EIGENVALUES AND EIGENVECTORS FOR THE QUATERNION MATRICES OF DEGREE TWO

Cristina Flaut Abstract

In this paper we give a computation method , in a particular case , for eigenvalues and eigenvectors of the quaternion matrices of degree two with elements in the generalized quaternion division algebra $\mathbb{H}(\alpha,\beta)$. It is known (see [1]) that every quaternion matrix has at least one characteristic root , but there is not yet giving a computing method . By using [4] we give such a computing method for eigenvalues and eigenvectors of the quaternion matrices of degree two with elements in the generalized quaternion division algebra $\mathbb{H}(\alpha,\beta)$.

Let $\mathbb{H}(\alpha, \beta)$ be the generalized quaternion division algebra over the comu - tative field K with $char K \neq 2$.

Definition 1 Let $A \in \mathcal{M}_n(\mathbb{H}(\alpha, \beta))$ and $\lambda \in \mathbb{H}(\alpha, \beta)$. The quaternion λ is called an **eigenvalue** of the matrix A(or a **characteristic root**), if there exists a matrix $x \in \mathcal{M}_{n \times 1}(\mathbb{H}(\alpha, \beta))$, $x \neq 0$, such that $Ax = x\lambda$. The matrix $x \in \mathcal{M}_{n \times 1}(\mathbb{H}(\alpha, \beta))$ is the eigenvector of the matrix A.

Proposition 1 Two s imilar matrices have the same characteristic roots. **Proof.** Let $A \sim B$, i. e. there exists an invertible matrix $T \in \mathcal{M}_n(\mathbb{H}(\alpha,\beta))$ such that $B = TAT^{-1}$. Let $\lambda \in \mathbb{H}(\alpha,\beta)$ be an eigenvalue for the matrix A, then we find the matrix $x \in \mathcal{M}_{n \times 1}(\mathbb{H}(\alpha,\beta))$ such that $Ax = x\lambda, x \neq 0$. Let

$$y = Tx$$
. Then $By = TAT - 1_y = TAx = Tx\lambda = y\lambda$. \square

Proposition 2 Let $A \in \mathcal{M}_n(\mathbb{H}(\alpha, \beta))$ and let $\lambda \in \mathbb{H}(\alpha, \beta)$ be an e igenvalue of the matrix A. If $\rho \in \mathbb{H}(\alpha, \beta)$, $\rho \neq 0$, then $\rho^{-1}\lambda\rho$ is als o an e igenvalue of the matrix A.

Key Words: quaternion matrices; generalized quaternion algebra. 39

40 Cristina Flaut

Proof. From $Ax = x\lambda$, we get $A(x\rho) = x\lambda\rho = (x\rho)\rho^{-1}\lambda\rho$. \square Remark 1 Proposition 2, we see that, if the vector corresponding to the eigenvalue λ is x, then $x\rho$ is the eigenvector corresponding to the cha-

racteristicroot $\rho^{-1}\lambda\rho$.

Proposition 3 ([1]) Let K be an arbitrary field, not necessarily commutative, with $char K \neq 2$. If $A = (a_{ij})_{\overline{i,j}=} 1, n \in \mathcal{M}_n(K)$, then we have a triangular invertible for all $i > matrix \ j+1, i_,^T j^{such} \in \{1that_{,2,...}, C_{n\},\Box}^= T^{-1}AT, \quad C = (c_{ij})_{\overline{i,j}=} 1, n$ where $c_{ij} = 0$,

Let $\mathbb H$ be the real quaternion algebra and let f be the polynomial of degree n:

$$f(X) = a_0 X a_1 X \dots X a_n + g(X),$$

where $a_0, a_1, ..., a_n \in \mathbb{H}, a_i \neq 0$ for every i = -1, n and g(X) is a finite sum of monomials of the form $b_0 X b_1 X ... X b_m$, where $m \leq \sim \sim \rtimes \searrow \bowtie \approx 1 \approx 0 \leq n$.

In [2], it is shown that, if the polynomial f has a single term of degree n, then the equation f(x) = 0 has exactly n solutions in \mathbb{H} .

Proposition 4 ([1]) Let $A \in \mathcal{M}_n(\mathbb{H})$, then the matrix A has an e igenvalue \square In the next, let $\mathbb{H}(\alpha,\beta)$ be the generalized quaternion division algebra over the commutative field K with $char K \neq 2$. It is known that $\mathbb{H}(\alpha,\beta)$ is an algebra of degree two, then every element $x \in \mathbb{H}(\alpha,\beta)$ satisfies a relation of the form:

$$x^2 + t(x)x + n(x) = 0,$$

where $t(x), n(x) \in K$ are the **t race** and the **norm** of the element x.

If $\{1, e_1, e_2, e_3\}$ is a basis in $\mathbb{H}(\alpha, \beta)$ and $x \in \mathbb{H}(\alpha, \beta)$, then, for $x = a + be_1 + ce_2 + de_3$, the element $\bar{x} = a - be_1 - ce_2 - de_3$ is called the **conjugate** of the element x and we have the relations:

$$x + \bar{x} = t(x)$$
 and $x\bar{x} = n(x)$

Proposition 5

([4]) Let $a, b \in \mathbb{H}(\alpha, \beta), a \neq 0, b \neq 0$. Then the linear equation

$$ax = xb (5.1.)$$

has nonzero s o lutions $, x \in \mathbb{H}(\alpha, \beta), if and only if :$

$$t(a) = t(b) \quad and n(a - a_0) = n(b - b_0), \quad (5.2.)$$

$$where a = a_0 + a_1 e_1 + a_2 e_2 + a_3 e_3, b = b_0 + b_1 e_1 + b_2 e_2 + b_3 e_3. \square$$

Proposition 6 ([4]) i) If $a = a_0 + a_1e_1 + a_2e_2 + a_3e_3$, $b = b_0 + b_1e_1 + b_2e_2 + b_3e_3 \in \mathbb{H}(\alpha, \beta)$ with $b \neq \bar{a}, a, bslash - elementK$, then the s o lutio ns of the equation (5.1.), with t(a) = t(b) and $n(a - a_0) = n(b - b_0)$, are found in $\mathcal{A}(a,b)$ (the algebra generated by the elements a and b) and have the form:

$$x = \lambda_1(a - a_0 + b - b_0) + \lambda_2(n(a - a_0) - (a - a_0)(b - b_0)), \tag{6.1.}$$

where $\lambda_1, \lambda_2 \in K$ are arbitrary. ii) If $b = \bar{a}$, th en the general s o lution of the equation (5.1.) is $x = x_1e_1 + x_2e_2 + x_3e_3$, where $x_1, x_2, x_3 \in K$ and they satisfy the identity:

$$\alpha a_1 x_1 + \beta a_2 x_2 + \alpha \beta a_3 x_3 = 0. \square \tag{6.2.}$$

Proposition 7 ([4]) Let $a \in \mathbb{H}(\alpha, \beta)$, aelement – slashK. If there exists $r \in K$ such that $n(a) = r^2$, then $a = \bar{q}rq^{-1}$, where $q = r + \bar{a}$, $q^{-1} = line - q_{n(q)}$.

Proof . By hypothesis we have $a(r + \bar{a}) = ar + a\bar{a} = ar + n(a) = ar + r^2 = (a + r)r$. From $\bar{q} = r + a$ it results $\bar{q}r = aq$. \Box

Proposition 8 ([4]) Let $a \in \mathbb{H}(\alpha, \beta)$ with aelement – slashK, if there exist $r, s \in K$ with

the properties $n(a) = r^4, n(r^2 + \bar{a}) = s^2$, then the quadratic equation $x^2 = a$ has two so lutions of the form : $x = \pm \frac{r(r^2 + a)}{s}$

Proof. By Proposition 7, it results that a has the form

 $a = \bar{q}r^2q^{-1}$, where $q = r^2 + \bar{a}$. Because $q^{-1} = lin\bar{e} - q_{n(q)}$, we obtain

$$a = r^{2} \bar{q} q^{-1} = r^{2} \bar{q}_{n(q)}^{lin\bar{e}-q} = r_{s}^{2lin\bar{e}-q} = (\frac{r}{s} \bar{q})^{2}, \dots$$

$$x_{1} = \underline{\qquad } \bar{q}, x_{2} = -\underline{\qquad } \bar{q}$$

$$s = s$$

are the claimed solutions . \Box 42 Cristina Flaut

Proposition 9 ([4]) Let $a,b,c \in \mathbb{H}(\alpha,\beta)$ such that ab and b^2-c do not be long to K. If ab and b^2-c satisfy the conditions in Proposition 8, then the equations xax = b and $x^2 + bx + xb + c = 0$ have s o lutions.

Proof.
$$xax = b \iff (ax)^2 = ab \text{ and } x^2 + bx + xb + c = 0 \iff (x+b)^2 = b^2 - c. \square$$

Proposition 10 ([4]) If $b,c \in \mathbb{H}(\alpha,\beta) \setminus \{K\}$ satisfy the conditions bc = cb, $\frac{b^2}{4} - c \neq 0$ and there exists $r \in K$ such that $n(\frac{b^2}{4} - c) = r^4$ and $n(r^2 + \frac{\bar{b}^2}{4} - \bar{c}) = s^2, s \neq 0$, then the equation

$$x^2 + bx + c = 0 (10.1)$$

has s o lutio ns in $\mathbb{H}(\alpha, \beta)$.

Proof. Let $x_0 \in \mathbb{H}(\alpha,\beta)$ be a solution of the equation (1 0 . 1 .) . Because $0_x^2 = t(x_0)x_0 - n(x_0)$ cedilla - s i $x_0^2 + bx_0 + c = 0$, it results that $t(x_0)x_0 - n(x_0) + bx_0 + c = 0$,

$$\therefore (t(x_0) + b)x_0 = c + n(x_0).$$

Because $t(x_0) + b \neq 0, t(x_0), n(x_0) \in K, 1 \in \mathcal{A}(b, c)$, we have

$$t(x_0) + bc$$
cedilla $- sic + n(x_0) \in \mathcal{A}(b, c)$.

Therefore $x_0 \in \mathcal{A}(b,c)$. Because bc = cb, we obtain that $\mathcal{A}(b,c)$ is commuta - t ive, therefore x_0 commutes with every element of $\mathcal{A}(b,c)$. Then the equation $(1\ 0\ .\ 1\ .)$ can be written:

$$(x + \frac{b}{2})2 - \frac{b^2}{4} + c = 0$$

and we use $Proposition 8.\square$

 $Ax = x\lambda$ is equivalent to the next system:

We consider now the case n=2, hence we take $A=(a_{ij})_{i,j=-1,2}\in\mathbb{H}(\alpha,\beta)$. Case I . Let $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\in\mathbb{H}(\alpha,\beta)$ with $a_{21}\neq 0$. Let $x=\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\neq 0$ be the eigenvector corresponding to the eigenvalue λ of the matrix A. We suppose that $x_2\neq 0$. Then the vector $xx_2^{-1}=\begin{pmatrix} x_1x_2^{-1} \\ 1 \end{pmatrix}$ is the eigenvector corresponding to the eigenvalue $x_2\lambda x_2^{-1}$ for the matrix A. Therefore we have got an eigenvector of the form $x=\begin{pmatrix} x_1 \\ 1 \end{pmatrix}$. Then the relation

$$\{ a_{1_{a_2}^1 1^{x_1}}^{x_1} +_+ a_{1_{a_{22}}^2} =_= x_1 \lambda \lambda \quad (*)$$

We replace λ from the second equation in the first one and we get: $a_{11}x_1+a_{12}=x_1(a_{21}x_1+a_{22})$, hence $x_1a_{21}x_1+x_1a_{22}-a_{11}x_1-a_{12}=0$. We multi - ply this last relation to the left side with a_{21} . It results $a_{21}x_1a_{21}x_1+a_{21}x_1a_{22}-a_{21}a_{11}x_1-a_{21}a_{12}=0$. We denote $a_{21}x_1=t$ and we obtain

$$t^{2} + ta_{22} - a_{21}a_{11}a^{-2} + a_{21}a_{12} = 0. (**)$$

$$t = \pm \frac{r}{s}(r^2 + b^2 - c) - b.$$

It results that $a_{21}x_1 == \pm \frac{r}{s}(r^2 + b^2 - c) - b$ hence

$$a_{21}x_1 = \pm \frac{r}{s}(r^2 + a_{21}2_{a_11}a^-2_1^1 + a_{21}a_{12}) + a_{21}a_{11}a^-2_1^1.$$
 Therefore
$$x_1 = \pm \frac{r}{s}(r^2a^-2_1^1 + 2_{a_11}a^-2_1^1 + a_{12}) + a_{11}a^-2_1^1,$$

and , for the eigenvalue λ , we have the expression :

$$\lambda = \pm \frac{r}{s} (r^2 + 2_{a2}^2 + a_{21} a_{12}),$$

$$\therefore a_{22} = -a_{21} a_{11} a^{-} 2_{1}^{1} \text{ and } a_{21} 2_{a_{11}} a^{-} 2_{1}^{1} = a_{21} a_{11} a_{11} a^{-} 2_{1}^{1} = -a_{22} a_{21} a_{11} a^{-} 2_{1}^{1} =$$

$$-2^{2} a_{21} a_{11} a^{-} a_{21} a_{21}$$

Case II . If $a_{22} \neq -a_{21}a_{11}a^{-}2_{1}^{1}, a_{21} \neq 0$, then the equation (**) is writ - ten $(t+a_{22})^{2}-2_{a2}^{2}-a_{22}t-a_{21}a_{11}a^{-}2_{1}^{1}t-a_{21}a_{12}=0$. Equivalently , we get :

$$(t+a_{22})^2-(a_{22}+a_{21}a_{11}a^-2_1^1)(t+a_{22})+a_{21}a_{11}a^-2_1^1a_{22}-a_{21}a_{12}=0.$$
 Denoting
$$-(a_{22}+a_{21}a_{11}a^-2_1^1)=b, a_{21}a_{11}a^-2_1^1a_{22}-a_{21}a_{12}=c \text{ and } t+a_{22}=v, \text{ we obtain the equation :}$$

$$v^2 + bv + c = 0. (***)$$

If $b,c \in \mathbb{H}(\alpha,\beta) \setminus \{K\}, bc = cb, \frac{b^2}{4} - c \neq 0$ and there exists $r \in K$ such that $n(\frac{b^2}{4} - c) = r^4$ and $n(r^2 + \frac{\bar{b}^2}{4} - \bar{c}) = s^2, s \neq 0$, we may use *Proposition 1 0* and we obtain the solutions . If these conditions are not satisfied, we can say only that the solutions of the equation (***) are in the algebra generated by

bandc.

Case III. If $a_{21}=0$, and $a_{12}\neq 0$, then the vector $\begin{pmatrix} 1\\0 \end{pmatrix}$ is the eigenvec - tor for the eigenvalue $\lambda=a_{11}$. If $a_{21}=0$ and $a_{12}=0$, we have $a_{22}=\lambda$ and

44 Cristina Flaut

then the system (*) is equivalent to the equation $a_{11}x_1 = a_{22}x_1$ and it s nonzero solutions are given by Proposition 6. If we have $t(a_{11}) = t(a_{22})$ and $n(a\prime_{11}) = n(a\prime_{22})$, where $a\prime_{11} = a_{11} - t(a_{11})$ and $a\prime_{22} = a_{22} - t(a_{22})$, then the solutions have the form (6 . 1 .) for $a_{11} \neq \bar{a}_{22}$ or have the form (6 . 2 .)

 $for a_{11} = \bar{a}_{22}$.

References

- [1] Brenner , J . L . , $Matrices\ of\ quaternions$, Pacific J . Math . 1 , 329 335 , 1 95 1 .
- [2] Eilenberg , S . , Niven , I . , The "fundamenta theor e-m o alg ebr a " for $quaternion_{{\rm comma-s}}$ Bull .

Amer . Math . Soc . **50** , 244 - 248 , 1 944 .

- [3] Elduque , A . , P \acute{e} rez Izquierdo , J . M . , Composition alg ebras of degree two , Proc . Edin burgh Math . Soc . **42** , 641 653 , 1 999 .
 - [4] Flaut , C . , Some equations in algebras o btained by the Cayley Dickson process , An . $Univ \stackrel{"}{\quad} Ovidius \ " \quad Constantza \ , \qquad \mathbf{9} \quad , \text{f. 2 , pag . 45 69 , 200 1 .}$
 - [5] Jhonson , R . E . , On the equation $\chi \alpha = \gamma \chi + \beta$ over algebraic division ring , J . of Algebra $\bf 67$, $\bf 479$ $\bf 490$, 1 980 .
- $[\ 6\] \qquad \text{Kostrikin}\ , \ A\ .\ I\ .\ , \ Shafarevich\ , \ I\ .\ R\ .\ (\ Eds\)\ , \ Algebra\ VI\ , \ \ Springer\ -\ Verlag\ , \ 1\ 995\ .$
 - [7] Schafer , R . D . , An Introduction to Nonassociative Algebras , Academic Press , New York , 1 966 .
 - [8] Tian , Y . , Matrix representations of octonions and their applications , Advances in App . Clifford Algebras ${\bf 1}~{\bf 0}~$, No . 1 , 6 1 90 , 2000 .
 - [9] Tian , Y . , Similarity and consimilarity of elements in the real Cayley Dickson algebras , Advances in App . Clifford Algebras $\bf 9$, No . 1 , 6 1 76 , 1 999 .
 - [10] Wiegmann , N . A . , Some theorems on matrices with real quaternion elements , Canad . $J \;.\; Math \;.\; 7 \;\;,\; 1\; 9\; 1\; -\; 20\; 1\; ,\; 1\; 955\; .$

Department of Mathematics and Informatics ,

900527 Constanta , Bd . Mamaia 124

Romania e - mail : cflaut @ univ - ovidius . ro

[&]quot; Ovidius " University of Constanta