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\centerline{OPTIMAL \quad CONTROL \quad OF \quad AN EPIDEMIC \quad THROUGH }

\centerline{EDUCATIONAL \quad CAMPAIGNS }

\centerline{C $ \acute{E} $ SAR CASTILHO }

\centerline{Abstract . \quad In t h i s work we study the best s t r a t e g y f o r educa t i ona l campaigns }

\centerline{during the outbreak o f an epidemic . Assuming that the epidemic i s de s c r ibed }

\centerline{by the s i m p l i f i e d SIR model and that the t o t a l t ime o f the campaign i s l i m i t e d }

\centerline{due to budget , we cons id e r two p o s s i b l e s c e n a r i o s . In the f i r s t s c e n a r i o we have }

\centerline{a campaign o r i en t ed to dec r ea se the i n f e c t i o n ra t e by s t imu la t i ng s u s c e p t i b l e s }

\centerline{ to have a p r o t e c t i v e behavior . \quad In the second s c e n a r i o we have a campaign }

\centerline{ o r i en t ed to i n c r e a s e the removal r a t e by s t imu la t i ng the i n f e c t e d to remove }

\centerline{ themse lves from the i n f e c t e d c l a s s . The opt ima l i ty i s taken to be to minimize }

\centerline{ the t o t a l number o f i n f e c t e d by the end o f the epidemic outbreak . The tech − }

\centerline{ n i c a l t o o l used to determine the optimal s t r a t e g y i s the Pontryagin Maximum }

\centerline{P r i n c i p l e . }

\centerline {1 . \quad In t roduc t i on }

In t h i s work we study the best s t r a t e g y f o r educa t i ona l campaigns during the
outbreak o f an epidemic . We assume that the epidemic i s de s c r ibed by the s i m p l i f i e d

\noindent SIR model [ 1 6 ] \quad and a l s o assume that the t o t a l time o f the campaign i s budget
l i m i t e d . Optimal ity i s measured minimizing the t o t a l number o f i n f e c t e d at the end
o f the optimal outbreak . \quad I f we cannot make a campaign during a l l the epidemic
time , what i s the optimal way o f us ing the time we have $ ? $ \quad How many campaigns
should we make $ ? $ \quad What should be t h e i r i n t e n s i t i e s $ ? $ \quad When should they s t a r t

$ ? $ \quad The

\noindent d i f f i c u l t po int i s , o f course , how to model the e f f e c t o f the campaign on the spread
o f the epidemic . \quad Here we f a c e two problems : \quad f i r s t , the model must be i n t u i t i v e l y
p l a u s i b l e and second , i t must be mathematical ly t r a c t a b l e .

With r e s p e c t to the f i r s t requirement we w i l l model the campaign e f f e c t s by
reduc ing the ra t e at which the d i s e a s e i s cont racted from an average i n d i v i d u a l
during the campaign ( c a l l e d s h o r t l y i n f e c t i o n ra t e ) . We j u s t i f y t h i s with an example :
suppose during a f l u outbreak one s t a r t s a campaign o r i e n t i n g s u s c e p t i b l e s to avoid

\noindent con t ra c t i ng the v i r u s \ h f i l l ( assuming some p r o t e c t i v e behavior , \ h f i l l e . g . , \ h f i l l washing hands ,

\noindent avo id ing c l o s e environments , \quad e t c . ) . \quad The e f f e c t o f the campaign w i l l be that the
p r o b a b i l i t y o f a s u s c e p t i b l e con t ra c t i ng the v i r u s w i l l dec r ea se . The same reason ing

\noindent app l i ed to a campaign o r i en t ed to the i n f e c t e d ( e . g . s t imu la t i ng quarant ine ) w i l l be
model led i n c r e a s i n g the ra t e at which an average i n d i v i d u a l l e a v e s the i n f e c t i v e ra t e
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Abstract . In this work we study the best strategy for educational campaigns

during the outbreak of an epidemic . Assuming that the epidemic is described

by the simplified SIR model and that the total t ime of the campaign is limited

due to budget , we consider two possible scenarios . In the first scenario we have

a campaign oriented to decrease the infection rate by stimulating susceptibles

to have a protective behavior . In the second scenario we have a campaign

oriented to increase the removal rate by stimulating the infected to remove

themselves from the infected class . The optimality is taken to be to minimize

the total number of infected by the end of the epidemic outbreak . The tech -

nical tool used to determine the optimal strategy is the Pontryagin Maximum

Principle .

1 . Introduction
In this work we study the best strategy for educational campaigns during the out-

break of an epidemic . We assume that the epidemic is described by the simplified
SIR model [ 1 6 ] and also assume that the total time of the campaign is budget
limited . Optimality is measured minimizing the total number of infected at the end of
the optimal outbreak . If we cannot make a campaign during all the epidemic time
, what is the optimal way of using the time we have ? How many campaigns should
we make ? What should be their intensities ? When should they start ? The
difficult point is , of course , how to model the effect of the campaign on the spread of
the epidemic . Here we face two problems : first , the model must be intuitively
plausible and second , it must be mathematically tractable .

With respect to the first requirement we will model the campaign effects by reducing
the rate at which the disease is contracted from an average individual during the
campaign ( called shortly infection rate ) . We justify this with an example : suppose
during a flu outbreak one starts a campaign orienting susceptibles to avoid
contracting the virus ( assuming some protective behavior , e . g . , washing hands ,
avoiding close environments , etc . ) . The effect of the campaign will be that the
probability of a susceptible contracting the virus will decrease . The same reasoning
applied to a campaign oriented to the infected ( e . g . stimulating quarantine ) will be
modelled increasing the rate at which an average individual leaves the infective rate
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\noindent ( c a l l e d s h o r t l y removal ra t e ) . \ h f i l l With r e s p e c t to the second requirement we assume ,

\noindent f o r mathematical s i m p l i c i t y , that t h i s r educt ion ( i n c r e a s e ) i s bounded below ( above )
and the campaigns co s t are l i n e a r on the c o n t r o l s . \quad With those hypotheses the
problem render s i t s e l f to a n a l y t i c a l treatment and we can prove the main f a c t s
about the optimal campaign . \quad The theorems o f s e c t i o n 4 reduce the dimension o f
the optimal problem a l l ow ing a complete numerica l study o f the problem .

Appl i ca t ion o f c o n t r o l theory to epidemics i s a very l a r g e f i e l d . A comprehensive
survey o f c o n t r o l theory app l i ed to epidemio logy was performed by Wickwire [ 1 7 ] .

\noindent Many d i f f e r e n t models with d i f f e r e n t o b j e c t i v e f u n c t i o n s have been proposed ( see

\noindent [ 8 , 9 , 1 2 ] and more r e c e n t l y [ 3 , 1 8 ] ) . A major d i f f i c u l t y in apply ing c o n t r o l t h e o r e t i c
methods to p r a c t i c a l ep idemio logy problems i s the commonly made assumption
that one has t o t a l knowledge o f the s t a t e o f the epidemics [ 7 ] .

\centerline {2 . \quad Statement o f the problem }

We denote by $ S ( t ) , I ( t ) , R ( t ) $ the number o f s u s c e p t i b l e , i n f e c t i v e s and removed
in a c l o s e d populat ion o f s i z e $ N $ at time $ t . $ We assume the c o n t r o l l e d dynamics

\begin { a l i g n ∗}
\dot{S} = − u { 1 } SI , \\ \dot{ I } = u { 1 } SI − u { 2 } I

, \ tag ∗{$ ( 2 . 1 ) $}\\ \dot{R} = u { 2 } I ,
\end{ a l i g n ∗}

\noindent The above models assume a mass − ac t i on type i n t e r a c t i o n ( f o r more r e a l i s t i c i n t e r −
a c t i o n s see [ 4 ] ) . We l e t p o s i t i v e cons tant s $ \beta $ and $ \gamma $ denote the i n f e c t i o n and removal

\noindent r a t e s r e s p e c t i v e l y without the i n f l u e n c e o f an educat ion campaign . \quad Our c o n t r o l s
are $ u { 1 } ( t ) , u { 2 } ( t ) $ with $ u { 1 } ( t

) \ in [ \beta { m } , \beta ] $ \quad and $ u { 2 } ( t ) \ in
[ \gamma , \gamma M ] $ with $ 0 < \beta { m } . $ \quad Observe
that $ u { 1 } ( t ) $ and $ u { 2 } ( t ) $ r e g u l a t e the goa l s and e f f o r t s o f two types o f campaigns . \quad For
example , i f $ u { 2 } ( t ) = \gamma $ f o r a l l $ t $ we are c o n t r o l l i n g only the i n f e c t i o n ra t e . \quad In t h i s
case $ u { 1 } ( t ) = \beta $ w i l l correspond to not having a campaign a f f e c t i n g the s u s c e p t i b l e s
and $ u { 1 } ( t ) = \beta { m }$ w i l l correspond to the maximum e f f o r t that can be made . \quad The
r e c i p r o c a l case w i l l be i f $ u { 1 } ( t ) = \beta $ f o r a l l $ t . $
\quad In t h i s s c e n a r i o we w i l l be c o n t r o l l i n g

only the removal r a t e $ \gamma . $ The above c o n s i d e r a t i o n s motivate the i n t r o d u c t i o n o f the

\noindent f o l l o w i n g co s t c o n s t r a i n t s .

\begin { a l i g n ∗}
J { 1 } = \ int ˆ{ t ˆ{ ∗ }} { 0 } [ ( \beta − u { 1 } ( t ) )

+ ( u { 2 } ( t ) − \gamma ) ] I ( t ) dt , \ tag ∗{$ (
2 . 2 ) $}\\ J { 2 } = \ int ˆ{ t ˆ{ ∗ }} { 0 } ( \beta − u { 1 }
( t ) ) + ( u { 2 } ( t ) − \gamma ) dt , \ tag ∗{$ ( 2
. 3 ) $}
\end{ a l i g n ∗}

In both ca s e s the co s t i s l i n e a r in the c o n t r o l s $ u { 1 }$ and $ u { 2 } . $
\quad In the f i r s t case the

co s t o f the campaign i s supposed to be p r o p o r t i o n a l to the number o f i n f e c t e d ( i f
one assumes that the number o f i n f e c t e d i s p ro p o r t i o n a l to the number o f r e g i o n s
where the d i s e a s e o ccur s and t h e r e f o r e , to the number o f r e g i o n s to be covered by
the campaign , h igher the number o f i n f e c t e d , h igher the c o s t s ) . \quad The second case
assumes that the co s t i s independent o f the number o f i n f e c t e d .

Our goa l w i l l be to f i n d the optimal c o n t r o l s t r a t e g i e s that minimize the t o t a l
number o f i n f e c t e d over the course o f the epidemic outbreak ( e q u i v a l e n t l y , \quad that

\noindent maximize the t o t a l number o f s u s c e p t i b l e s ) . In t h i s work , the end o f the epidemic

\noindent outbreak w i l l be de f ined as a ( very l a r g e ) time i n s t a n t $ t ˆ{ ∗ }$ f o r which
$ I ( t ˆ{ ∗ } ) < 1 ( $ see

\noindent remark ( 2 . 1 ) about the e x i s t e n c e o f $ t ˆ{ ∗ } ) . $ In other words
$ , t ˆ{ ∗ }$ i s the f i r s t time such that
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open parenthesis called shortly removal rate closing parenthesis period .... With respect to the second require-

ment we assume comma
for mathematical simplicity comma that this reduction open parenthesis increase closing parenthesis is bounded

below open parenthesis above closing parenthesis
and the campaigns cost are linear on the controls period .. With those hypotheses the
problem renders itself to analytical treatment and we can prove the main facts
about the optimal campaign period .. The theorems of section 4 reduce the dimension of
the optimal problem allowing a complete numerical study of the problem period
Application of control theory to epidemics is a very large field period A comprehensive
survey of control theory applied to epidemiology was performed by Wickwire open square bracket 1 7 closing
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Many different models with different objective functions have been proposed open parenthesis see
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comma 1 8 closing square bracket closing parenthesis period A major difficulty in applying control theoretic
methods to practical epidemiology problems is the commonly made assumption
that one has total knowledge of the state of the epidemics open square bracket 7 closing square bracket period
2 period .. Statement of the problem
We denote by S open parenthesis t closing parenthesis comma I open parenthesis t closing parenthesis comma

R open parenthesis t closing parenthesis the number of susceptible comma infectives and removed
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and u sub 1 open parenthesis t closing parenthesis = beta sub m will correspond to the maximum effort that
can be made period .. The

reciprocal case will be if u sub 1 open parenthesis t closing parenthesis = beta for all t period .. In this scenario
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power of * open square bracket open parenthesis beta minus u sub 1 open parenthesis t closing parenthesis closing
parenthesis plus open parenthesis u sub 2 open parenthesis t closing parenthesis minus gamma closing parenthesis
closing square bracket I open parenthesis t closing parenthesis dt comma Equation: open parenthesis 2 period 3
closing parenthesis .. J sub 2 = integral sub 0 to the power of t to the power of * open parenthesis beta minus u
sub 1 open parenthesis t closing parenthesis closing parenthesis plus open parenthesis u sub 2 open parenthesis t
closing parenthesis minus gamma closing parenthesis dt comma

In both cases the cost is linear in the controls u sub 1 and u sub 2 period .. In the first case the
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( called shortly removal rate ) . With respect to the second requirement we assume ,
for mathematical simplicity , that this reduction ( increase ) is bounded below ( above
) and the campaigns cost are linear on the controls . With those hypotheses the
problem renders itself to analytical treatment and we can prove the main facts about
the optimal campaign . The theorems of section 4 reduce the dimension of the optimal
problem allowing a complete numerical study of the problem .

Application of control theory to epidemics is a very large field . A comprehensive
survey of control theory applied to epidemiology was performed by Wickwire [ 1 7 ] .
Many different models with different objective functions have been proposed ( see
[ 8 , 9 , 1 2 ] and more recently [ 3 , 1 8 ] ) . A major difficulty in applying control theoretic
methods to practical epidemiology problems is the commonly made assumption that one
has total knowledge of the state of the epidemics [ 7 ] .

2 . Statement of the problem
We denote by S(t), I(t), R(t) the number of susceptible , infectives and removed in

a closed population of size N at time t. We assume the controlled dynamics

Ṡ = −u1SI,

İ = u1SI − u2I, (2.1)

Ṙ = u2I,

The above models assume a mass - action type interaction ( for more realistic inter -
actions see [ 4 ] ) . We let positive constants β and γ denote the infection and removal
rates respectively without the influence of an education campaign . Our controls are
u1(t), u2(t) with u1(t) ∈ [βm, β] and u2(t) ∈ [γ, γM ] with 0 < βm. Observe
that u1(t) and u2(t) regulate the goals and efforts of two types of campaigns . For
example , if u2(t) = γ for all t we are controlling only the infection rate . In this
case u1(t) = β will correspond to not having a campaign affecting the susceptibles and
u1(t) = βm will correspond to the maximum effort that can be made . The reciprocal
case will be if u1(t) = β for all t. In this scenario we will be controlling only the
removal rate γ. The above considerations motivate the introduction of the
following cost constraints .

J1 =

∫ t∗

0

[(β − u1(t)) + (u2(t)− γ)]I(t)dt, (2.2)

J2 =

∫ t∗

0

(β − u1(t)) + (u2(t)− γ)dt, (2.3)

In both cases the cost is linear in the controls u1 and u2. In the first case the
cost of the campaign is supposed to be proportional to the number of infected ( if one
assumes that the number of infected is proportional to the number of regions where the
disease o ccurs and therefore , to the number of regions to be covered by the campaign
, higher the number of infected , higher the costs ) . The second case assumes that
the cost is independent of the number of infected .

Our goal will be to find the optimal control strategies that minimize the total number
of infected over the course of the epidemic outbreak ( equivalently , that
maximize the total number of susceptibles ) . In this work , the end of the epidemic
outbreak will be defined as a ( very large ) time instant t∗ for which I(t∗) < 1( see
remark ( 2 . 1 ) about the existence of t∗). In other words , t∗ is the first time such that
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\noindent $ I ( t ˆ{ ∗ } ) < 1 . $ \quad This i s a t e c h n i c a l i t y in order to avoid dea l i ng with a i n f i n i t e hor i zon
c o n t r o l problem . \quad Since in the s i m p l i f i e d SIR model the only way to ente r in the
removed c l a s s i s from the i n f e c t e d c l a s s , the t o t a l number o f i n f e c t e d at the end o f

\noindent the epidemics i s g iven by $ \ lim { t \rightarrow \ infty } R (
t ) . $ However ,

\ [ \dot{R} = \gamma I , \ ]

\noindent and s i n c e we always assume $ R ( 0 ) = 0 , $ we obta in that the t o t a l number o f i n f e c t e d
i s g iven by

\ [ \ lim { t \rightarrow \ infty } R ( t ) = \ int ˆ{ \ infty } { 0 }
\gamma I ( t ) dt . \ ]

\noindent Remark 2 . 1 . \quad We make some remarks that are important f o r what f o l l o w s .

\centerline {( 1 ) \quad Since $ S ( t ) + I ( t ) + R ( t
) = N $ we w i l l i gno r e the l a s t equat ion o f ( 2 . 1 ) . }

( 2 ) \quad The s e t $ M = \{ I \geq 0 , S \geq 0 , S + I
\ leq N \} $ i s an i n v a r i a n t s e t f o r system ( 2 . 1 ) .

( 3 ) \quad In the s i m p l i f i e d SIR model we always have that $ \ lim { t \rightarrow
\ infty } I ( t ) = 0 ( $ see e . g .

\ [ [ 6 ] ) . \ ]

\noindent Since we are working only on $ M $ and the c o n t r o l s $ u { 1 }$ \ h f i l l and
$ u { 2 }$ \ h f i l l are bounded and

\noindent p o s i t i v e , we w i l l always have that $ \ lim { t \rightarrow \ infty }
I ( t ) = 0 $ f o r any c o n t r o l . This e s t a b l i s h e s

\noindent the e x i s t e n c e o f $ t ˆ{ ∗ } . $

The constant \quad co s t \quad c o n s t r a i n t s \quad $ J { 1 }$ \quad and \quad $ J { 2 }$
\quad can be imposed in t roduc ing a new

v a r i a b l e $ w $ to our system . We obta in the two c o n t r o l systems

\begin { a l i g n ∗}
\dot{S} = − u { 1 } SI , \\ \dot{ I } = u { 1 } SI − u { 2 } I

, Y { 1 } = \ int ˆ{ t ˆ{ ∗ }} { 0 } I ( t ) dt \ tag ∗{$ ( 2 . 4
) $}\\ \dot{w} = ( ˆ{ ( } \beta − u { 1 } ( t ) ) + ( u { 2 }
( t ) − \gamma ) ) I ( t ) , w ( 0 ) = 0 , w
( t ˆ{ ∗ } ) = C .
\end{ a l i g n ∗}

\noindent with co s t $ J { 1 } , $ and the system

\begin { a l i g n ∗}
\dot{S} = − u { 1 } SI , \\ \dot{ I } = u { 1 } SI − u { 2 } I

, Y { 2 } = \ int ˆ{ t ˆ{ ∗ }} { 0 } u { 2 } ( t ) I ( t ) dt \ tag ∗{$ (
2 . 5 ) $}\\ \dot{w} = ( \beta − u { 1 } ( t ) ) + (
u { 2 } ( t ) − \gamma ) , w ( 0 ) = 0 , w ( t ˆ{ ∗ }
) = C .
\end{ a l i g n ∗}

\noindent with co s t $ J { 2 } . $ In both systems we are imposing $ J { 1 }
= J { 2 } = C , $ where $ C $ i s a constant .

\noindent Remark 2 . 2 . \quad The constant $ C $ i s the value o f the t o t a l amount o f campaign e f f o r t .
We w i l l assume hence fo r th that $ C $ i s such that the c o n t r o l s can not be at the

\noindent maximum e f f o r t l e v e l during the whole time per iod .

\hspace ∗{\ f i l l }The problems w i l l be r e f e r r e d as problem C 1 and C 2 r e s p e c t i v e l y . The goa l i s to

\noindent f i n d the optimal c o n t r o l s to ( 2 . 4 ) that minimize $ Y { 1 }$ and the optimal c o n t r o l s to ( 2 . 5 )
that minimize $ Y { 2 } . $ We w i l l r e f e r to the f i r s t problem as problem C 1 and to the second

\noindent problem as problem $ C 2 . $ As i t w i l l turn out , problem C 1 i s t r i v i a l . We w i l l assume
that the admi s s ib l e c o n t r o l s $ u { 1 }$ and $ u { 2 }$ are measurable l o c a l l y bounded f u n c t i o n s .
S ince $ u { 1 }$ and $ u { 2 }$ appear l i n e a r l y in our c o n t r o l problems , an optimal c o n t r o l w i l l in

\noindent gene ra l be a combination o f bang − bang c o n t r o l s and s i n g u l a r c o n t r o l s ( s ee [ 1 4 , 1 1 ] ) .
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I open parenthesis t to the power of * closing parenthesis less 1 period .. This is a technicality in order to

avoid dealing with a infinite horizon
control problem period .. Since in the simplified SIR model the only way to enter in the
removed class is from the infected class comma the total number of infected at the end of
the epidemics is given by limint sub t right arrow infinity R open parenthesis t closing parenthesis period

However comma
R-dotaccent = gamma I comma
and since we always assume R open parenthesis 0 closing parenthesis = 0 comma we obtain that the total

number of infected
is given by
limint t right arrow infinity R open parenthesis t closing parenthesis = integral sub 0 to the power of infinity

gamma I open parenthesis t closing parenthesis dt period
Remark 2 period 1 period .. We make some remarks that are important for what follows period
open parenthesis 1 closing parenthesis .. Since S open parenthesis t closing parenthesis plus I open parenthesis

t closing parenthesis plus R open parenthesis t closing parenthesis = N we will ignore the last equation of open
parenthesis 2 period 1 closing parenthesis period

open parenthesis 2 closing parenthesis .. The set M = open brace I greater equal 0 comma S greater equal 0
comma S plus I less or equal N closing brace is an invariant set for system open parenthesis 2 period 1 closing
parenthesis period

open parenthesis 3 closing parenthesis .. In the simplified SIR model we always have that limint sub t right
arrow infinity I open parenthesis t closing parenthesis = 0 open parenthesis see e period g period

open square bracket 6 closing square bracket closing parenthesis period
Since we are working only on M and the controls u sub 1 .... and u sub 2 .... are bounded and
positive comma we will always have that limint sub t right arrow infinity I open parenthesis t closing parenthesis

= 0 for any control period This establishes
the existence of t to the power of * period
The constant .. cost .. constraints .. J sub 1 .. and .. J sub 2 .. can be imposed introducing a new
variable w to our system period We obtain the two control systems
S-dotaccent = minus u sub 1 SI comma Equation: open parenthesis 2 period 4 closing parenthesis .. I-

dotaccent = u sub 1 SI minus u sub 2 I comma Y sub 1 = integral sub 0 to the power of t to the power of * I
open parenthesis t closing parenthesis dt w-dotaccent = open parenthesis to the power of parenleftbig beta minus
u sub 1 open parenthesis t closing parenthesis parenrightbig plus parenleftbig u sub 2 open parenthesis t closing
parenthesis minus gamma parenrightbig closing parenthesis I open parenthesis t closing parenthesis comma w
open parenthesis 0 closing parenthesis = 0 comma w open parenthesis t to the power of * closing parenthesis =
C period

with cost J sub 1 comma and the system
S-dotaccent = minus u sub 1 SI comma Equation: open parenthesis 2 period 5 closing parenthesis .. I-dotaccent

= u sub 1 SI minus u sub 2 I comma Y sub 2 = integral sub 0 to the power of t to the power of * u sub 2 open
parenthesis t closing parenthesis I open parenthesis t closing parenthesis dt w-dotaccent = parenleftbig beta minus
u sub 1 open parenthesis t closing parenthesis parenrightbig plus parenleftbig u sub 2 open parenthesis t closing
parenthesis minus gamma parenrightbig comma w open parenthesis 0 closing parenthesis = 0 comma w open
parenthesis t to the power of * closing parenthesis = C period

with cost J sub 2 period In both systems we are imposing J sub 1 = J sub 2 = C comma where C is a constant
period

Remark 2 period 2 period .. The constant C is the value of the total amount of campaign effort period
We will assume henceforth that C is such that the controls can not be at the
maximum effort level during the whole time period period
The problems will be referred as problem C 1 and C 2 respectively period The goal is to
find the optimal controls to open parenthesis 2 period 4 closing parenthesis that minimize Y sub 1 and the

optimal controls to open parenthesis 2 period 5 closing parenthesis
that minimize Y sub 2 period We will refer to the first problem as problem C 1 and to the second
problem as problem C 2 period As it will turn out comma problem C 1 is trivial period We will assume
that the admissible controls u sub 1 and u sub 2 are measurable lo cally bounded functions period
Since u sub 1 and u sub 2 appear linearly in our control problems comma an optimal control will in
general be a combination of bang hyphen bang controls and singular controls open parenthesis see open square

bracket 1 4 comma 1 1 closing square bracket closing parenthesis period
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I(t∗) < 1. This is a technicality in order to avoid dealing with a infinite horizon
control problem . Since in the simplified SIR model the only way to enter in the
removed class is from the infected class , the total number of infected at the end of
the epidemics is given by limt→∞R(t). However ,

Ṙ = γI,

and since we always assume R(0) = 0, we obtain that the total number of infected is
given by

lim
t→∞

R(t) =

∫ ∞
0

γI(t)dt.

Remark 2 . 1 . We make some remarks that are important for what follows .
( 1 ) Since S(t) + I(t) +R(t) = N we will ignore the last equation of ( 2 . 1 ) .

( 2 ) The set M = {I ≥ 0, S ≥ 0, S+ I ≤ N} is an invariant set for system ( 2 . 1
) . ( 3 ) In the simplified SIR model we always have that limt→∞ I(t) = 0( see e . g .

[6]).

Since we are working only on M and the controls u1 and u2 are bounded and
positive , we will always have that limt→∞ I(t) = 0 for any control . This establishes
the existence of t∗.

The constant cost constraints J1 and J2 can be imposed introducing
a new variable w to our system . We obtain the two control systems

Ṡ = −u1SI,

İ = u1SI − u2I, Y1 =

∫ t∗

0

I(t)dt (2.4)

ẇ = ((β − u1(t)) + (u2(t)− γ))I(t), w(0) = 0, w(t∗) = C.

with cost J1, and the system

Ṡ = −u1SI,

İ = u1SI − u2I, Y2 =

∫ t∗

0

u2(t)I(t)dt (2.5)

ẇ = (β − u1(t)) + (u2(t)− γ), w(0) = 0, w(t∗) = C.

with cost J2. In both systems we are imposing J1 = J2 = C, where C is a constant .
Remark 2 . 2 . The constant C is the value of the total amount of campaign
effort . We will assume henceforth that C is such that the controls can not be at the
maximum effort level during the whole time period .

The problems will be referred as problem C 1 and C 2 respectively . The goal is to
find the optimal controls to ( 2 . 4 ) that minimize Y1 and the optimal controls to ( 2
. 5 ) that minimize Y2. We will refer to the first problem as problem C 1 and to the
second
problem as problem C2. As it will turn out , problem C 1 is trivial . We will assume that
the admissible controls u1 and u2 are measurable lo cally bounded functions . Since u1

and u2 appear linearly in our control problems , an optimal control will in
general be a combination of bang - bang controls and singular controls ( see [ 1 4 , 1 1
] ) .
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\centerline {3 . \quad Optimal ity Problem C 1 }

\hspace ∗{\ f i l l }Problem C 1 i s such that a l l the d i f f e r e n t i a l equat ions invo lved are m u l t i p l i e d by

\noindent the p o s i t i v e func t i on $ I ( t ) . $ \ h f i l l This mot ivates the i n t r o d u c t i o n o f a new parameter
$ s $

\noindent de f ined by

\ [ s ( t ) = \ int ˆ{ t } { 0 } I ( t ) dt . \ ]

\noindent Observing that $\ f r a c { d }{ dt } = I \ f r a c { d }{ ds }$ we obta in f o r the o b j e c t i v e f u n c t i o n a l that

\ [ Y { 1 } = \ int ˆ{ t ˆ{ ∗ }} { 0 } Idt = \ int ˆ{ s ˆ{ ∗ }} { 0 } ds =
s ˆ{ ∗ } , \ ]

\noindent where $ s ˆ{ ∗ } = \ int ˆ{ t ˆ{ ∗ }} { 0 } I ( t ) dt . $
There fore , problem C 1 wr i t e as the minimum time problem

\begin { a l i g n ∗}
S ˆ{ \prime } = − u { 1 } S , \\ I ˆ{ \prime } = u { 1 } S − u { 2 }\ tag ∗{$ (

3 . 1 ) $}\\ w ˆ{ \prime } = ( \beta − u { 1 } ) + ( u { 2 }
− \gamma ) , w ( 0 ) = 0 , w ( s ˆ{ ∗ } ) = C ,
\end{ a l i g n ∗}

\noindent where $ \prime = \ f r a c { d }{ ds } { , }$ and $ s ˆ{ ∗ } = \ int ˆ{ t ˆ{ ∗ }} { 0 }
I ( t ) dt . $ \ h f i l l Now we see that in order f o r the v a r i a b l e $ w (
s ) $

\noindent ach ieve the value $ C $ in the s m a l l e s t p o s s i b l e time $ s , $ i t s u f f i c e s that the d e r i v a t i v e
$ w ˆ{ \prime }$ be the l a r g e s t p o s s i b l e , t h e r e f o r e i t s u f f i c e s that $ u { 1 }

( s ) = \beta { m }$ and $ u { 2 } ( s ) = \gamma M . $

\centerline {4 . \quad Optimal ity Problem C 2 }

\hspace ∗{\ f i l l }Our main t o o l f o r the study o f the opt ima l i ty o f system ( 2 . 5 ) w i l l be the Pon −

\noindent t ryag in Maximum P r i n c i p l e ( PMP ) \quad [ 1 , 1 4 ] . \quad Let $ p S
, p I $ and $ p w $ denote the a d j o i n t
v a r i a b l e s to $ S , I , $ and $ w $ r e s p e c t i v e l y . The Hamiltonian f o r problem

$ C 2 $ i s

\ [ H = p S ( − u { 1 } SI ) + p I ( u { 1 } SI − u { 2 }
I ) + p w [ ( \beta − u { 1 } ( t ) ) + ( u { 2 }
( t ) − \gamma ) ] − u { 2 } ( t ) I . \ ]

\noindent That we wr i t e as

\begin { a l i g n ∗}
H = g + u { 1 } \phi 1 + u { 2 } \phi 2 , \ tag ∗{$ ( 4 .

1 ) $}
\end{ a l i g n ∗}

\noindent where

\ [ g \equiv p w ( \beta − \gamma ) , \phi 1 \equiv SI (
p I − p S ) − p w , \phi 2 \equiv − I ( p I +
1 ) + p w . \ ]

\noindent The a d j o i n t v a r i a b l e s s a t i s f y Hamilton ’ s equat ions

\begin { a l i g n ∗}
\dot{p} S = − \ f r a c { \partial H }{ \partial S } { , } \dot{p} I =
− \ f r a c { \partial H }{ \partial I } { , } \dot{p} w = − \ f r a c { \partial
H }{ \partial w } { , }\ tag ∗{$ ( 4 . 2 ) $}
\end{ a l i g n ∗}

\noindent that are g iven by

\begin { a l i g n ∗}
\dot{p} S = u { 1 } I ( p s − p I ) , \\ \dot{p} I =

u { 1 } S ( p s − p I ) + u { 2 } ( p I + 1 ) , \ tag ∗{$ (
4 . 3 ) $}\\ \dot{p} w = 0 .
\end{ a l i g n ∗}

\noindent By the PMP , the optimal c o n t r o l s $ u { 1 } ( t ) , u { 2 }
( t ) $ are the ones that maximize $ H ( $ we

are i gno r i ng abnormal c o n t r o l s s ee [ 1 ] ) . \quad PMP i m p l i e s that at optimal t r a j e c t o r i e s
the f o l l o w i n g t r a n s v e r s a l i t y c o n d i t i o n s w i l l hold [ 1 4 ]

\begin { a l i g n ∗}
p S ( 0 ) = p I ( 0 ) = 0 and p S ( t ˆ{ ∗ } )

= p I ( t ˆ{ ∗ } ) = 0 . \ tag ∗{$ ( 4 . 4 ) $}
\end{ a l i g n ∗}
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3 period .. Optimality Problem C 1
Problem C 1 is such that all the differential equations involved are multiplied by
the positive function I open parenthesis t closing parenthesis period .... This motivates the introduction of a

new parameter s
defined by
s open parenthesis t closing parenthesis = integral sub 0 to the power of t I open parenthesis t closing

parenthesis dt period
Observing that d divided by dt = I d divided by ds we obtain for the objective functional that
Y sub 1 = integral sub 0 to the power of t to the power of * Idt = integral sub 0 to the power of s to the

power of * ds = s to the power of * comma
where s to the power of * = integral sub 0 to the power of t to the power of * I open parenthesis t closing

parenthesis dt period Therefore comma problem C 1 write as the minimum time problem
S to the power of prime = minus u sub 1 S comma Equation: open parenthesis 3 period 1 closing parenthesis ..

I to the power of prime = u sub 1 S minus u sub 2 w to the power of prime = open parenthesis beta minus u sub
1 closing parenthesis plus open parenthesis u sub 2 minus gamma closing parenthesis comma w open parenthesis
0 closing parenthesis = 0 comma w open parenthesis s to the power of * closing parenthesis = C comma

where prime = d divided by ds sub comma and s to the power of * = integral sub 0 to the power of t to the
power of * I open parenthesis t closing parenthesis dt period .... Now we see that in order for the variable w open
parenthesis s closing parenthesis

achieve the value C in the smallest possible time s comma it suffices that the derivative
w to the power of prime be the largest possible comma therefore it suffices that u sub 1 open parenthesis s

closing parenthesis = beta sub m and u sub 2 open parenthesis s closing parenthesis = gamma M period
4 period .. Optimality Problem C 2
Our main tool for the study of the optimality of system open parenthesis 2 period 5 closing parenthesis will

be the Pon hyphen
tryagin Maximum Principle open parenthesis PMP closing parenthesis .. open square bracket 1 comma 1 4

closing square bracket period .. Let p S comma p I and p w denote the adjoint
variables to S comma I comma and w respectively period The Hamiltonian for problem C 2 is
H = p S open parenthesis minus u sub 1 SI closing parenthesis plus p I open parenthesis u sub 1 SI minus u

sub 2 I closing parenthesis plus p w open square bracket open parenthesis beta minus u sub 1 open parenthesis t
closing parenthesis closing parenthesis plus open parenthesis u sub 2 open parenthesis t closing parenthesis minus
gamma closing parenthesis closing square bracket minus u sub 2 open parenthesis t closing parenthesis I period

That we write as
Equation: open parenthesis 4 period 1 closing parenthesis .. H = g plus u sub 1 phi 1 plus u sub 2 phi 2

comma
where
g equiv p w open parenthesis beta minus gamma closing parenthesis comma phi 1 equiv SI open parenthesis

p I minus p S closing parenthesis minus p w comma phi 2 equiv minus I open parenthesis p I plus 1 closing
parenthesis plus p w period

The adjoint variables satisfy Hamilton quoteright s equations
Equation: open parenthesis 4 period 2 closing parenthesis .. p-dotaccent S = minus partialdiff H divided by

partialdiff S sub comma dotaccent-p I = minus partialdiff H divided by partialdiff I sub comma p-dotaccent w =
minus partialdiff H divided by partialdiff w sub comma

that are given by
p-dotaccent S = u sub 1 I open parenthesis p s minus p I closing parenthesis comma Equation: open parenthesis

4 period 3 closing parenthesis .. p-dotaccent I = u sub 1 S open parenthesis p s minus p I closing parenthesis plus
u sub 2 open parenthesis p I plus 1 closing parenthesis comma p-dotaccent w = 0 period

By the PMP comma the optimal controls u sub 1 open parenthesis t closing parenthesis comma u sub 2 open
parenthesis t closing parenthesis are the ones that maximize H open parenthesis we

are ignoring abnormal controls see open square bracket 1 closing square bracket closing parenthesis period ..
PMP implies that at optimal traj ectories

the following transversality conditions will hold open square bracket 1 4 closing square bracket
Equation: open parenthesis 4 period 4 closing parenthesis .. p S open parenthesis 0 closing parenthesis = p I

open parenthesis 0 closing parenthesis = 0 and p S open parenthesis t to the power of * closing parenthesis = p
I open parenthesis t to the power of * closing parenthesis = 0 period
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3 . Optimality Problem C 1
Problem C 1 is such that all the differential equations involved are multiplied by

the positive function I(t). This motivates the introduction of a new parameter s
defined by

s(t) =

∫ t

0

I(t)dt.

Observing that d
dt = I d

ds we obtain for the objective functional that

Y1 =

∫ t∗

0

Idt =

∫ s∗

0

ds = s∗,

where s∗ =
∫ t∗

0
I(t)dt. Therefore , problem C 1 write as the minimum time problem

S′ = −u1S,

I ′ = u1S − u2 (3.1)

w′ = (β − u1) + (u2 − γ), w(0) = 0, w(s∗) = C,

where ′ = d
ds ,

and s∗ =
∫ t∗

0
I(t)dt. Now we see that in order for the variable w(s)

achieve the value C in the smallest possible time s, it suffices that the derivative w′ be
the largest possible , therefore it suffices that u1(s) = βm and u2(s) = γM.

4 . Optimality Problem C 2
Our main tool for the study of the optimality of system ( 2 . 5 ) will be the Pon -

tryagin Maximum Principle ( PMP ) [ 1 , 1 4 ] . Let pS, pI and pw denote the
adjoint variables to S, I, and w respectively . The Hamiltonian for problem C2 is

H = pS(−u1SI) + pI(u1SI − u2I) + pw[(β − u1(t)) + (u2(t)− γ)]− u2(t)I.

That we write as

H = g + u1φ1 + u2φ2, (4.1)

where

g ≡ pw(β − γ), φ1 ≡ SI(pI − pS)− pw, φ2 ≡ −I(pI + 1) + pw.

The adjoint variables satisfy Hamilton ’ s equations

ṗS = −∂H
∂S ,

ṗI = −∂H
∂I ,

ṗw = −∂H
∂w ,

(4.2)

that are given by

ṗS = u1I(ps− pI),

ṗI = u1S(ps− pI) + u2(pI + 1), (4.3)

ṗw = 0.

By the PMP , the optimal controls u1(t), u2(t) are the ones that maximize H( we are
ignoring abnormal controls see [ 1 ] ) . PMP implies that at optimal traj ectories the
following transversality conditions will hold [ 1 4 ]

pS(0) = pI(0) = 0 and pS(t∗) = pI(t∗) = 0. (4.4)
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This is implied by the boundary conditions to be satisfied by w. The derivatives of the
functions φ1 and φ2 along the flow of hamiltonian dynamical system induced
by ( 4 . 1 ) can be computed using ( 2 . 5 ) and ( 4 . 3 ) . We obtain

φ̇1 = u2IS(pS + 1), (4.5)

φ̇2 = −u1IS(pS + 1). (4.6)

From where it follows that

u1φ̇1 + u2φ̇2 = 0.

Remark 4 . 1 . The existence of the optimal control for problem C2 is given by an
application of Filipov ’ s theorem [ 1 , 1 5 ] : We observe that the vector field X defined
by ( 2 . 5 ) is bounded in M and complete (M is compact ) . Also the controls are
bounded and for each fixed allowed pair (u1, u2) the set

X̄(u1, u2) = {SI

 u1

−u1

0

 + I

 0
u2

0

 , forS, I ∈M}

is convex , which implies that the set X(u1, u2) = {X for S, I ∈ M} is convex . To
apply directly Filipov ’ s theorem it remains to establish the compact support of the
vector fields . But this is not necessary by the boundness and completeness of the
vector fields ( see discussion in [ 1 ] and [ 5 ] ) .
4 . 1 . Controlling the infection parameter . In this subsection we will
control only the infection parameter ; i . e . , we will assume u2(t) = γ for all
t ≥ 0. The pre - hamiltonian ( 4 . 1 ) is given by

H = βpw − γI(pI + 1) + u1(t)φ1. (4.7)

We observe that the derivative of the switching function φ̇1 = γSI(pS + 1) is a
continuous function and its number of zeros is determined only by the behavior of

pSsince− γIS 6= 0.

Lemma 4 . 2 . If u2(t) = γ in th e control problem ( 2 . 5 ) then there is no open
interval

whereφ1(t) = φ̇1(t) = 0.

Proof . Assume there exists an open interval D, where φ1(t) = φ̇1(t) = 0 for t ∈ D.
The derivative of φ1 being zero implies that pS = −1 in D what implies that ṗS = 0
and by the first equation of ( 4 . 3 ) we have that pI = pS = −1 in D; but equations
( 4 . 3 ) imply that pI = pS = −1 for all future t(pI = pS = −1 is an equilibrium point
for the vector field ( 4 . 3 ) ) what contradicts the transversality condition (4.4). �
Theorem 4 . 3 . If u2(t) = γ in the control pro b lem ( 2 . 5 ) , th e optimal
control u∗1(t) has at most two switches .
Proof . First we observe that when φ1 = 0 we have by ( 4 . 7 ) that

H − βpw = −γI(pI + 1).

For latter use we multiply this equation by −Sγ obtaining the equality
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\noindent This i s impl i ed by the boundary c o n d i t i o n s to be s a t i s f i e d by $ w . $
The d e r i v a t i v e s o f

the f u n c t i o n s $ \phi 1 $ and $ \phi 2 $ along the f low o f hami l tonian dynamical system induced

\noindent by ( 4 . 1 ) can be computed us ing ( 2 . 5 ) and ( 4 . 3 ) . We obta in

\begin { a l i g n ∗}
\dot{\phi} 1 = u { 2 } IS ( p S + 1 ) , \ tag ∗{$ ( 4 .

5 ) $}\\ \dot{\phi} 2 = − u { 1 } IS ( p S + 1 ) . \ tag ∗{$ (
4 . 6 ) $}
\end{ a l i g n ∗}

\noindent From where i t f o l l o w s that

\ [ u { 1 } \dot{\phi} 1 + u { 2 } \dot{\phi} 2 = 0 . \ ]

\noindent Remark 4 . 1 . \quad The e x i s t e n c e o f the optimal c o n t r o l f o r problem $ C { 2 }$
i s g iven by an

a p p l i c a t i o n o f F i l i p o v ’ s theorem [ 1 , 1 5 ] : We observe that the vec to r f i e l d
$ X $ de f ined

by ( 2 . 5 ) i s bounded in $ M $ and complete $ ( M $ i s compact ) . \quad Also the c o n t r o l s are
bounded and f o r each f i x e d al lowed pa i r $ ( u { 1 } , u { 2 } ) $ the s e t

\ [ \bar{X} ( u { 1 } , u { 2 } ) = \{ SI \ l e f t (\ begin { array }{ c} u { 1 }\\
− u { 1 }\\ 0 \end{ array }\ right ) + I \ l e f t (\ begin { array }{ c} 0 \\ u { 2 }\\
0 \end{ array }\ right ) , f o r S , I \ in M \} \ ]

\noindent i s convex , which i m p l i e s that the s e t $ X ( u { 1 } , u { 2 }
) = \{ X $ f o r $ S , I \ in M \} $ i s convex . \quad To

apply d i r e c t l y F i l i p o v ’ s theorem i t remains to e s t a b l i s h the compact support o f the

\noindent vec to r f i e l d s . \quad But t h i s i s not nece s sa ry by the boundness and completeness o f the
vec to r f i e l d s ( s ee d i s c u s s i o n in [ 1 ] and [ 5 ] ) .

\noindent 4 . 1 . \quad Cont ro l l i ng the i n f e c t i o n parameter . \quad In t h i s subs e c t i on we w i l l c o n t r o l
only the i n f e c t i o n parameter ; \quad i . e . , we w i l l assume $ u { 2 } ( t

) = \gamma $ f o r a l l $ t \geq 0 . $ \quad The
pre − hami ltonian ( 4 . 1 ) i s g iven by

\begin { a l i g n ∗}
H = \beta p w − \gamma I ( p I + 1 ) + u { 1 } (

t ) \phi 1 . \ tag ∗{$ ( 4 . 7 ) $}
\end{ a l i g n ∗}

\noindent We observe that the d e r i v a t i v e o f the sw i t ch ing func t i on $ \dot{\phi}
1 = \gamma SI ( p S + 1 ) $ i s a

cont inuous func t i on and i t s number o f z e r o s i s determined only by the behavior o f

\begin { a l i g n ∗}
p S s i n c e − \gamma IS \not= 0 .
\end{ a l i g n ∗}

\noindent Lemma 4 . 2 . I f $ u { 2 } ( t ) = \gamma $ in th e c o n t r o l problem ( 2 . 5 ) then there i s no open i n t e r v a l

\begin { a l i g n ∗}
where \phi 1 ( t ) = \dot{\phi} 1 ( t ) = 0 .
\end{ a l i g n ∗}

\noindent Proof . \quad Assume there e x i s t s an open i n t e r v a l $ D , $ where $ \phi
1 ( t ) = \dot{\phi} 1 ( t ) = 0 $ f o r $ t \ in D . $

The d e r i v a t i v e o f $ \phi 1 $ being zero i m p l i e s that $ p S = − 1 $ in
$ D $ what i m p l i e s that $ \dot{p} S = 0 $

and by the f i r s t equat ion o f ( 4 . 3 ) we have that $ p I = p S = −
1 $ in $ D ; $ but equat ions

\noindent ( 4 . 3 ) imply that $ p I = p S = − 1 $ f o r a l l f u tu r e
$ t ( p I = p S = − 1 $ i s an equ i l i b r ium point

\noindent f o r the vec to r f i e l d ( 4 . 3 ) ) what c o n t r a d i c t s the t r a n s v e r s a l i t y cond i t i on
$ ( 4 . 4 ) . \ square $

\noindent Theorem 4 . 3 . \quad I f $ u { 2 } ( t ) = \gamma $ in the c o n t r o l pro b lem ( 2 . 5 ) , th e optimal c o n t r o l
$ u ˆ{ ∗ }{ 1 } ( t ) $

has at most two sw i t che s .

\noindent Proof . \quad F i r s t we observe that when $ \phi 1 = 0 $ we have by ( 4 . 7 ) that

\ [ H − \beta p w = − \gamma I ( p I + 1 ) . \ ]

\noindent For l a t t e r use we mult ip ly t h i s equat ion by $ − \ f r a c { S }{ \gamma }$
obta in ing the e q u a l i t y

\begin { a l i g n ∗}
SI ( p I + 1 ) = − \ f r a c { S }{ \gamma } ( H − \beta p

w ) . \ tag ∗{$ ( 4 . 8 ) $}
\end{ a l i g n ∗}

\noindent When $ \phi 1 = 0 $ we have that $ SI ( p I − p S
) = p w . $ So lv ing f o r $ p S $ and s u b s t i t u t i n g back

in $ \dot{\phi} 1 , $ we obta in

\ [ \dot{\phi} 1 = \gamma SI ( p S + 1 ) = \gamma ( SI
( p I + 1 ) − p w ) . \ ]
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This is implied by the boundary conditions to be satisfied by w period The derivatives of
the functions phi 1 and phi 2 along the flow of hamiltonian dynamical system induced
by open parenthesis 4 period 1 closing parenthesis can be computed using open parenthesis 2 period 5 closing

parenthesis and open parenthesis 4 period 3 closing parenthesis period We obtain
Equation: open parenthesis 4 period 5 closing parenthesis .. phi-dotaccent 1 = u sub 2 IS open parenthesis p

S plus 1 closing parenthesis comma Equation: open parenthesis 4 period 6 closing parenthesis .. phi-dotaccent 2
= minus u sub 1 IS open parenthesis p S plus 1 closing parenthesis period

From where it follows that
u sub 1 phi-dotaccent 1 plus u sub 2 dotaccent-phi 2 = 0 period
Remark 4 period 1 period .. The existence of the optimal control for problem C sub 2 is given by an
application of Filipov quoteright s theorem open square bracket 1 comma 1 5 closing square bracket : We

observe that the vector field X defined
by open parenthesis 2 period 5 closing parenthesis is bounded in M and complete open parenthesis M is

compact closing parenthesis period .. Also the controls are
bounded and for each fixed allowed pair open parenthesis u sub 1 comma u sub 2 closing parenthesis the set
X-macron open parenthesis u sub 1 comma u sub 2 closing parenthesis = open brace SI Row 1 u sub 1 Row

2 minus u sub 1 Row 3 0 . plus I Row 1 0 Row 2 u sub 2 Row 3 0 . comma for S comma I in M closing brace
is convex comma which implies that the set X open parenthesis u sub 1 comma u sub 2 closing parenthesis =

open brace X for S comma I in M closing brace is convex period .. To
apply directly Filipov quoteright s theorem it remains to establish the compact support of the
vector fields period .. But this is not necessary by the boundness and completeness of the
vector fields open parenthesis see discussion in open square bracket 1 closing square bracket and open square

bracket 5 closing square bracket closing parenthesis period
4 period 1 period .. Controlling the infection parameter period .. In this subsection we will control
only the infection parameter semicolon .. i period e period comma we will assume u sub 2 open parenthesis t

closing parenthesis = gamma for all t greater equal 0 period .. The
pre hyphen hamiltonian open parenthesis 4 period 1 closing parenthesis is given by
Equation: open parenthesis 4 period 7 closing parenthesis .. H = beta p w minus gamma I open parenthesis

p I plus 1 closing parenthesis plus u sub 1 open parenthesis t closing parenthesis phi 1 period
We observe that the derivative of the switching function phi-dotaccent 1 = gamma SI open parenthesis p S

plus 1 closing parenthesis is a
continuous function and its number of zeros is determined only by the behavior of
p S since minus gamma IS negationslash-equal 0 period
Lemma 4 period 2 period If u sub 2 open parenthesis t closing parenthesis = gamma in th e control problem

open parenthesis 2 period 5 closing parenthesis then there is no open interval
where phi 1 open parenthesis t closing parenthesis = phi-dotaccent 1 open parenthesis t closing parenthesis =

0 period
Proof period .. Assume there exists an open interval D comma where phi 1 open parenthesis t closing

parenthesis = phi-dotaccent 1 open parenthesis t closing parenthesis = 0 for t in D period
The derivative of phi 1 being zero implies that p S = minus 1 in D what implies that p-dotaccent S = 0
and by the first equation of open parenthesis 4 period 3 closing parenthesis we have that p I = p S = minus

1 in D semicolon but equations
open parenthesis 4 period 3 closing parenthesis imply that p I = p S = minus 1 for all future t open parenthesis

p I = p S = minus 1 is an equilibrium point
for the vector field open parenthesis 4 period 3 closing parenthesis closing parenthesis what contradicts the

transversality condition open parenthesis 4 period 4 closing parenthesis period square
Theorem 4 period 3 period .. If u sub 2 open parenthesis t closing parenthesis = gamma in the control pro

b lem open parenthesis 2 period 5 closing parenthesis comma th e optimal control u to the power of * 1 open
parenthesis t closing parenthesis

has at most two switches period
Proof period .. First we observe that when phi 1 = 0 we have by open parenthesis 4 period 7 closing parenthesis

that
H minus beta p w = minus gamma I open parenthesis p I plus 1 closing parenthesis period
For latter use we multiply this equation by minus S divided by gamma obtaining the equality
Equation: open parenthesis 4 period 8 closing parenthesis .. SI open parenthesis p I plus 1 closing parenthesis

= minus S divided by gamma open parenthesis H minus beta p w closing parenthesis period
When phi 1 = 0 we have that SI open parenthesis p I minus p S closing parenthesis = p w period Solving for

p S and substituting back
in phi-dotaccent 1 comma we obtain
phi-dotaccent 1 = gamma SI open parenthesis p S plus 1 closing parenthesis = gamma open parenthesis SI

open parenthesis p I plus 1 closing parenthesis minus p w closing parenthesis period

SI(pI + 1) = −S
γ

(H − βpw). (4.8)

When φ1 = 0 we have that SI(pI − pS) = pw. Solving for pS and substituting back in
φ̇1, we obtain

φ̇1 = γSI(pS + 1) = γ(SI(pI + 1)− pw).
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φ1,

φ̇1 = (βpw −H)S − pw. (4.9)

From equation ( 4 . 9 ) we define the function

h = (βpw −H)S − pw.

By the first equation of ( 2 . 1 ) we see that S is a strictly monotone function . There
- fore since pw and H are constant along the flow we have that h is a monotonic
function . ( 4 . 9 ) shows that at the zeros of φ1, φ̇1 = h. Therefore , we have
that
at the zeros of the C1 function φ1, the values of its derivative φ̇1 is a monotonic
function . Therefore φ̇1 can switch signs at most one time . What implies that φ1
can have at most two switches of sign ( and at most three zeros ). �
4 . 2 . Controlling the removal parameter . In this section we will assume
that u1 = β for all times . The pre - hamiltonian is

H = −pwγ + βSI(pI − pS) + u2φ2. (4.10)

We observe that φ̇2 = −βSI(pS + 1) is a continuous function . Lemma 4 . 4 . If
u1(t) = γ in th e control problem ( 2 . 5 ) then there is no s ingular

optimalcontrolu2(t).

The proof of the above lemma is similar to the proof of lemma ( 4 . 2 ) . Therefore
,
it is omitted . Theorem 4 . 5 . If u1(t) = β in th e control pro b lem ( 2 . 5 ) ,
the optimal contro l u2(t)
has at most two switches . Proof . When φ2 = 0 we have that pI − 1 = pw/I.
Since at the zeros of φ2 we have

H + γpw = βSI(pI − pS)

it follows that

φ̇2 = H + pw(γ − βS). (4.11)

The argument here is the same as the in proof of theorem ( 4 . 3 ) . The left hand side
of ( 4 . 1 1 ) is a monotonic function . Therefore we have that at the zeros of the C1

function φ2, φ̇2 can switch signs at most one time . Therefore φ2 can have at most
two switches of sign ( and at most three zeros ). �
4 . 3 . Controlling the infection and the removal parameters .
In this case we are working in a more complex case . We recall that φ̇1 = u2IS(pS+1)
and φ̇2 = −u21IS(pS + 1). The functions φ̇1 and φ̇2 depend on the controls and are
not
necessarily continuous ( we are assuming that u1(t) and u2(t) are measurable lo cally
bounded functions ) . Therefore φ1 and φ2 are not C1 functions and the previous
reasoning does not apply in this case .
Theorem 4 . 6 . Along the op timal s o lution the re is no time instant t̄ for
which
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Using ( 4 . 8 ) , we obta in that at the z e ro s o f $ \phi 1 , $

\begin { a l i g n ∗}
\dot{\phi} 1 = ( \beta p w − H ) S − p w ˆ{ . }\ tag ∗{$ (

4 . 9 ) $}
\end{ a l i g n ∗}

\noindent From equat ion ( 4 . 9 ) we d e f i n e the func t i on

\ [ h = ( \beta p w − H ) S − p w . \ ]

\noindent By the f i r s t equat ion o f ( 2 . 1 ) we see that $ S $ i s a s t r i c t l y monotone func t i on . There −
f o r e s i n c e $ p w $ \quad and $ H $ are constant along the f low we have that

$ h $ i s a monotonic
func t i on . \quad ( 4 . 9 ) shows that at the z e ro s o f $ \phi 1 , \dot{\phi}

1 = h . $ \quad There fore , we have that

\noindent at the z e ro s o f the $ C ˆ{ 1 }$ func t i on $ \phi 1 , $ the va lue s o f i t s d e r i v a t i v e
$ \dot{\phi} 1 $ i s a monotonic

\noindent f unc t i on . \quad There fore $ \dot{\phi} 1 $ can switch s i g n s at most one time . \quad What i m p l i e s that
$ \phi 1 $

can have at most two swi t che s o f s i gn ( and at most three z e ro s $ ) . \ square $

\noindent 4 . 2 . \quad Cont ro l l i ng the removal parameter . \quad In t h i s s e c t i o n we w i l l assume that
$ u { 1 } = \beta $ f o r a l l t imes . The pre − hami ltonian i s

\begin { a l i g n ∗}
H = − p w \gamma + \beta SI ( p I − p S ) + u { 2 }
\phi 2 . \ tag ∗{$ ( 4 . 1 0 ) $}
\end{ a l i g n ∗}

\noindent We observe that $ \dot{\phi} 2 = − \beta SI ( p S +
1 ) $ i s a cont inuous func t i on .
Lemma 4 . 4 . \quad I f $ u { 1 } ( t ) = \gamma $ in th e c o n t r o l problem ( 2 . 5 ) \quad then there i s no s i n g u l a r

\begin { a l i g n ∗}
optimal c o n t r o l u { 2 } ( t ) .
\end{ a l i g n ∗}

\hspace ∗{\ f i l l }The proo f o f the above lemma i s s i m i l a r to the proo f o f lemma ( 4 . 2 ) . There fore ,

\noindent i t i s omitted .
Theorem 4 . 5 . \quad I f $ u { 1 } ( t ) = \beta $ in th e c o n t r o l pro b lem ( 2 . 5 ) , the optimal contro l

$ u { 2 } ( t ) $

\noindent has at most two sw i t che s .
Proof . \quad When $ \phi 2 = 0 $ we have that $ p I − 1 = p

w / I . $ S ince at the z e ro s o f $ \phi 2 $ we have

\ [ H + \gamma p w = \beta SI ( p I − p S ) \ ]

\noindent i t f o l l o w s that

\begin { a l i g n ∗}
\dot{\phi} 2 = H + p w ( \gamma − \beta S ) . \ tag ∗{$ (

4 . 1 1 ) $}
\end{ a l i g n ∗}

\noindent The argument here i s the same as the in proo f o f theorem ( 4 . 3 ) . The l e f t hand s i d e

\noindent o f ( 4 . 1 1 ) i s a monotonic func t i on . \ h f i l l There fore we have that at the z e ro s o f the
$ C ˆ{ 1 }$

\noindent f unc t i on $ \phi 2 , \dot{\phi} 2 $ can switch s i g n s at most one time . \quad There fore
$ \phi 2 $ can have at most

two sw i t che s o f s i gn ( and at most three z e r o s $ ) . \ square $

\noindent 4 . 3 . \quad Cont ro l l i ng the \quad i n f e c t i o n and \quad the \quad removal \quad parameters . \quad In t h i s case
we are working in a more complex case . \quad We r e c a l l that $ \dot{\phi} 1 =

u { 2 } IS ( p S + 1 ) $ and
$ \dot{\phi} 2 = − u { 2 } 1 IS ( p S + 1 ) . $ The f u n c t i o n s

$ \dot{\phi} 1 $ and $ \dot{\phi} 2 $ depend on the c o n t r o l s and are not

\noindent n e c e s s a r i l y cont inuous ( we are assuming that $ u { 1 } ( t ) $ and
$ u { 2 } ( t ) $ are measurable l o c a l l y

\noindent bounded f u n c t i o n s ) . \quad There fore $ \phi 1 $ and $ \phi 2 $ are not
$ C ˆ{ 1 }$ f u n c t i o n s and the prev ious

reason ing does not apply in t h i s case .

\noindent Theorem 4 . 6 . \ h f i l l Along the \ h f i l l op t imal s o l u t i o n the re i s no time i n s t a n t
$ \bar{ t } $ f o r which

\begin { a l i g n ∗}
\phi 1 ( ˆ{ \bar{ t } } ) = \phi 2 ( ˆ{ \bar{ t } } ) = 0 .
\end{ a l i g n ∗}

\noindent Proof . \quad At $ \bar{ t } $ we would have that $ p S = p I
= − 1 $ what c o n t r a d i c t s the boundary

c o n d i t i o n s f o r $ w $ at $ t = t ˆ{ ∗ } . \ square $

A c o r o l l a r y o f t h i s f a c t i s that $ H − g \not= 0 . $ \quad As in lemma 4 . 2 , we can prove the
f o l l o w i n g r e s u l t .

6 .. C period CASTILHO .. EJDE hyphen 2 0 6 slash 1 2 5
Using open parenthesis 4 period 8 closing parenthesis comma we obtain that at the zeros of phi 1 comma
Equation: open parenthesis 4 period 9 closing parenthesis .. phi-dotaccent 1 = open parenthesis beta p w

minus H closing parenthesis S minus p w to the power of period
From equation open parenthesis 4 period 9 closing parenthesis we define the function
h = open parenthesis beta p w minus H closing parenthesis S minus p w period
By the first equation of open parenthesis 2 period 1 closing parenthesis we see that S is a strictly monotone

function period There hyphen
fore since p w .. and H are constant along the flow we have that h is a monotonic
function period .. open parenthesis 4 period 9 closing parenthesis shows that at the zeros of phi 1 comma

phi-dotaccent 1 = h period .. Therefore comma we have that
at the zeros of the C to the power of 1 function phi 1 comma the values of its derivative phi-dotaccent 1 is a

monotonic
function period .. Therefore phi-dotaccent 1 can switch signs at most one time period .. What implies that

phi 1
can have at most two switches of sign open parenthesis and at most three zeros closing parenthesis period

square
4 period 2 period .. Controlling the removal parameter period .. In this section we will assume that
u sub 1 = beta for all times period The pre hyphen hamiltonian is
Equation: open parenthesis 4 period 1 0 closing parenthesis .. H = minus p w gamma plus beta SI open

parenthesis p I minus p S closing parenthesis plus u sub 2 phi 2 period
We observe that phi-dotaccent 2 = minus beta SI open parenthesis p S plus 1 closing parenthesis is a continuous

function period
Lemma 4 period 4 period .. If u sub 1 open parenthesis t closing parenthesis = gamma in th e control problem

open parenthesis 2 period 5 closing parenthesis .. then there is no s ingular
optimal control u sub 2 open parenthesis t closing parenthesis period
The proof of the above lemma is similar to the proof of lemma open parenthesis 4 period 2 closing parenthesis

period Therefore comma
it is omitted period
Theorem 4 period 5 period .. If u sub 1 open parenthesis t closing parenthesis = beta in th e control pro b lem

open parenthesis 2 period 5 closing parenthesis comma the optimal contro l u sub 2 open parenthesis t closing
parenthesis

has at most two switches period
Proof period .. When phi 2 = 0 we have that p I minus 1 = p w slash I period Since at the zeros of phi 2 we

have
H plus gamma p w = beta SI open parenthesis p I minus p S closing parenthesis
it follows that
Equation: open parenthesis 4 period 1 1 closing parenthesis .. phi-dotaccent 2 = H plus p w open parenthesis

gamma minus beta S closing parenthesis period
The argument here is the same as the in proof of theorem open parenthesis 4 period 3 closing parenthesis

period The left hand side
of open parenthesis 4 period 1 1 closing parenthesis is a monotonic function period .... Therefore we have that

at the zeros of the C to the power of 1
function phi 2 comma phi-dotaccent 2 can switch signs at most one time period .. Therefore phi 2 can have

at most
two switches of sign open parenthesis and at most three zeros closing parenthesis period square
4 period 3 period .. Controlling the .. infection and .. the .. removal .. parameters period .. In this case
we are working in a more complex case period .. We recall that phi-dotaccent 1 = u sub 2 IS open parenthesis

p S plus 1 closing parenthesis and
phi-dotaccent 2 = minus u sub 2 1 IS open parenthesis p S plus 1 closing parenthesis period The functions

dotaccent-phi 1 and phi-dotaccent 2 depend on the controls and are not
necessarily continuous open parenthesis we are assuming that u sub 1 open parenthesis t closing parenthesis

and u sub 2 open parenthesis t closing parenthesis are measurable lo cally
bounded functions closing parenthesis period .. Therefore phi 1 and phi 2 are not C to the power of 1 functions

and the previous
reasoning does not apply in this case period
Theorem 4 period 6 period .... Along the .... op timal s o lution the re is no time instant t-macron for which
phi 1 open parenthesis to the power of t-macron closing parenthesis = phi 2 open parenthesis to the power of

macron-t closing parenthesis = 0 period
Proof period .. At t-macron we would have that p S = p I = minus 1 what contradicts the boundary
conditions for w at t = t to the power of * period square
A corollary of this fact is that H minus g negationslash-equal 0 period .. As in lemma 4 period 2 comma we

can prove the
following result period

φ1(t̄) = φ2(t̄) = 0.

Proof . At t̄ we would have that pS = pI = −1 what contradicts the boundary
conditions for w at t = t∗. �

A corollary of this fact is that H − g 6= 0. As in lemma 4 . 2 , we can prove the
following result .
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Theorem 4 . 7 . \quad There i s no time i n t e r v a l f o r which $ \phi 1 ( t )

= \dot{\phi} 1 ( t ) = 0 $ and f o r which

\begin { a l i g n ∗}
\phi 2 ( t ) = \dot{\phi} 2 ( t ) = 0 .
\end{ a l i g n ∗}

\noindent Theorem 4 . 8 . \quad The two types o f campaign , \quad that i s , \quad the campaign f o r reduc ing
$ \beta $

and the campaign f o r i n c r e a s i n g $ \gamma $ are e i t h e r time d i s j o i n t o r time nested .

\hspace ∗{\ f i l l }The theorem says , f o r example , that i f you s t a r t a reduc ing i n f e c t i o n ra t e cam −

\noindent paign ( RIRC ) , when there i s no campaign being made , then there are only two

\noindent p o s s i b i l i t i e s : e i t h e r you s t a r t and f i n i s h a i n c r e a s i n g removal r a t e campaign ( IRRC )
be f o r e you f i n i s h the RIRC of you wait u n t i l the RIRC i s over to s t a r t the IRRC .

\noindent Proof . \quad We r e c a l l that

\ [ H = g + u { 1 } \phi 1 + u { 2 } \phi 2 . \ ]

\noindent Since $ g $ i s constant and $ H $ i s a f i r s t i n t e g r a l f o r the c o n t r o l system i t f o l l o w s that
the two f u n c t i o n s $ f 1 \equiv u { 1 } \phi 1 $ and $ f 2 \equiv

u { 2 } \phi 2 $ add to a constant . The proo f i s a d i r e c t
consequence o f t h i s f a c t . \quad A campaign w i l l s t a r t or end at a switch time , i . e . \quad at
a time where some o f the f u n c t i o n s $ \phi 1 $ or $ \phi 2 $ changes s i gn . \quad Now l e t

$ \alpha \equiv H − g . $
There fore i f $ f 1 ( t { 1 } ) $ i s ze ro we have that $ f 2 = \alpha $

and v i c e − versa . \quad Assume , by way
o f c o n t r a d i c t i o n , that campaigns are n e i t h e r d i s j o in t n e i t h e r nested . \quad We have two
ca s e s to con s id e r a ) The number o f t o t a l sw i t che s i s two or b ) The number o f t o t a l

\noindent sw i t che s i s g r e a t e r than two . \ h f i l l ( the case o f only one switch s a t i s f i e s the theorem ) .

\noindent I f we are in case a ) the only s i t u a t i o n that does not s a t i s f y the theorem i s the

\noindent one where each func t i on has one switch and one o f the campaigns ( say campaign 2 )

\noindent s t a r t s when the other campaign ( say campaign 1 ) i s s t i l l on . In t h i s case , s i n c e the re
i s only one switch l e f t , i t f o l l o w s that only one o f the two w i l l be turned o f f . \quad As a
net r e s u l t we w i l l have at l e a s t one campaign being made during a l l epidemic time
what i s ru l ed out by the main hypothes i s o f the paper : one can not make campaign
f o r a l l t imes ( s ee remark 2 . 2 ) . In case b ) We have at l e a s t three z e ro s . Now assume ,
by way o f c o n t r a d i c t i o n , that the re are two campaigns that are n e i t h e r d i s j o i n t or
nested . \quad Then there i s at l e a s t one swi t ch ing time $ \bar{ t } $ f o r say $ f

2 $ that i s i n s i d e the
$ f 1 $ \quad campaign i n t e r v a l $ I = [ t { 1 } , t { 2 } ] . $

\quad Assume without l o s t o f g e n e r a l i t y that $ \bar{ t } $ i s a

\noindent s t a r t and that the re i s no other switch o f $ f 2 $ in the i n t e r v a l $ \bar{ I }
= [ ˆ{ \bar{ t } } , t { 2 } ] ( $ i n t e r s e c t i o n

\noindent hypothes i s ) Now at $ t { 1 }$ we have $ f 1 ( t { 1 } ) =
0 $ and $ f 2 ( t { 1 } ) = \alpha . $ \ h f i l l At $ t { 2 }$ we a l s o have that

\noindent $ f 1 ( t { 2 } ) = 0 $ and $ f 2 ( t { 2 } ) =
\alpha . $ \quad But t h i s impos s ib l e , s i n c e $ f 2 $ sw i t che s s i g n s at $ \bar{ t } $
and

does not switch s i g n s in the i n t e r v a l $ \bar{ I } { . } \ square $

\centerline {5 . \quad Cont ro l l i ng an Epidemic }

In t h i s s e c t i o n we study an example numer i ca l ly . \quad We w i l l be c o n t r o l l i n g only
the i n f e c t i o n parameter . \quad We assume that the campaign co s t i s independent o f
the number o f i n f e c t e d , \quad i . e . \quad We w i l l be c o n s i d e r i n g the problem $ C

2 . $ \quad Since the
optimal campaign has at most two sw i t che s i t w i l l c o n s i s t o f only one campaign
with maximal e f f o r t . There fore , to determine the optimal campaign , one must only
to determine the time i n s t a n t when i t s t a r t s . \quad We c a l l i t the optimal s t a r t . \quad The
s t r a t e g y to determine the optimal c o n t r o l numer i ca l ly i s as f o l l o w s : \quad For a f i x e d
campaign time $ C $ we f i x the s u s c e p t i b l e and i n f e c t i v e i n i t i a l va lue s . \quad A gr id o f

$ N $
s t a r t i n g campaign t imes $ t { i } , i = 1 , . . N $ i s then s p e c i f i e d . The equat ions f o r

$ S ( t ) $ and

\noindent $ I ( t ) ( $ the a d j o i n t s are not used ) are then i n t e g r a t e d
$ N $ times , one f o r each campaign

s t a r t i n g time $ t { i } . $ The t o t a l number o f i n f e c t e d $ T { i }$ by the end o f the epidemic outbreak
i s them computed . The optimal s t a r t i s the $ t { i }$ that r e s u l t s in the sma l l e r o f a l l

$ T { i } . $
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Theorem 4 period 7 period .. There is no time inte rval for which phi 1 open parenthesis t closing parenthesis

= phi-dotaccent 1 open parenthesis t closing parenthesis = 0 and for which
phi 2 open parenthesis t closing parenthesis = phi-dotaccent 2 open parenthesis t closing parenthesis = 0

period
Theorem 4 period 8 period .. The two types of campaign comma .. that is comma .. the campaign for reducing

beta
and the campaign for increasing gamma are e ither time disjo int o r time nested period
The theorem says comma for example comma that if you start a reducing infection rate cam hyphen
paign open parenthesis RIRC closing parenthesis comma when there is no campaign being made comma then

there are only two
possibilities : either you start and finish a increasing removal rate campaign open parenthesis IRRC closing

parenthesis
before you finish the RIRC of you wait until the RIRC is over to start the IRRC period
Proof period .. We recall that
H = g plus u sub 1 phi 1 plus u sub 2 phi 2 period
Since g is constant and H is a first integral for the control system it follows that
the two functions f 1 equiv u sub 1 phi 1 and f 2 equiv u sub 2 phi 2 add to a constant period The proof is a

direct
consequence of this fact period .. A campaign will start or end at a switch time comma i period e period .. at
a time where some of the functions phi 1 or phi 2 changes sign period .. Now let alpha equiv H minus g period
Therefore if f 1 open parenthesis t sub 1 closing parenthesis is zero we have that f 2 = alpha and vice hyphen

versa period .. Assume comma by way
of contradiction comma that campaigns are neither disj oint neither nested period .. We have two
cases to consider a closing parenthesis The number of total switches is two or b closing parenthesis The number

of total
switches is greater than two period .... open parenthesis the case of only one switch satisfies the theorem

closing parenthesis period
If we are in case a closing parenthesis the only situation that does not satisfy the theorem is the
one where each function has one switch and one of the campaigns open parenthesis say campaign 2 closing

parenthesis
starts when the other campaign open parenthesis say campaign 1 closing parenthesis is still on period In this

case comma since there
is only one switch left comma it follows that only one of the two will be turned off period .. As a
net result we will have at least one campaign being made during all epidemic time
what is ruled out by the main hypothesis of the paper : one can not make campaign
for all times open parenthesis see remark 2 period 2 closing parenthesis period In case b closing parenthesis

We have at least three zeros period Now assume comma
by way of contradiction comma that there are two campaigns that are neither disj oint or
nested period .. Then there is at least one switching time t-macron for say f 2 that is inside the
f 1 .. campaign interval I = open square bracket t sub 1 comma t sub 2 closing square bracket period .. Assume

without lost of generality that t-macron is a
start and that there is no other switch of f 2 in the interval I-macron = open square bracket to the power of

macron-t comma t sub 2 closing square bracket open parenthesis intersection
hypothesis closing parenthesis Now at t sub 1 we have f 1 open parenthesis t sub 1 closing parenthesis = 0

and f 2 open parenthesis t sub 1 closing parenthesis = alpha period .... At t sub 2 we also have that
f 1 open parenthesis t sub 2 closing parenthesis = 0 and f 2 open parenthesis t sub 2 closing parenthesis =

alpha period .. But this impossible comma since f 2 switches signs at t-macron and
does not switch signs in the interval I-macron sub period square
5 period .. Controlling an Epidemic
In this section we study an example numerically period .. We will be controlling only
the infection parameter period .. We assume that the campaign cost is independent of
the number of infected comma .. i period e period .. We will be considering the problem C 2 period .. Since

the
optimal campaign has at most two switches it will consist of only one campaign
with maximal effort period Therefore comma to determine the optimal campaign comma one must only
to determine the time instant when it starts period .. We call it the optimal start period .. The
strategy to determine the optimal control numerically is as follows : .. For a fixed
campaign time C we fix the susceptible and infective initial values period .. A grid of N
starting campaign times t sub i comma i = 1 comma period period N is then specified period The equations

for S open parenthesis t closing parenthesis and
I open parenthesis t closing parenthesis open parenthesis the adjoints are not used closing parenthesis are then

integrated N times comma one for each campaign
starting time t sub i period The total number of infected T sub i by the end of the epidemic outbreak
is them computed period The optimal start is the t sub i that results in the smaller of all T sub i period
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is no time inte rval for which φ1(t) = φ̇1(t) = 0 and for which

φ2(t) = φ̇2(t) = 0.

Theorem 4 . 8 . The two types of campaign , that is , the campaign for
reducing β and the campaign for increasing γ are e ither time disjo int o r time nested
.

The theorem says , for example , that if you start a reducing infection rate cam -
paign ( RIRC ) , when there is no campaign being made , then there are only two
possibilities : either you start and finish a increasing removal rate campaign ( IRRC )
before you finish the RIRC of you wait until the RIRC is over to start the IRRC .
Proof . We recall that

H = g + u1φ1 + u2φ2.

Since g is constant and H is a first integral for the control system it follows that the
two functions f1 ≡ u1φ1 and f2 ≡ u2φ2 add to a constant . The proof is a direct
consequence of this fact . A campaign will start or end at a switch time , i . e .
at a time where some of the functions φ1 or φ2 changes sign . Now let α ≡ H − g.
Therefore if f1(t1) is zero we have that f2 = α and vice - versa . Assume , by way
of contradiction , that campaigns are neither disj oint neither nested . We have two
cases to consider a ) The number of total switches is two or b ) The number of total
switches is greater than two . ( the case of only one switch satisfies the theorem ) .
If we are in case a ) the only situation that does not satisfy the theorem is the
one where each function has one switch and one of the campaigns ( say campaign 2 )
starts when the other campaign ( say campaign 1 ) is still on . In this case , since there
is only one switch left , it follows that only one of the two will be turned off . As
a net result we will have at least one campaign being made during all epidemic time
what is ruled out by the main hypothesis of the paper : one can not make campaign for
all times ( see remark 2 . 2 ) . In case b ) We have at least three zeros . Now assume
, by way of contradiction , that there are two campaigns that are neither disj oint or
nested . Then there is at least one switching time t̄ for say f2 that is inside the f1
campaign interval I = [t1, t2]. Assume without lost of generality that t̄ is a
start and that there is no other switch of f2 in the interval Ī = [t̄, t2]( intersection
hypothesis ) Now at t1 we have f1(t1) = 0 and f2(t1) = α. At t2 we also have that
f1(t2) = 0 and f2(t2) = α. But this impossible , since f2 switches signs at t̄ and does
not switch signs in the interval Ī. �

5 . Controlling an Epidemic
In this section we study an example numerically . We will be controlling only the

infection parameter . We assume that the campaign cost is independent of the number
of infected , i . e . We will be considering the problem C2. Since the optimal
campaign has at most two switches it will consist of only one campaign with maximal
effort . Therefore , to determine the optimal campaign , one must only to determine
the time instant when it starts . We call it the optimal start . The strategy to
determine the optimal control numerically is as follows : For a fixed campaign time
C we fix the susceptible and infective initial values . A grid of N starting campaign
times ti, i = 1, ..N is then specified . The equations for S(t) and
I(t)( the adjoints are not used ) are then integrated N times , one for each campaign
starting time ti. The total number of infected Ti by the end of the epidemic outbreak
is them computed . The optimal start is the ti that results in the smaller of all Ti.
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Our goa l i s to understand how the optimal s t a r t depends on the campaign t o t a l
time $ C ( $ we w i l l p re sent only the r e s u l t s f o r reduc ing $ \beta $ s i n c e the r e s u l t s f o r i n c r e a s i n g

\noindent $ \gamma $ are equal in nature ) . \quad The model case i s a s eve r e f l u epidemic de s c r ibed in the
4 th March \quad 1 978 i s s u e o f the B r i t i s h Medical Journal . \quad The parameters f o r the
epidemic were determined by a best f i t numerica l technique in [ 1 3 ] . The va lue s f o r

\noindent the i n f l u e n z a epidemic are $ N = 763 , S ( 0 ) = 762
, I ( 0 ) = 1 , \gamma = 2 . 1 8 \times 1 0 ˆ{ −
3 }$ and

$ \beta = 0 . 44036 . $ \quad Time i s measured in days . \quad We plo t the epidemic dynamics in f i g u r e
1 . \quad The maximum number o f i n f e c t e d occurs at $ t = 6 . 49 . $ \quad This i n s t a n t i s c a l l e d

\noindent ( accord ing Bai l ey [ 2 ] ) the c e n t r a l epoch .

\centerline{Figure 1 . \quad Epidemic dynamics : The number o f i n f e c t e d $ I $ and the }

\centerline{number o f s u s c e p t i b l e s $ S . $ Time i s measured in days . }

\hspace ∗{\ f i l l }We used a Runge − Kutta Fehlberg 7 − 8 to i n t e g r a t e the system o f equat ions with

\noindent t o l e r a n c e $ 1 0 ˆ{ − 8 }$ and step s i z e $ h = 0 . 0 1
. $ We w i l l take $ \beta { m } \equiv 1 . 8 \times 1 0 ˆ{ − 3 }$
what g i v e s a

reduct ion o f $ 50 \% $ o f the i n f e c t i o n ra t e . \quad The r e s u l t s ob ta ined are v a l i d f o r a l l ranges
o f r educt i on s tud i ed . The optimal s t a r t can be determined numer i ca l ly by a s imple
search procedure . \quad We p a r t i t i o n the time i n t e r v a l in i n t e r v a l s o f l ength 0 . 1 . \quad Then
we do the campaign ( reduc ing the i n f e c t i o n parameter by $ 50 \% ) $ \quad during time

$ C $
f o r a l l s t a r t i n g t imes . \quad In f i g u r e 2 we show the number o f i n f e c t e d at the end o f
the epidemic as a func t i on o f the s t a r t i n g time . \quad Each curve r e p r e s e n t s d i f f e r e n t
campaign t imes .

In f i g u r e 3 we show the optimal s t a r t i n g t ime as a func t i on o f the campaign time .
We observe that as the campaign t ime i n c r e a s e s the s t a r t i n g time de c r e a s e s u n t i l
ev en tua l l y becomes zero .

Figure 4 shows that the optimal campaigns always inc lude the c e n t r a l epoch .
In other words , l i m i t e d co s t campaigns are optimal around the c e n t r a l epoch f o r
non − c o n t r o l l e d epidemics . In the f i g u r e we show in the h o r i z o n t a l a x i s the campaign
durat ion . The two s o l i d curves r e p r e s e n t the time when the campaign s t a r t s ( lower )

\noindent and the time when the campaign f i n i s h e s ( upper ) . \quad The dashed curve shows the
c e n t r a l epoch . I t i s always i n s i d e the campaign durat ion even f o r very smal l t imes .

\noindent Conclus ions . \quad In t h i s paper we s tud i ed optimal s t r a t e g i e s f o r a l i m i t e d co s t educa −
t i o n a l campaign during the outbreak o f an epidemic . Optimal ity was measured by
the minimal i ty o f the t o t a l number o f i n f e c t e d at the end o f the outbreak . Assum −
ing that the e f f e c t o f the campaign was to dec r ea s e ( or i n c r e a s e ) i n f e c t i o n ( removal )
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Our goal is to understand how the optimal start depends on the campaign total
time C open parenthesis we will present only the results for reducing beta since the results for increasing
gamma are equal in nature closing parenthesis period .. The model case is a severe flu epidemic described in

the
4 th March .. 1 978 issue of the British Medical Journal period .. The parameters for the
epidemic were determined by a best fit numerical technique in open square bracket 1 3 closing square bracket

period The values for
the influenza epidemic are N = 763 comma S open parenthesis 0 closing parenthesis = 762 comma I open

parenthesis 0 closing parenthesis = 1 comma gamma = 2 period 1 8 times 1 0 to the power of minus 3 and
beta = 0 period 44036 period .. Time is measured in days period .. We plot the epidemic dynamics in figure
1 period .. The maximum number of infected occurs at t = 6 period 49 period .. This instant is called
open parenthesis according Bailey open square bracket 2 closing square bracket closing parenthesis the central

epoch period
Figure 1 period .. Epidemic dynamics : The number of infected I and the
number of susceptibles S period Time is measured in days period
We used a Runge hyphen Kutta Fehlberg 7 hyphen 8 to integrate the system of equations with
tolerance 1 0 to the power of minus 8 and step size h = 0 period 0 1 period We will take beta sub m equiv 1

period 8 times 1 0 to the power of minus 3 what gives a
reduction of 50 percent of the infection rate period .. The results obtained are valid for all ranges
of reduction studied period The optimal start can be determined numerically by a simple
search procedure period .. We partition the time interval in intervals of length 0 period 1 period .. Then
we do the campaign open parenthesis reducing the infection parameter by 50 percent closing parenthesis ..

during time C
for all starting times period .. In figure 2 we show the number of infected at the end of
the epidemic as a function of the st arting time period .. Each curve represents different
campaign times period
In figure 3 we show the optimal starting t ime as a function of the campaign time period
We observe that as the campaign t ime increases the starting time decreases until
eventually becomes zero period
Figure 4 shows that the optimal campaigns always include the central epoch period
In other words comma limited cost campaigns are optimal around the central epoch for
non hyphen controlled epidemics period In the figure we show in the horizontal axis the campaign
duration period The two solid curves represent the time when the campaign starts open parenthesis lower

closing parenthesis
and the time when the campaign finishes open parenthesis upper closing parenthesis period .. The dashed

curve shows the
central epoch period It is always inside the campaign duration even for very small t imes period
Conclusions period .. In this paper we studied optimal strategies for a limited cost educa hyphen
tional campaign during the outbreak of an epidemic period Optimality was measured by
the minimality of the total number of infected at the end of the outbreak period Assum hyphen
ing that the effect of the campaign was to decrease open parenthesis or increase closing parenthesis infection

open parenthesis removal closing parenthesis
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Our goal is to understand how the optimal start depends on the campaign total time
C( we will present only the results for reducing β since the results for increasing
γ are equal in nature ) . The model case is a severe flu epidemic described in the
4 th March 1 978 issue of the British Medical Journal . The parameters for the
epidemic were determined by a best fit numerical technique in [ 1 3 ] . The values for
the influenza epidemic are N = 763, S(0) = 762, I(0) = 1, γ = 2.18 × 10−3 and β =
0.44036. Time is measured in days . We plot the epidemic dynamics in figure 1 .
The maximum number of infected occurs at t = 6.49. This instant is called
( according Bailey [ 2 ] ) the central epoch .

Figure 1 . Epidemic dynamics : The number of infected I and the
number of susceptibles S. Time is measured in days .

We used a Runge - Kutta Fehlberg 7 - 8 to integrate the system of equations with
tolerance 10−8 and step size h = 0.01. We will take βm ≡ 1.8 × 10−3 what gives a
reduction of 50% of the infection rate . The results obtained are valid for all ranges
of reduction studied . The optimal start can be determined numerically by a simple
search procedure . We partition the time interval in intervals of length 0 . 1 . Then
we do the campaign ( reducing the infection parameter by 50%) during time C for all
starting times . In figure 2 we show the number of infected at the end of the epidemic
as a function of the st arting time . Each curve represents different campaign times .

In figure 3 we show the optimal starting t ime as a function of the campaign time
. We observe that as the campaign t ime increases the starting time decreases until
eventually becomes zero .

Figure 4 shows that the optimal campaigns always include the central epoch . In
other words , limited cost campaigns are optimal around the central epoch for non
- controlled epidemics . In the figure we show in the horizontal axis the campaign
duration . The two solid curves represent the time when the campaign starts ( lower )
and the time when the campaign finishes ( upper ) . The dashed curve shows the
central epoch . It is always inside the campaign duration even for very small t imes .
Conclusions . In this paper we studied optimal strategies for a limited cost educa
- tional campaign during the outbreak of an epidemic . Optimality was measured by
the minimality of the total number of infected at the end of the outbreak . Assum - ing
that the effect of the campaign was to decrease ( or increase ) infection ( removal )
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\centerline{Figure 2 . \quad Number o f t o t a l i n f e c t e d at the end o f ep idemics as a }

\centerline{ f unc t i on o f the campaign s t a r t i n g time . D i f f e r e n t curves r e p r e s e n t }

\centerline{ d i f f e r e n t campaigns t imes $ C . $ }

\centerline{Figure 3 . \quad Optimal s t a r t i n g time f o r d i f f e r e n t va lue s o f campaign }

\centerline{ va lue s $ C . $ }

\noindent r a t e we were ab le to show , us ing the Pontryagin Maximum P r i n c i p l e , that the op −
t imal campaign must c o n s i s t o f only one maximum e f f o r t . \quad Numerical s imu la t i on s ,
concern ing a p a r t i c u l a r epidemic , gave us a d d i t i o n a l in fo rmat ion about the optimal

EJDE hyphen 2 0 6 slash 1 2 5 .... OPTIMAL CONTROL OF AN EPIDEMIC .... 9
Figure 2 period .. Number of total infected at the end of epidemics as a
function of the campaign starting time period Different curves represent
different campaigns times C period
Figure 3 period .. Optimal starting time for different values of campaign
values C period
rate we were able to show comma using the Pontryagin Maximum Principle comma that the op hyphen
timal campaign must consist of only one maximum effort period .. Numerical simulations comma
concerning a particular epidemic comma gave us additional information about the optimal
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Figure 2 . Number of total infected at the end of epidemics as a
function of the campaign starting time . Different curves represent

different campaigns times C.
Figure 3 . Optimal starting time for different values of campaign

values C.
rate we were able to show , using the Pontryagin Maximum Principle , that the op -
timal campaign must consist of only one maximum effort . Numerical simulations ,
concerning a particular epidemic , gave us additional information about the optimal
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\centerline{Figure \quad 4 . \quad Re la t i v e p o s i t i o n o f the c e n t r a l epoch \quad ( dashed l i n e ) }

\centerline{with r e s p e c t to the optimal campaign i n t e r v a l . }

\noindent s t a r t , i . e . the time to s t a r t t h i s maximum e f f o r t , in order to minimize our o b j e c t i v e
f u n c t i o n a l . Ca l l i ng $ \ t i lde { t } $ the c e n t r a l epoch we summarize our r e s u l t s in the f o l l o w i n g : I f
the campaign co s t i s p r op o r t i o n a l to the number o f i n f e c t e d than both campaigns ,
to dec r ea se i n f e c t i o n ra t e and to i n c r e a s e removal r a t e must be done with maximum

\noindent i n t e n s i t y at the s t a r t o f the epidemic . \quad I f the campaign co s t i s independent o f the
number o f i n f e c t e d and only one s c e n a r i o i s chosen , then 1 ) only one maximum

\noindent e f f o r t campaign should be made , 2 ) a l l campaigns should in c lude $ \ t i lde { t } { . }$
I f the goa l s o f
the campaign i s both to dec r ea se i n f e c t i o n ra t e and to i n c r e a s e removal r a t e then
campaign f o r d i f f e r e n t s c e n a r i o s must be nested or d i s j o i n t . They should never s t a r t
or end at the same time .
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functional period Calling t-tilde the central epoch we summarize our results in the following : If
the campaign cost is proportional to the number of infected than both campaigns comma
to decrease infection rate and to increase removal rate must be done with maximum
intensity at the start of the epidemic period .. If the campaign cost is independent of the
number of infected and only one scenario is chosen comma then 1 closing parenthesis only one maximum
effort campaign should be made comma 2 closing parenthesis all campaigns should include t-tilde sub period
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Figure 4 . Relative position of the central epoch ( dashed line )
with respect to the optimal campaign interval .

start , i . e . the time to st art this maximum effort , in order to minimize our objective
functional . Calling t̃ the central epoch we summarize our results in the following : If
the campaign cost is proportional to the number of infected than both campaigns , to
decrease infection rate and to increase removal rate must be done with maximum
intensity at the start of the epidemic . If the campaign cost is independent of the
number of infected and only one scenario is chosen , then 1 ) only one maximum
effort campaign should be made , 2 ) all campaigns should include t̃. If the goals of the
campaign is both to decrease infection rate and to increase removal rate then campaign
for different scenarios must be nested or disj oint . They should never start or end at
the same time .
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