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EIGENVALUES AND EIGENVECTORS
FOR THE QUATERNION MATRICES OF
DEGREE TWO
Cristina Flaut
Abstract
In this paper we give a computation method , in a particular case , for
eigenvalues and eigenvectors of the quaternion matrices of degree two
with elements in the generalized quaternion division algebra H(c, 5). It
is known ( see [ 1] ) that every quaternion matrix has at least one charac -
teristic root , but there is not yet giving a computing method . By using
[ 4] we give such a computing method for eigenvalues and eigenvectors of
the quaternion matrices of degree two with elements in the generalized
quaternion division algebra H(c, /).
Let H(a, ) be the generalized quaternion division algebra over the comu - tative field K
with charK # 2.
Definition 1 Let Ae M,(H(a,B)) and X € H(a, 5). The quaternion X is
called an eigenvalue of th e matrix A( or a characteristic root ), if there
exists a matric © € Myx1(H(a, 8)), x # 0, such that Ax = axX.  The matriz z is called
the etgenvector of the matriz A.
Proposition 1 Two s imilar matrices have the same characteristic roots .
Proof . Let A~ B,i. e. there exists an invertible matrix T € M, (H(«, 5))
such that B = TAT 1. Let A € H(x, B) be an eigenvalue for the matrix A,
then we find the matrix € M, «1(H(a, 8)) such that Az = zA, x # 0. Let

y =Tz.ThenBy = TAT — 1, = TAx = TaA = yA.O
Proposition 2 Let Ae M,(H(a,B)) and let X € H(a, 5) be an e igenvalue

of the matriz A. If p € H(a,B), p#0, then p~tApis als 0 an e igenvalue of the matriz
A.
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Proof . From Az = z), we get A(zp) = zAp = (2p)p~'Ap.00 Remark 1 From the
Proposition 2 , we see that , if the vector corresponding
to the eigenvalue A is x, then xp is the eigenvector corresponding to the cha -

racteristicrootp ™! Ap.

Proposition 3 ([1]) Let K be an arbitrary field , not necessarily commutative , with
charK #2. If A= (aij)ij;=1,n € My(K), then we have a triangular
invertiblefor al [ i >™r@ § 4 1,z',TjS“Ch € {1that72,_,,C'§}.|:|T_1AT, C = (cij)
where c¢;; =0,

Let H be the real quaternion algebra and let f be the polynomial of degree n :

= L

f(X)=apXa1 X...Xa, + g(X),

where ag, a1, ...,a, € H, a; # 0 for every ¢ = -1, and g(X) is a finite sum of monomials of the
form by X b1 X...Xb,,, where m<~~x~\ X XD <n.

In [ 2], it is shown that , if the polynomial f has a single term of degree n,
then the equation f(z) = 0 has exactly n solutions in H.
Proposition 4 ([1]) Let A € M, (H), then the matrix A has an e igenvalue .0
In the next , let H(c, 8) be the generalized quaternion division algebra over
the commutative field K with charK # 2. It is known that H(a, 8) is an
algebra of degree two , then every element x € H(a, ) satisfies a relation of the form :

z? + t(x)z +n(x) =0,

where t(x),n(z) € K are the t race and the norm of the element x.

If {1,e1,e9,e3} is a basis in H(w, 8) and = € H(a, 8), then , for x = a + be; + cey + des, the
element ¥ = a — be; — ces — deg is called the conjugate of the element x and we have the
relations :

x+Z=1t(z) andxZ = n(z)
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Proposition 5 ([4]) Let a,be€ H(a,B),a#0,b+# 0. Then the linear equation

ax = xb (5.1,
has nonzero s o lutions ,x € H(a, ), if and only if :

t(a) =t(b) andn(a—ag) =nb—"bo), (5.2.)
wherea = ag + aye1 + ases + azes, b = by + biey + baes + bgez.[d

Proposition 6  ([4])4) If a=ap+aie1+azes+tages, b= by+bier+baea+bses € H(a, 5)
with b # @.a,bslash — elementK, then the s o lutio ns of the equation (5. 1. ) , with
t(a) = t(b) and n(a —ag) =n(b—by), are found in A(a,b)( the alge bra generated b y th e e
lements a and b) and have th e form :

x=MA(a—ag+b—"0by) + Aa(n(a—ap) — (a—ap)(b—1b)), (6.1.)

where A1, Ao € K are arbitrary . i ) If b=a, th en the general s o lution of the equation (
5.1.)4s x=uz1e1 + xoes + x3es, where x1,29,23 € K and th ey satisfy the identity :

aa1x1 + Basys + afazxs = 0.0 (6.2.)

Proposition 7 ([4]) Let a € H(a, B), aelement — slashK. If there exists r € K

such that n(a) = r2, then a = qrq— ', where q=r+a,q " = line — Tn(q).

Proof . By hypothesis we have a(r 4+ a) = ar + aa = ar +n(a) = = ar +r? = (a + r)r. From
q = r + a it results gr = aq.J

Proposition 8 ([4]) Let a € H(a, 8) with aelement — slashK, if there exist 1,5 € K

with

the properties n(a) = r*, n(r? + a) = s2, then th e quadratic equation 2 =a
2

has two s o lutions of the form : == rlrta)

S .
Proof . By Proposition 7, it results that a has the form

a = qr2q~ "', where ¢ = 1?2 + a_Because ¢ = line — n(g). We Obtain
2. — 2 _line— 2line—q?2 T2,
0=t =l = i = (g
ror
x = gx2 = — q
s

are the claimed solutions .[J
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Proposition 9 ([4]) Let a,b,c € H(a, 8) such that ab and b2 —c do not
be long to K . If ab and b® — c satisfy th e conditions in Proposition 8 , then the equations
raxr =b and 2%+ bx + xb+ ¢ = 0 have s o lutions .

Proof. zar =b <= (ax)? = abanda® +br +xb+c=0<+= (z+b)* =
v —c0
Proposition 10  ([4]) If b,c € H(a,B) \ {K} satisfy the conditions  bc = cb ,
] ¢

% —c#0 and there exists r € K such that  n(% —c) =r* and n(r*+ % —¢)=38%5#0,
then th e equation

2 +br+c=0 (10.1)

has s o lutio ns in H(w, ).
Proof . Let zg € H(a, 8) be a solution of the equation (1 0. 1. ) . Because
02 = t(wg)wo — n(zo)cedilla — s i 23 + bxg + ¢ = 0, it results that t(xg)zo — n(xg) + bxg +c =0,

~ (o) 4+ b)xo = ¢+ n(xmp).
Because t(zo) + b # 0,t(x0),n(z) € K,1 € A(b, ¢), we have

t(xo) + becedilla — sic + n(xg) € A(b, ¢).

Therefore zo € A(b, ). Because be = c¢b, we obtain that A(b,c) is commuta - t ive , therefore
xo commutes with every element of A(b, ¢). Then the equation ( 1 0. 1. ) can be written :

b b2

and we use Proposition 8.1
We consider now the case n = 2, hence we take A = (a;5): j=

I .Let A= < @ a2 > € H(a, B) with ag; # 0. Let z = 1 > # 0 be the eigenvector
ag1 22 L2

corresponding to the eigenvalue A of the matrix A. We suppose that x5 # 0. Then the vector

-1
TTy L xl? > is the eigenvector corresponding to the eigenvalue xoAzy ! for the

12 € H(a, ). Case

X1

matrix A. Therefore we have got an eigenvector of the form x = < 1

> . Then the relation

Ax = x ) is equivalent to the next system :
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{ aﬁ21m1 T4 a1z, == TIAN (%)
We replace A from the second equation in the first one and we get : a1121+a12 = x1(a2121+a92),
hence x1a9171 + T1a22 — a1121 — a2 = 0. We multi - ply this last relation to the left side with
as1. It results as1x1a2121 + a2121a92— asi1a1121 — az1a12 = 0. We denote asizy = ¢t and we
obtain

t2 + ta22 — a21a11a72}t — az1012 = 0. (**)

If a9y = —a21a11a72% = b, we denote ¢ = —ag1a12, and if , b — celement — slashK and there
exist 7,s € K with the properties n(b* — ¢) = r* and n(r? + p2_c) = s2, then we may
use the Proposition 8 getting (¢ + b)2 = b% 4 ag1a12, therefore :

t=i§(r2+b2—c)—b.

It results that ag;21 == :I:g(r2 + % —¢) — b hence

T
a1y = +— (% + 42124, 10" 2} 4 as1a12) + azya11a” 21 Therefore
s
r
T = :t;(rza*Q% + 2a11(l72% + alg) + 0,11(1721,
and , for the eigenvalue \, we have the expression :

r
A= i;(rQ + 232 + a21a12>,

. _ —9l —0l __ —0l __ —0ol __
Ao = —a21a11a 21anda212a11a 21 = as1011a110Q 21 = —a220210110Q 21 =
2
=22,
Case II . 1If ass # —ag1a110 21,091 # 0, then the equation (%) is writ - ten

(t+ age)? — 225 — agot — agjajia= 24t — agjase = 0. Equivalently , we get :

(t + a22)2 — (a22 + a21a11a72%)(t + Cl22) + a21a11a72%a22 — a21a12 = O.Denoting

—(age +agra;ia=21) = b, asyaj1a”2iass — as1ais = c and t + asy = v, we obtain the equation :

v+ bv+e=0. (¢ * %)
If b,c € H(e, B) \ {K}, be = cb, % —c#0 and there exists r € K such that n(% —c) =14
and n(r? + % —¢) = s2%,5# 0, we may use Proposition 1 0 and we obtain the solutions .

If these conditions are not satisfied , we can say
only that the solutions of the equation (x * %) are in the algebra generated by

bandc.

Case III . If a9 =0, and ays # 0, then the vector L ) is the eigenvec - tor for the

0
eigenvalue A = aq1. If as; = 0 and a2 = 0, we have ags = A and
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then the system  (x) isequivalent to the equation aj;x; = agex; and it s nonzero
solutions are given by Proposition 6 . Ifwehavet(a11) = t(age)andn(any) =n(a'2s),
where aty1 = a;; —t(a11) and a’23 = agy — t(azz), then the solutions have the form

(6.1.) for aj; # age or have the form (6. 2. )

fora11 = (_122_
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