controls in this
paper represent percentage effects chemotherapies have on the interaction of the CD 4+
T cells with the virus ( infection of CD 4+ T cells )
and the virions produced by infected cells ( burst size ) . Chemotherapy has side effects if
administered in high dosage sizes or continuously , therefore the length of treatment is a
limited time frame .  The interval of treatment is necessary since a plausible assumption
is made that chemotherapy only has a certain designated time for allowable treatment |
10];[6]. After some finite t ime frame , HIV - 1 is able to build up resistance to
the treatment due to its mutation ability .  Therefore , in this paper we fix the length of
treatment .  In this paper we need to determine optimal methodology for administering
anti - viral medication therapies to fight HIV - 1 infection . The main reasons for such an
optimal therapy are minimization of drug toxicity or systemic cost , maximization of CD
4+ T cell count and minimize cost of drugs .

Optimal control methods have been applied to the derivation of optimal therapies for
HIV infection . Butler et al. [4] and Fister etal. [ 11] explored
an optimal chemotherapy strategy using Pontryagin ’ s Maximum Principle , with a single
control that represents the percentage effect it has on viral infectivity ( simulating a drug
such as AZT  ( zidovudine ) ) using dynamical HIV models .  Kirschner et al . [
1 0] used an existing model which describes the interaction of the immune system with
HIV . In Kirschner et al. [ 1 0] the authors used a single control representing the
percentage effect chemotherapy has on viral production ( simulating effects of a
protease inhibitor ) . Kutch and Gufil [ 1 5 | investigated the reasons underlying the
development of drug - insensitive HIV - strains , and demonstrated that optimal drug
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administration may be useful in increasing patient health by delaying the emergence of
drug - resistant mutant viral strains . Kutch and Gufil [15] used two controls
representing the percentage effect chemotherapy has on CD 4+ T cells infection and viral
production and also incorporated drug efficacy .  In the study by Kutch and Gufil [ 1 5 ]
, an alternative approach to Pontryagin ’ s Maximum Principle was adopted , that involves
converting the st andard optimal control problem into a parameter optimization problem
by discretizing the control input vector .  An HIV immune dynamics model with three
viral strains was used . Joshi [ 8 ] explored optimal control
of an ordinary differential equation model taken from [ 1 1] . In the paper [ 8 ],
Joshi considered two controls , one boosting the immune system and the other delaying
HIV progression . The novel part of our work is that we explore optimal control of
chemotherapy using an HIV dynamical model that incorporates explicit cellular immune
response ( lytic mechanism and two non - lytic mechanisms ) . We use two controls , one
simulating effect of RTIs and the other control simulating effect of PIs , incorporating
drug efficacy .  The paper is structured as follows :  Firstly in section 2 we formulate
a model of HIV immune dynamics , with explicit immune response ( lytic and non - lytic
components ) . The model mimics virus and CD 4+ T cells dynamics in an infected
individual . 'We modify the model to capture the effects of combined therapy and derive
an optimal control problem with an objective functional that maximizes CD 4+ T cells
and minimizes systemic costs .  In section 3 we prove the existence of an optimal control
pair and characterize the control pair in section 4 .  In section 5 we state the optimality
system , which is the state system coupled with the adjoint system . In section 6 , we
prove the uniqueness of the optimality system and we present numerical illustrations for
the optimality system in section 7 . We make some concluding remarks in section 8 .
2. THE MODEL

Let T denote the population density of uninfected CD 4+ T cells ,7* the density of
infected CD 4+ T cells , V the density of free viral particles and C' the density of HIV -
1 specific cytotoxic T lymphocytes ( CTLs ) . The rate of change of each of these is
governed by a first order differential equation .T" cell dynamics are governed by proliferation
due to virus presence , apoptosis , natural death and thymus supply and viral infectivity
inhibited by CTL chemokines . For T' the equation is

dr(t) _ TV

KV (£)T(t)
dt By + V(1) B

= e COBVOTH) — uT" () - 7

(2.1)

Here the first term on the right - hand side , s1, represents the source of new CD 4+ T cells
from the thymus [ 9 ] . This is followed by the proliferation term of CD 44 T cells in the
presence of the virus : 7 is the proliferation rate and By is a parameter that determines
the amount of antigen needed to generate half maximal stimulation [ 9 | . The third term
describes the infection of CD 4+ T cells by the virus . The presence of CTLs that release
chemokines , such as f— chemokines that block the entry of certain virions into target
cells [16];[12], prevent infection of new cells by a factor

e~ effectiveness of CTLs ) , where ag is the efficiency of each CTL in reducing CD
4+ T cells infection .  The hypothesis is that reduction of infection of CD 4+ T cells is
enhanced by the number of HIV - specific CTLs available .  The idea goes as

follows :  as C' — 00, e~ %% — 0 meaning that the availability of large quantities of CTLs
reduce the rate of infection of CD 44 T cells .  The extent of reduction depends on the
effectiveness of CTLs (e=%¢).  Conversely as C' — 0,e~%¢ — 1
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meaning that for low CTL count or zero CTL , the infection rate of CD 4+ T cells by virus
is slightly reduced or not reduced at all .  The effectiveness value of CTLs ranges from 0
to 1 . We assume that reduction in infection rate has an exponential effect .  Here 3 is
the rate of infection of CD 4+ T cells by the virus .  The fourth term is a natural death
term , since cells have a finite life span .  On average the
life span is 1/uT.  The last term represents the destruction of CD 4+ T cells by the
influence of toxic viral proteins .  The idea is as follows :  The parameter k is the rate
of apoptosis . There is a limit to the rate of T cell mortality due to the induction of
apoptosis .  The limit is a function of variables such as presentation
of HIV - 1 Env gp 1 20 / gp 4 1, receptors involved ( especially chemokines CCR 5 and
CXCR 4 ) and the complexity of target cell contact [ 1] .  In other words , there is a
saturation effect in which the virus can only present itself to so many T cells even when
the CD 44 T cell population is low .  Conversely , there is an increase in the effect of
apoptosis at low CD 4+ T cell densities .  If T cell density is low , there are more virions
per cell and this could lead to higher engagement of apoptosis receptors .  On the other
hand , if the T cell density is high , there are less virions per cell therefore the chances
of virus presentation decreases . Thus presentation exhibits this switching phenomenon
and it is this behaviour which is represented
by the Hollings Type II function [ 1 3 ] . The importance of the parameter By, is that it
determines the scale at which engagement of apoptosis receptors begins to take effect .
The rate of change of the infected CD 4+ T cells is governed by the equation

dT™* (¢
% = e~ 0COBY (H)T(t) — aT*(t) — hT*(t)C(t). (2.2)
The first term on the right - hand side is a gain term for infected cells . The third

term is a direct killing of virus infected cells through perforin - granzyme and Fas - FasL
pathways . Infected cells are lysed by CTLs at a rate h[14]. Infected cells are also lost
by cytopathic effect of virus and natural death such that they have a finite life span that
averages 1/a.

The third equation of the system

v (t)

— = NaT" (e W — uv¥ (1), (2.3)

describes the rate of change of viral load . The first term on the right - hand side
explains the source of the virus .  Virions are released by a burst of infected cells [9 ],
where an average of N viral particles are released per infected cell . Na« is the average
rate of virus production per productively infected cell . CTLs release cytokines such as
interferon —y( INF —+) that can suppress the rate of virus production by virus infected
cells [2]; [18]. Therefore, they reduce viral burst by a factor of

e~"% where a; is the rate at which each CTL suppresses virus production . The
last term describes natural loss of viral particles .

The fourth equation

dC'(t

00 — oy 1 s V() - nCE (1), (2.4
describes the dynamics of CTLs during HIV - 1 infection . Naive CD 84 T cells differ -
entiate into CTLs when stimulated by helper cells ( CD 4+ T Cells ) . HIV - 1 specific
CTLs decline with increased disease and decreased CD 4+ T cell numbers , which means
that the CTL population proliferation depends on the stimulation of CD 4+
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T cells . High numbers of CTLs are associated with low virus titers at equilib - rium
and loss of CTLs results in an increase in viral load .  The first term on the
right - hand side , sy models the production rate of HIV specific CD 8+ T cells from pre -
cursors [ 1 4 ] and the second term accounts for the differentiation of naive CD 8+ T cells
into CTLs in response to HIV . Differentiation of CD 8+ T cells depends on the help of
CD 4+ T cells present where p0 is the rate of the process . Wodarz and Nowak [ 20 | used
a similar term to model the proliferation of HIV specific CTLs .
CTLs are cleared at a rate uC, a blanket term for death ( natural and apoptotic ) .

The model of HIV immune dynamics given by equations (2. 1),(2.2),(2.3)
and
(2. 4) has two steady states in the presence of immune response .  The first steady
state is the uninfected state given by

— = = S92 )

a S
.= Tiw=0. Vin=0, Cun= 7.

If infection persists the system converges to a second steady state , an immune controlled
equilibrium given by :

T 1V (o + hCip)elaota)in B ,uVe c - _ 9
e Naf m T Na

~uC —pTinVin’
and

(514 (r = uT)Tin — BBTpemaim — 2o
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k,fin T e—aoém By,T -
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The virus reproductive number , Ry which is the number of newly infected cells that arise
from any one infected cell when almost all cells are uninfected , is given by

NBasie~(@+a)i,
— uVpT (e + hCup)

Ry

where C,,,, = 5—20 The reproductive number is governed by several factors including
the efficiency with which HIV infects CD 4+ T cells , 5( infectivity constant ) , number
of virions produced by one infected cell ( burst size, N, rate of virion clearance from the
body, uV, death rate of uninfected CD 4+ T cells, pT, CD 4+ T cells production
rate , s1, effectiveness of CTLs in reducing infection and reducing burst
size (e*(“”‘“)fn), the effect of CTLs in killing virally infected cells , hC,,, and the the
cytopathic effect of the virus ,a.  Determination of stability of equilibrium states give us
the following results : if Ry < 1, uninfected equilibrium st ate is asymptotically
stable , that is , infection is abortive . If Ry > 1, the uninfected state is unstable and it
converges to an immune controlled equilibrium st ate that is lo cally asymptotically stable
The virus will spread after infection and the abundance of uninfected cells , infected
cells , free viruses and CTLs is given by equations in Tm’
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T{:zvm and Cj, respectively . If Ry = 1 the uninfected state and the infected state
coincide . If Ry > 1 infection persists , then it will eventually leads to the acquired
immune deficiency syndrome ( AIDS ) st age , associated with a weakened immune
system which has difficulty fighting off opportunistic infections [1 9] . It is at this stage
when therapy is initiated to boost the health of infected individuals .

After initiation of combined chemotherapy , combination of RTTs and PIs , infec -
tion rate of CD 4+ T cells is reduced and the number of viral particles produced by an
actively infected CD 44 T cell is reduced .  If we let ugr;(t) represent the normalized
RTT dosage as a function of time , then 5 will be modified to become
(1 — Yupri(t))B where 2 models drug efficacy [ 15 ] ) and it is meant to take into
account the effectiveness of the delivery . If we also let up;(t) be the normalized
PI dosage , then the parameter N will be modified to become (1 — Jup;(t))N[15].

Hence the state system becomes

dzit) maT m —- %“RTI(ﬂ)ﬂe*%C(”v(t)T(t)
KV (£)T(t)
0~ BT
dT;t(t> == %“RTI(”W@_%C(”V(t)T(t) —aT*(t) — KT (B)C()  (2.5)
%it) =(1- %Upj(t))]\[efalc(t)oﬂ, % () — ,UVV(t)
dC(t)

o =52 0T (OV(C() = pC(1).
The controls urr(t) and upy(t) represent the action of RTI ( viral infectivity re - duction

) and PI ( viral replication suppression ) drugs respectively . The objective functional is
defined as

Ay

J(’U,RT[,’LLPI) = /0 f[T(t) — (TRTIg(t) + A2

7Plﬁ(t))]dt (2.6)
where T'(t) is the benefit based on CD 4+ T cells and the other terms are systemic costs
of the drug treatments .  The benefit of treatment is based on an increase of CD 4+ T
cells and systemic costs of drugs are minimized . The positive constants

Ay and Aj represent desired weight on the benefit and cost , and RTI2, PI? reflect

the severity of the side effects of the drugs [ 8 ] . The cost function is assumed to be
nonlinear , basing on the fact that there is no linear relationship between the effects of
treatment on CD 4+ T cells or viral load hence the choice of a quadratic cost function [ 1
0]. We impose a condition for treatment time ,¢ € [0, 7], limited

treatment window [ 4 | , that monitors global effects of these phenomena ; treatment lasts
for a given period of time because HIV can mutate and develop resistance to treatment
after some finite time frame and in addition treatment has potentially harmful side effects
, and these side effects increase with duration of treatment . The time ¢ = 0 is the time
when treatment is initiated and time ¢ = T} is the time when

treatment is stopped .  The main objective is to maximize the benefit based on the CD
44 T cell count ( increase in quality of life ) and the systemic cost based on

the percentage effect of the chemotherapy given ( RTTs and PIs ) is being minimized

( toxic side effects being avoided as much as possible and not causing patient death ) .
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control pair ,u*RTI,u*PI such that

J(U*RTI,U*PI) = maX{J(uRT[,Up]) | (URTIaUPI) € U} (27)
where

U = {(urrr,upr), urrr, uprmeasurable,0 < a;; < uppr < by <1
and0 < agy < upr < byy < 1}

is the control set where ¢ € [0, T%].
The basic framework of this problem is to characterize the optimal control and
prove the existence of the optimal control and uniqueness of the optimality system .
3. EXISTENCE OF AN OPTIMAL CONTROL PAIR
The existence of the optimal control pair can be obtained using a result by Joshi
[8], Fister e t al . [ 6], and other references quoted therein . Theorem 3 . 1 .
Given the o bjective functional

Ay

Ty
J(ugrr,upr) = /0 [T(t) - (?RTIZ@) + %Pli(t))]dt

where U = {(ugri(t),upr(t)), piecewise continuous such that 0 < a1; < uprr(t) <
b1 < 1,0<agpe <upi(t) <byp < 1} forall te [0,Tf] subject to
equations of system (2.5) with T(0) =Ty, T*(0) =T,V (0) =Vy and C(0) = Cy,

then th ere exists an optimal control pair uw*RTI,u*PI such that

max{J(urrr,upr) | (urrr,upr) € U} = J(upprupr)

if the following conditions are met :

(1) The class of al l initial conditions with an optimal control pair ugrr,upr in

the admissible control s e t along with each s tate equation being satisfied
s not empty .
(2) The admissible control s e t U is clos ed and convex .

(3) Each right hand s ide of equations of system ( 2. 5 ) is continuous , is bounded
above by a sum of th e bounded control and the state , and can be written as a lin ear
function of an optimal control pair wgryr,upr with coefficients depending on time and th
e s tate .

(4) The integrand J(ugrr,upr) is concave .

(5) Theintegrand J(ugrrr,upr) is bounded a bove by Co—Ci(| urrs |* + | upr |?)
with Cyp > 0.

Proof . Our definition of the control set satisfies conditions 1 and 2 . For the model
to be realistic , we impose the restrictions that CD 44 T cells and CD 8+ T cells do not
grow unbounded , so we use T'(t) < Tmax and C(t) < Cpax where Thax and Ciax are the
maximum numbers of CD 4+ T cells and CD 8+ T cells that can be found in an individual
respectively . Using T(t) < Tax and C(t) < Chpax, upper

bounds on the solutions of system (2. 5 ) are found .

dT*
dt
where B > 07 Tma,x >0and 0 < e_aocmax < 1.

— Be*aoCmaxTV

max’

7°(0) =T,

av -
T Nae™@CmaxT* V(0) =T,
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where N > 0,a > 0 and 0 < e”®Cmax < 1. Since this system is linear in finite
time with bounded coefficients , then the supersolutions T* and V are uniformly
bounded . Since our state system is bilinear in ugr; and upy, the right hand side
of equations of system ( 2. 5 ) satisfies condition 3 .
The right hand side of system ( 2 . 5 ) is continuous and it can be written as :
£ (4T ,u)=alt, T )+1( T )u
and the boundedness of solutions gives
[f & T ,u )|<Ci(1+|T |+]u |)for0<t<T;where T €R* u € R? where T
= (T, T*,V,C) andu = (URTLUPI))
and C7 depends on the coefficients of the system .
The vectors o and « are vector - valued functions of T . In order to verify the

convexity of the integrand of our objective functional , J we show that

J T ,(1—-€u +ev )>(1—-¢J T ,u )+eJ (¢, T ,v ) (3.1)for
O<e<landJ (t, T ,u )=T— (4 RTI? + 22u3,)).

J @t T ,(1—-€u +ev )

= - 2N - Qunrs + cwnrn)? — 2 - ups + evpr)]
=T - é[RTI2 — 2eup € RTI? 4+ 2(1 — €)uprrevrrr + €vhy;)
_4s 5 [PIL = 2¢PI + €PI + 2(1 — euprevpr + €vp]
=T (AlRTI2 /;21&31)
‘zl [(€2 — 2¢)RTI? + €2RTI? + 2¢(1 — €)urrvrri)
’422 [(€2 — 2¢)PI? 4+ €2 PI? + 2¢(1 — €)uprvpy).
1—-€¢J T ,u)+edJ T ,v )
= (1o~ (LRI + S2u )]+ o7 — (GLRTE 4 203)]
=T (A1 RTI? + %u%l) — €T — (A1 RTI? + %u@)} (3.2)
+e[T - (AlRTIQ + %UI%I)}
—T— (A1 RTI? + ’22 u;) — %(—AIRTL% — AyPI% + A RTI? + Asv3)).

Thus to show that J (¢, T ,. ) is concave in U, we note that the following inequality
holds

A
?1[(62 — QG)RTli + 62RT[3 + 26(1 - G)URT[URTI]

v =

+2[(? — 2€) PIZ + 2 PI? + 2¢(1 — €)upvpy] (3.3)

(=A1RTIZ — AyPI2 + A1RTIZ + Asv?).

l\D\m
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A A A
71623T13 — A1eRTI? + 7162RT13 + Are(1 — €)uprrvpr + ?2621313 — AgePI?

A A A A A,
+7162P112, + Age(1 — uprops + %eRTIZ + 72 ePI? — ZLeRTI? - S ePI? <0.

Finally this gives

A1 A2
SHE = O(RTIE + vhry) + 2 = (PI +vy)

+e(1 — €)(Arurrrvrrr + Asuprvpr) <0,

which is equivalent to

A
21 (€2 — )(RTI: + vhyr) + (€ — €)AvurrvrTs

A
+72(62 — €)(PI? +v%;) + (e — €2) Aquprvpr <0

which can be written as

Ay
24,
- 2 o 3.4
2 ((\/\/(1 ) RTL | Yupy VAT (RTIHPI)) N ( )
This holds since A7, A > 0, hence equation 3 . 1 holds . Finally we need to show

that J (t, T ,u )<Cy—Ci|u |7, WhereC’1>Oand5>1 For our case
J T ,u)=T-(BRTI}+22u},)<Cy—C |u |?
where Cy depends on the upper bound on CD 4+ T cells , T, and C; > 0 since A1, Ay > 0.
We conclude that there exists an optimal control pair . O
4. CHARACTERIZATION

Since there exists an optimal control pair for maximizing the functional , equation ( 2
. 6 ), subject to system ( 2. 5 ) we derive necessary conditions on the optimal control
pair [ 6 | . We discuss the theorem that relates to the characterization of the optimal
control . In order to derive the necessary conditions for this optimal control pair , we
use Pontryagin > s Maximum Principle [ 1 3 | . The Lagrangian is defined as

o Al A2 2 TT(t)V(t)
L="T(t) = (5 RTL(t) + L PI(1) + Alst + m
o it gy WVOTR)!

(1 27¢L1~3T1(15))Be V()T(t) — pI™ (t) - Br +T(t)

FAl(1 = Suprs(t)Be COV)T(L) — aT* (1) — KT (£)C(1)]

2
FXsl(1 = Supr )N 1 (o = (1) — uV ()]
il + 0T (OV(HO() — (1)
+w11(t)(b11 — urrr(t)) + wia(t)(urrr(t) — ai)

+wa1 (1) (bae — upr(t)) + waa(t)(upr(t) — aze),
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where w11(t) > 0, wi2(t) > 0, wei(t) > 0, waa(t) > 0 are penalty
multipliers satisfying w11 (¢)(b11 — urrr(t)) = 0, wia(t)(ugprr(t) —a11) = 0 at
the optimal w*RT'I, and wa (t)(baz — upr(t)) = 0, w2 (t)(upr(t) — azz) = 0 at the optimal
u*PlI.

Theorem 4 . 1. Given a pair of optimal controls uw*RTI,u*PI and s o lutio ns
T,7V,.C
of th e co rresponding s tate system (2.5), th ere exists adjoint variables \; for

i=1,2,3,4 satisfying th e following canonical equations

d\, 0L
dt oT
_ rV(t) 1 CaoClt kV(t)By
=i )\l(m —(- §“RTI(t)>Be “ )V(t) —puI — m
—[a((1 - %um(t))ﬁe‘%c“)vu)) + Aap0Y (H)C(t)]
% = —fﬁ* = —[Aa(—a = hC(t)) + As((1 - %Upj(t))Ne_alc(t)a)]
d\s OL
dt oV
B rT(t) By 1 el kT(t)
= (g e — (U guen )BT - Z =)
—[Aa((1 - %URTI(t))BB_aOC(t)T(t)) — AspV]
d\, 0L
dt aC

= ~Dafao(1 — Jurrs(t)fe COVOT()
+halao(1 = Sunri () COVET() + T (1)
Hda(on(1 = gupr(O)Ne™ 1€ (War = (1) = MO (OV (1) — 5]

with transversality conditions \;(Ty) =0 for i =1,2,3,4.  Further th e following
characterization ho lds :

1

oA (A1 — A2)Be™COV(OT (1)} by},

u*RT1(t) = min{max{a1,

—)3
—ENe 1% (t)0r * (1)}, b

24, € (t)ar * (1)}, baz}.

Proof . The form of the adjoint equations and transversality conditions are stan -
dard results from Pontryagin > s Maximum Principle [ 8 ] ; therefore , solutions to the adjoint
system exists and are bounded . To determine the interior maximum of our Lagrangian ,
we take the partial derivatives of L with respect to urr; and upy and set it equal to zero
. Thus

u* PI(t) = min{max{ass,



oL o * A1 —agC A2 —a
e —Aufpy(t) + 756 OV H)T(t) - 756 COV )T (t)
—wu(t) + wu(t) =0 Qu*RTI.
OL A3

Bupr —Asu*PI(t) — ?Nefalc(t)aT % (1) — wor(t) + waa(t) =0 @u*PI.
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cation , we obtain

Qaz22) go—a0COV (1) T(t) — wyy () + wia(t)
Ay
_T)\?’Ne_alc(t)(ﬂ“ * (t) — ’LUQl(t) + wzg(t)
Ao

w*RTI(t) =

wPI(t) =

4.1. Case u*RTI.

( 1 ) On the set {t | a1; < U*RTI(t) < bll},wu(t) = ’11)12(15) =0. From ( 4.1 ) we

have

()\1 — )\Q)ﬁeiaoc(t)V(t)T(t)
24,
(2) Onthe set {t| uw*RTI(t) = a1}, w11(¢t) = 0. Consequently ,

w*RTI(t) =

(A1 = A2)Be= 0OV ()T (t) + w1z (1)

u RTI(t) = a1 = 2A1 Al

or

(A1 — A2)Be=0COV ()T (1)
24,
(3) On theset {t|u*RTI(t) =b11},wi2(t) = 0. Consequently ,

< ay1, sincewia(t) > 0.

x A — A2)Be”COVT(t)  wiy(t
uRTI(t):bH:( 1= ) oA T () zl()

or

(A1 = Xo) e 0 COV (T ()
24,

Combining all the three cases in a compact form gives

> by1, sincews(t) > 0.

W RTI(t) = min{max{as, i(/\l — )BeCOV (Tt} by ).
1

4.2. Case u*PI.

( 1 ) On the set {t | a9 < U*Pl(t) < 522},11}21 (t) = ’wgg(t) =0. From ( 4 .

) we
have
7)\3N€7a].c(t)aT * (t)
24, .
(2) On theset {t|u*PI(t) = age}, w1 (t) = 0. Consequently ,

W PI(t) =

B AgN@ialc(t)aT * (t) 4 ’U.)Qg(t)

UPI(t):aQQ: 2A2 A2

or

~ ANe “19()ar * (1)
24,
(3) On the set {t| u*PI(t) = baa}, waa(t) = 0. Consequently ,

< agg, sincewss(t) > 0.

2



B AgNeialc(t)aT * (t) _ w21(t)

U*Pl(t) = bzg = 2A2 A2

or

A3Ne 1% () or * (1)
24,

> boo, sincewss (t) > 0.
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cases in compact form gives

3N€7alc(t)aT * (t)}, b22}.

u* PI(t) = min{max{ass, 94,

]

5. OPTIMALITY SYSTEM
Incorporating the presentation of the optimal treatment controls , we have the
state system coupled with the adjoint system .

are) _ o rTOVE) g WVOT)

dt YT By V) M (Br +T(t))
(- %min{max{au, i“l —A2)Be COV )T (6)}, b1y })
x Be” 0OV ()T ()
dT;t(t) — (- %min{max{au, i“l — A)Be COVT(0)}, by })
xBe” 0 OV ()T (t) — aT*(t) — hT(t)C(t)
%it) =(1- %min{max{agg, ;—ije_alc(t)aT % ()}, b22})
XNe 1 (t)or * (t) — pVV ()
W) sy 400" OV (OE) ~ O (1)

d PV (t) kV (t)Br
o - Al(m —puT - m) — Aap0< () V(1)
a1 — %min{max{all, iul — A2)Be OV )T (#)}, b1 })
xBe”0COV (1)
—Xo((1— %min{max{an, 2171@1 — Xo)Be”COV (T (1)}, b11})
xBe MV (1))
% = Ay(a + hC(t))
—A3(1— %min{max{agg, %Ne_“lc(t)aT % (1)}, baz })Ne 1€ ()4

drg rT(t)By kT(t) )
@ - B ver  Brre MY
1 . 1

+A1(1— 3 min{max{a, 2—141(%1 — A2)
% Be=COV ()T (£)}, by YBe~COT(¢))
(1 - %min{max{alh ﬁ(h —A2)Be O COV )T (6)}, b1y })

x e OT(t)) — Xap0T (H)C(t)
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dX 1. 1 _a
— = —M(ao(l — 5 min{max{ay, s (1 = de)Be COVIOT(0)}, b
x Be” 0OV (1) T(t)
1 1
+/\2(a0(1 — 5 min{max{an, ﬁ(/\l — )\g)ﬂeiagc(t)V(t)T(t)}, bll}
1

1 -
+>\3(CL1(1 — 5 min{max{aQQ, T;Neialc(t)a'f * (t)}, bgg}

withT'(0) = T, T*(0) = T§, V(0) = Vi, C(0) = Co, Ai(T}) = Ofori = 1,2, 3, 4.

6. UNIQUENESS OF THE OPTIMALITY SYSTEM

Since the state system moves forward in time and the adjoint system moves backward
in time , we have a challenge with uniqueness .  To prove uniqueness of solutions of the
optimality system for the small time interval , we use the following theorems [ 8 ] .
Theorem 6 . 1 . The function u*(c) = min ( max (¢, a),b) is Lipschitz continuous
in ¢, where a < b are s ome fixed positive constants .
Proof . Consider ¢y, cg real numbers and a, b as fixed positive constants . We will
show that the Lipschitz continuity holds in all possible cases for max (¢, a). Similar
arguments hold for min ( max (¢, a),b) as well .

(1) ¢1 >a,c0>a: |max(ecp,a) — max(ea,a) |=|cp —ea | .

(2) ¢ >a,c0<a: |max(ci,a)—max(ce,a)|=|c1—al|<| e — e
(3) ¢ <a,co>a: |max(ci,a) —max(ce,a) |=|a—co|<| 1 — e
(4) c¢1 <a,ea<a: |max(cr,a) —max(ca,a)|=la—a|=0<|c1 —ca |

Hence | max (c1,a)— max (c2,a) |<| ¢; — ¢2 | and we have Lipschitz continuity of u*

inc. O
Theorem 6. 2. For sufficiently small final time (Ty), bounded s o lutions
to the optimality system , 5 . 1, are unique .

Proof . Suppose (T, T*,V,C, A1, A2, A3, Ay) and (T, T’*VC’/_\LXQ;\&S\AL) are two different
solutions of our optimality system (5. 1) . Let T =e™p, T* = e™p*,

V o= Mg, C = Mz, A = e ™w, A = e ™z A3 = e Mo,

andT = ™'pT* = emtﬁj‘ V=e™g C=ez M\ =e ™w

A3 = e ™y Ay = e~™'y where m > 0 is chosen . Further we let
* . 1 —age™tx
uw*RT1(t) = min{max{a1, A (w— z)Be™%¢" Tpq}, b1},
1
- N —m
u*PI(t) = min{max{ass, AT eare tzvp*}, baa}
245
and

@*RTI1(t) = min{max{a1, (w— 2)561;,7“0&%“2}, b11},

L
24,
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N —mt -
a*PI(t) :min{max{azg, o, € Tk}, baot.

For the first equation of system (5. 1) we substitute T = e™!p and get

mt TBthp ae™'x _2mt 1 —ape™'w _2mt *
(p+mp):81+m—,8 e pq+§ﬂe e PAURTT
_MTenlt . k€2mtpq
Br +emip
and for T = e™p we have
) 2mtpq 9 5
mt(ﬁerﬁ) =5 + W 75671108 tz mt—q+ 56*0006 ‘'z mtﬁqu* T
ke 2mtpq
B L S o
I p BT + emt -

Subtracting the expression for T from the expression for 7' we have

(»—p) +m(p—p)

—ao e'rnt‘,i)

Pq — €55

G )
_ .,mt pq _ pq _ mt(, —ape™ x
re BV + enLtq BV + emtq 56 (6
1 m mi
+§5emt(eiaoe tw“}T}Pq — Canos tx*ﬁ@)

pemi(— P4 P )
Br +emp  Br+emtp

—uT(p—p) —

Multiplying by (p — p) and integrating from ¢ = 0 to ¢t = T} we have

Ty
30— +m [ prar

T DG ) Ty
mt pq pq _ N2
=T e - —p)dt — uT —p)°dt

/O (BV + emtq BV + emtq (p p) K /0 (p p)

Tf mt
—,8/ et (em " Tpg — ey aoe™ z)(p p)dt (6.1)
0

Ty __
Pq pq _

—k mt _ o dt
/ c (BT +emtp  Bp+ emtp)(p P)

pq RTI

0
6/ mt —aoe punTI oe""ta’:*)(p —ﬁ)dt

—mt —mt

Similarly for A\; = e”™w and A\; = e”™'w we have
rwge™

— 4+ mw = ™ —F————
By +e™mtq

mt ]_ mt
- ¢ - t
— whge” W Tt 4+ Qﬂwe 0T M qu

kquTemt
(Br +em'p)?

m 1 m m
+Bzqe™*0¢ fwemt _ 552’6_@06 twemtunTI — ypO””Ze tq

w_



and

—1 + mab
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rwge™ m
— emt + BV f emtq _ Bwqe_aoe tz mt 4 ﬂwe—age xemtqu* T ,UT
kBre™wg

mt - 1 i B )
_m + BZge” ¢ tggemt _ iﬁge—aoe tzemtunTI _ pozjlzemtcj

respectively . Subtracting the expression for A;  from the expression for A\;  and
multiplying by (w — w) and integrating from ¢ = 0 to ¢t = Ty we have

Ty
+5/ e (e 5 — e aoe z)(w —w)dt — MT/ (w — w)*dt
0

5 Tr mt/ —age™x ape™ T % —
=) e™ (e 2quRprr — ezqRTI Y (w — w)dt
0

Tf B
—p0 / e (yzq — ") (w — w)dt
0

Tf w — — )
q wq _\2
—kB et — w — w)“dt.
T/O ((BT + emtp)2 (BT + emtﬁ)2 ( )
Similarly , the equations for T* and f*V and XZC and C7A2 and 5\27)\3 and 5\3,/\4 and M4 are
subtracted , then each expression is multiplied by an appropriate function and integrated
fromt =0tot="1T;. We obtain eight integral equations

and we use estimates to obtain the result . Several terms are estimated in these
eight equations . For example the third term on the right - hand side of equation 6 . 1
Ty __ )
bq pq _
k emt — —p)dt
/0 (B ot > " Brt o (»—p)

Ty
< Crem /O ((p—p)* + (¢ — 9)*)dt,

utilizes upper bounds on the solutions . Other estimates can be presented by utiliz - ing
upper bounds on solutions . They involve separating terms that involve squares , powers
, several multiplied terms , and quotients . Also using Theorem 6 . 1 we have

| w*RTI(t) — @*RTI(t) |

ﬂ —age™tx —ape™ T —

< Ek pq(w — 2) — ez; (w — z)|
6 —a, E a, 6 (1? —a 6 a € w
< E (6 0 pqw - eﬁqu? ) - (6 0 pqz - epq’o )|

and

(XN mt
| W PI(E) = @ PI(t) |< S le™ ™ Fup” — e x|
2
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integral equations are combined .  Adding all the eight
estimates gives

S0 = DT + 50 =D (T)) + 50— D*(T) +
5w = @)(0) + (= = 2%(0) + 3 (0~ D)*(0)

Ty
+m/0 [(p—p)*+ (" —*p)* + (¢ — §)° + (. — 2)* + (w — w)?
+(z =22+ (v —0)" + (y — §)*)dt

T 9 2 2 2
< (C1+¢5mm / [(p=D)"+ (" —*p)"+ (¢ — )" + (z —z)7)dt
on

+/O [(w—w)?+ (2= 2)*+ (v —0)? + (y — §)*]dt.

Thus from the above expression , using the non - negativity of the variable expressions
evaluated at the initial and the final time and simplifying , the inequality is reduced to

Ty
(m—Cy — 03””%/0 (p=D°+ @ =)+ (@—0°+ (= —2)°+ (w—w)?

=22+ (w—0)>*+(y—9)3dt <0

where C; and C; depend on the coefficients [ 6 | ; [ 8 ] and the bounds on all solution
variables p, p*, ¢, z, w, z,v,y. If we choose m such that m—C; — CS’Z”Tf > 0, the above
inequality holds if the integrand is identically zero .  Since the natural logarithm is an

=) N ~
increasing function , then In ( mgicl > 3mdy if m > Cy + Cy, This gives that Ty < ﬁ In
2

(mézc : ythenp=pp*=piqg=qr=rw=wz=2
v =0,y = y. Hence the solutlon is unique for small t ime . [
7. NUMERICAL S IMULATIONS

The optimality system in section 5 is solved using an iterative method with Runge -
Kutta of order four scheme .  The optimality system is a two - point bound - ary value
problem , where initial conditions are specified for the state system and terminal conditions
are specified for the adjoint system .  The method of obtaining the optimal control is as
follows [ 8] :

(1) Take a guess for the two controls .

(2) Solve the state system forward using those controls and using a Runge - kutta
method of order four algorithm . Use state variables initial conditions .

(3) Using the new state values , solve the adjoint system backwards using the final
time zero boundary conditions and Runge - Kutta of order four scheme . (4) Calculate
the new control values from the characterization .

(5) Go to steps 2, 3 again with new control from step 4 .

(6) Calculate other new control values from step 5 . Compare controls from last
iteration to new iteration and compare states also . Keep repeating control updates and
forward and backward solving until the iterates converge .

In the virtual simulations in this section we chose a set of parameters and initial values
yielding approximately realistic population numbers .  Our initial conditions
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resemble clinical data for HIV infected individuals during symptomatic phase . Since
therapy is initiated when patients are symptomatic , we consider cases when CD 4+
T cell count is less than or equal 250 cells ul='. The following parameter values have
been used to generate the solutions in this section : s; = 20, puI' = 0.2,

r=0.01,N =10[9],s2 = 10,4 = 2 x 10~*, By = 350, By, = 400,h = 2 x 1073,
pC = 1.5, uV = 0.95[3],k =2 x 1073, a9 = 0.01,a; = 0.75,p0 = 1 x 10~ °and

a = 0.25[16]. The bounds for controls are a;; = 0.0, azs = 0.0,b1; = 0.2 and

bao = 0.9.

Figure 1 shows the graph of the solution to the optimality system , showing
propagation of CD 44 T cells , infected CD 4+ T cells , reverse transcriptase inhibitor
and a protease inhibitor when treatment is administered for 50 days . Here we
initiate treatment when CD 4+ T cell count , T (0 ) is 250 cells ul~!, viral load , V (0 )
is 4000 copies mi~!, infected CD 4+ T cells , 7%(0) of 200 cells ul~! and a CTL count ,
C(0)of 10ul~". The value for the first weight factor is given by A; = 250000
and the second weight factor Ay =250 [8]. Figure 1 ( a ) shows the propagation of
uninfected CD 44 T cells after initiation of therapy .  Initial decline of CD 4+ T
cells for a day is due to pharmacokinetics and pharmacology delay , and thereafter
T cell count start to increase for about 25 days , nearly an increase of 10% and
thereafter CD 44 T cells start to gradually decline . Within the first week of drug
administration , viral load drops to zero , figure 1 ( ¢ ) , followed by a sudden increase and
oscillation at around 400 for another week and then stabilizes for the next 25
days and starts to slowly increase at day 40 .  The CD 44 T cell and viral kinetics are
produced if the nucleoside RTT ( figure 1 ( b ) ) is administered in full scale for one day
( normalised dosage size of 0 . 2 ) after 4 days , and the drug is stopped for 2 - 3 days

Drug administration resume with almost 10% of the initial dosage size and gradually
increased up to day 30 and then tapered off up to day 50 . Therapy start with high doses
( normalised dosage size of 0 . 9 ) of a protease inhibitor ( figure 1 (d ) ) for the first day
, then stopped for 5 days .  The drug is administered at full scale ( dosage size of 0. 9 )
for a day and then stopped for one day or two days .  Finally , 40% of the initial dosage
is administered for 1 - 2 days and stopped for 30 - 35 days and resumed with 2% — 5% of
the initial therapy for the last 3 days .  The effect of
the regimen , in a short term , managed to increase the CD 4+ T cells to nearly 450 cells
in 25 days and level of viremia is suppressed to low levels ( below 500 copies of
RNA ml~1) which is beneficial to the infected individual ’ s health .

Figure 2 shows the graph of the solution to the optimality system , showing prop -
agation of CD 4+ T cells , infected CD 4+ T cells , reverse transcriptase inhibitor and a
protease inhibitor where CTL activity is decreased .  Here we initiate treatment
when CD 4+ T cell count , T ( 0) is 250 cells ul=1, viral load , V ( 0 ) is 4000 copies
ml~1, infected CD 4+ T cells , T*(0) of 200 cells ul~! and a CTL count , C (0 ) of
10pI~1, and treatment is administered for 50 days . The value for the first weight factor
is given by A; = 250000 and the second weight factor As = 250. A decrease in the effect
of CTL activity , that is decrease in ag = 0.01 and a; = 0.75 with the
same initial conditions leads to CD 4+ T cells decline for 1 - 2 days due to pharma - cology
and pharmacokinetics ( similar to Dixit and Perelson [ 5 | results ) j ust after initiation of
therapy ( figure 2 (a ) ) and build up for nearly 1 0 days before a decreas - ing tendency
up to day 50 . Viral load sharply decreases to very low levels ( figure
2 (c)) during the first 5 days of therapy initiation , sharply increase and sharply
decrease before it starts to gradually increase .  The kinetics of the CD 44 T cells
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(a) (b)
(c) (d)
FIGURE 1 . Graph of the numerical solution to the optimality sys -
tem , showing propagation of CD 4+ T cells , infected CD 4+ T cells ,
reverse transcriptase inhibitor and a protease inhibitor when treat -
ment is administered for 50 days . Here we initiate treatment when
CD 4+ T cell count , T (0 ) is 250 cells pl~t, viral load , V (10 ) is 4000
copies ml~!, infected CD 4+ T cells , 7%(0) of 200 cells ul~* and a
CTL count , C (0 ) of 10ul~!. The value for the first weight factor is
given by A; = 250000 and the second weight factor As = 250. (a)
CD 44 T cell kinetics ( b ) Reverse Transcriptase Inhibitor dosage
sizes ( ¢ ) Viral Load ( d ) Protease Inhibitor dosage sizes .
and viral load are given if the nucleoside reverse transcriptase inhibitor ( normalised
dosage size of 0 . 2 ) is administered for 1 day and then stopped for 4 days ( figure
2(b)). The drug is given in small dosage sizes , increased daily to almost 10%
of initial dosage at day 1 0 for 2 days . The dosage size is decreased to nearly 40%,
then increased at day 1 5 and then tapered off up to day 50 .  Protease inhibitor drug
schedule is st arted at day 6 ( figure 2 (d ) ), increased to nearly 0 . 9 at day 9 and
lowered to nearly zero at day 1 2. Small quantities are given , nearly 10% of the initial
dosage size and maintained up to day 50 . The scheme is effective during the first 1 0 days
and thereafter the immune system is heavily compromised due to little activity of CTLs .
Figure 3 shows the graph of the solution to the optimal - ity system , showing propagation
of CD 4+ T cells , infected CD 4+ T cells , reverse transcriptase inhibitor and a protease
inhibitor when treatment is administered for 50 days .  Here we initiate treatment when
CD 4+ T cell count T ( 0 ) is 250 cells
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(a) (b)
(c) (d)
FIGURE 2 . Graph of the numerical solution to the optimality sys -
tem , showing propagation of CD 4+ T cells , infected CD 4+ T cells ,
reverse transcriptase inhibitor and a protease inhibitor when treat -
ment is administered for 50 days . Here we initiate treatment when
CD 4+ T cell count , T (0 ) is 250 cells pl~t, viral load , V (10 ) is 4000
copies ml~!, infected CD 4+ T cells , 7%(0) of 200 cells ul~* and a
CTL count , C (0 ) of 10ul~!. The value for the first weight factor
is given by A; = 250000 and the second weight factor A, = 250.
The activity CTL in reducing burst size and reducing infection has
been decreased to a; = 0.75 and ag = 0.01 respectively .  Here
ap and a; are different from figure 1. (a ) CD 4+ T cell kinetics
( b ) Reverse Transcriptase Inhibitor dosage sizes ( ¢ ) Viral Load ( d )
Protease Inhibitor dosage sizes .
ul=t viral load V (10 ) is 4000 copies mi~!, infected CD 4+ T cells , T*(0) is 200 cells
pul= and a CTL count , C (0 ) of 10ul~t.  The value for the first weight factor is given
by A; = 250 and the second weight factor As = 10.  Exploring the effects of drug toxicity
, that is reducing the weight factors A; = 250 and Ay = 10 and all the other parameters
remain as in figure (2 ). We have the following numerical results , given by figure ( 3
) : Effect of reducing the weight factors simulate the effect of a decrease in drug toxicity ,
and therefore we observe that dosage sizes for both
drug types are increased . Since the efficacy of drugs is not changed , CD 4+ T cells and
viral kinetics ( figure 3 (a ) and ( ¢ ) ) respectively ) do not change . The nucleoside
reverse transcriptase inhibitor ( figure 3 (b ) ) is administered at full scale for 2 days
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and stopped for 1 to 2 days .  Therapy is given again at full scale up to day 50 . Protease
inhibitor schedule ( figure 3 (d ) ) is given at day 7 , increased to full scale for 4 - 5 days
and decreased to nearly 11 % up to day 50 .

(a) (b)
(c) (d)
FIGURE 3 . Graph of the numerical solution to the optimality sys -
tem , showing propagation of CD 4+ T cells , infected CD 44 T cells ,
reverse transcriptase inhibitor and a protease inhibitor when treat -
ment is administered for 50 days . Here we initiate treatment when
CD 4+ T cell count , T (0 ) is 250 cells pl~1, viral load , V(0) is 4000
copies ml~!, infected CD 4+ T cells , 7%(0) of 200 cells ul~* and a
CTL count , C (0 ) of 10ul~t. The value for the first weight factor
is given by A; = 250 and the second weight factor A; = 10. (a)
CD 4+ T cell kinetics ( b ) Reverse Transcriptase Inhibitor dosage
sizes (¢ ) Viral Load ( d ) Protease Inhibitor dosage sizes .
8. D I1SCUSSION
The virtual combined therapy simulations in this paper are designed to provide
insights of drug scheduling in short term therapy performance .  Similar to Baj aria e ¢
al . [ 3], reduced dosage sizes and drug holidays can achieve goals of antiretroviral
therapy ( increase of CD 4+ T cells and suppression of viral load ) . In poor resourced
settings , an effective schedule should improve the patient ’ s life , be affordable ( small
dosages sizes ) and allowing drug holidays should relax the concept of strict patient adher-
ence to treatment and compliance . The scheme should increase or restore the immuno-
logical function ( CD 4+ T cell increases ) through less exposure to drugs . We
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also observe that the weight factors in the objective functional model drug toxicity ,
therefore the more toxic the drugs are the less dosage sizes to be administered

to reduce systemic costs .  Figure 1 shows that if an individual > s immune response is
strong , virus can be effectively controlled during therapy whilst weak immune
responses , figure 2 and figure 3 , lead to a short term control of the virus . We

can conclude that effectiveness of therapy largely depends on the immune response
of an individual , that is if the immune response is better , virus can be controlled effectively

Also an effective immune response leads to administration of small
dosage sizes which are cost effective . We observe from numerical illustrations that if
therapy can induce CTL activity , control of viremia is feasible and this can
facilitate the implementation of drug holidays . During drug holiday periods , CTLs
will be controlling viremia . Due to drug toxicity , allowing drug holidays can be
beneficial in the short term implementation of HAART . If therapy has less toxic
effects , continuous therapy is beneficial as there will be less harmful side effects . Our
dynamical model did not take into account the effects of viral population mutation
over time in response to drug therapy . These effects can become significant in the
case of long term anti - HIV therapy .
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