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OPTIMAL CONTROL OF AN EPIDEMIC THROUGH

EDUCATIONAL CAMPAIGNS
¢ E SAR CASTILHO
ABSTRACT . In this work we study the best strategy for educational campaigns
during the outbreak of an epidemic . Assuming that the epidemic is described
by the simplified SIR model and that the total t ime of the campaign is limited
due to budget , we consider two possible scenarios . In the first scenario we have
a campaign oriented to decrease the infection rate by stimulating susceptibles
to have a protective behavior . In the second scenario we have a campaign
oriented to increase the removal rate by stimulating the infected to remove
themselves from the infected class . The optimality is taken to be to minimize
the total number of infected by the end of the epidemic outbreak . The tech -
nical tool used to determine the optimal strategy is the Pontryagin Maximum
Principle .
1. INTRODUCTION

In this work we study the best strategy for educational campaigns during the out-
break of an epidemic . We assume that the epidemic is described by the simplified
SIR model [ 1 6] and also assume that the total time of the campaign is budget
limited . Optimality is measured minimizing the total number of infected at the end of
the optimal outbreak . If we cannot make a campaign during all the epidemic time
, what is the optimal way of using the time we have 7 How many campaigns should
we make 7 What should be their intensities 7 When should they start 7 The
difficult point is , of course , how to model the effect of the campaign on the spread of
the epidemic .  Here we face two problems :  first , the model must be intuitively
plausible and second , it must be mathematically tractable .

With respect to the first requirement we will model the campaign effects by reducing
the rate at which the disease is contracted from an average individual during the
campaign ( called shortly infection rate ) . We justify this with an example : suppose
during a flu outbreak one starts a campaign orienting susceptibles to avoid
contracting the virus ( assuming some protective behavior , e . g . , washing hands ,
avoiding close environments , etc. ) . The effect of the campaign will be that the
probability of a susceptible contracting the virus will decrease . The same reasoning
applied to a campaign oriented to the infected ( e . g . stimulating quarantine ) will be
modelled increasing the rate at which an average individual leaves the infective rate
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( called shortly removal rate ) .  With respect to the second requirement we assume ,
for mathematical simplicity , that this reduction ( increase ) is bounded below ( above
) and the campaigns cost are linear on the controls . With those hypotheses the
problem renders itself to analytical treatment and we can prove the main facts about
the optimal campaign .  The theorems of section 4 reduce the dimension of the optimal
problem allowing a complete numerical study of the problem .

Application of control theory to epidemics is a very large field . A comprehensive
survey of control theory applied to epidemiology was performed by Wickwire [ 1 7] .
Many different models with different objective functions have been proposed ( see
[8,9,12]and morerecently [3,18]). A major difficulty in applying control theoretic
methods to practical epidemiology problems is the commonly made assumption that one
has total knowledge of the state of the epidemics [ 7] .

2. STATEMENT OF THE PROBLEM

We denote by S(t), I(t), R(t) the number of susceptible , infectives and removed in

a closed population of size IV at time . We assume the controlled dynamics

S = —ulsl,
I =u1 ST — uyl, (2.1)
R = ’LLQI,

The above models assume a mass - action type interaction ( for more realistic inter -
actions see [ 4] ) . We let positive constants 5 and - denote the infection and removal
rates respectively without the influence of an education campaign .  Our controls are
ur(t), ug(t) withui(t) € [Bm,0] andus(t) € [y,7yM]with0 < B,,. Observe
that u(t) and us(t) regulate the goals and efforts of two types of campaigns .  For
example , if ug(t) = ~ for all ¢t we are controlling only the infection rate .  In this
case uq(t) = B will correspond to not having a campaign affecting the susceptibles and
u1(t) = By, will correspond to the maximum effort that can be made .  The reciprocal
case will be if ui(t) = S for all ¢. In this scenario we will be controlling only the
removal rate . The above considerations motivate the introduction of the

following cost constraints .

Lhz/[w—uw»+@mw—wvmﬁ, (2.2)
0

b:/’wfmmwuwmfwﬁ, (2.3)
0

In both cases the cost is linear in the controls u; and us. In the first case the
cost of the campaign is supposed to be proportional to the number of infected ( if one
assumes that the number of infected is proportional to the number of regions where the
disease o ccurs and therefore , to the number of regions to be covered by the campaign
, higher the number of infected , higher the costs ) . The second case assumes that
the cost is independent of the number of infected .

Our goal will be to find the optimal control strategies that minimize the total number
of infected over the course of the epidemic outbreak ( equivalently , that
maximize the total number of susceptibles ) . In this work , the end of the epidemic
outbreak will be defined as a ( very large ) time instant ¢* for which I(t*) < 1( see
remark (2. 1) about the existence of ¢*). In other words ,¢* is the first time such that
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I(t*) < 1. This is a technicality in order to avoid dealing with a infinite horizon
control problem . Since in the simplified SIR model the only way to enter in the
removed class is from the infected class , the total number of infected at the end of
the epidemics is given by lim;_,, R(t). However ,

R:'yl,

and since we always assume R(0) = 0, we obtain that the total number of infected is
given by

lim R(t) = /000 ~I(t)dt.

t—o0

Remark 2. 1. We make some remarks that are important for what follows .
(1) Since S(t) + I(t) + R(t) = N we will ignore the last equation of (2. 1) .
(2) Theset M ={I>0,5>0,5+1 < N}isan invariant set for system ( 2. 1
). (3) In the simplified SIR model we always have that lim; . I(t) =0( seee. g .

[6])-

Since we are working only on M and the controls u; and uo are bounded and
positive , we will always have that lim; . I(¢) = 0 for any control . This establishes
the existence of t*.

The constant cost constraints J; and Jo can be imposed introducing
a new variable w to our system . We obtain the two control systems

S = —ulSI,
I =u ST —upl, Y= /t I(t)dt (2.4)
0
W= (18 —ui(t) + (ua(t) —N)I(), w(0)=0, w(t*)=C.

with cost J1, and the system

S = —ulSI,
I=wuy ST —ugl, Yy= / t ug () (t)dt (2.5)
0
= (B—u1(t) + (uz(t) —7), w(0)=0, w(t’)=C.

with cost J. In both systems we are imposing J; = Jo = C, where C is a constant .
Remark 2 . 2. The constant C' is the value of the total amount of campaign
effort . We will assume henceforth that C' is such that the controls can not be at the
maximum effort level during the whole time period .

The problems will be referred as problem C 1 and C 2 respectively . The goal is to
find the optimal controls to ( 2 . 4 ) that minimize Y7 and the optimal controls to ( 2
. 5 ) that minimize Y3. We will refer to the first problem as problem C 1 and to the
second
problem as problem C2. As it will turn out , problem C 1 is trivial . We will assume that
the admissible controls u; and uy are measurable lo cally bounded functions . Since u;
and ug appear linearly in our control problems , an optimal control will in
general be a combination of bang - bang controls and singular controls (see [14,1 1

I)-
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3. OpTIMALITY PROBLEM C 1
Problem C 1 is such that all the differential equations involved are multiplied by
the positive function I(¢). This motivates the introduction of a new parameter s
defined by

s(t) = /O I(t)dt.

Observing that % =17 d% we obtain for the objective functional that

t* s*
Y1:/ Idt:/ ds = s*,
0 0

where s* = fot T (t)dt. Therefore , problem C 1 write as the minimum time problem

S/ = —U1S,
I':u157u2 (31)
w' = (B —u1)+(u2—7), w(0)=0w(s")=C,

where / = %7 and s* = fot* I(t)dt. Now we see that in order for the variable w(s)

achieve the value C in the smallest possible time s, it suffices that the derivative w’ be
the largest possible , therefore it suffices that uy(s) = B, and ua(s) = vM.

4.  OPTIMALITY PROBLEM C 2
Our main tool for the study of the optimality of system ( 2 . 5 ) will be the Pon -
tryagin Maximum Principle ( PMP ) [1,14]. Let pS,pI and pw denote the

adjoint variables to S, I, and w respectively . The Hamiltonian for problem C2 is

H = pS(—u1SI) + pI(ur ST — uol) 4+ pw[(B — u1(¢t)) + (u2(t) — )] — ua(t)I.

That we write as

H =g+ uidl + u¢2, (4.1)

where

g=pw(f —7),¢l = SI(pI —pS) —pw,¢2 = —I(pI + 1) + pw.
The adjoint variables satisfy Hamilton ’ s equations

. oH .. oM . oM
P8 =55 Pl=—%r =g, (42)
that are given by
pS = uil(ps — pl),
Pl = u1S(ps — pI) +uz(pl +1), (4.3)

pw = 0.

By the PMP , the optimal controls u;(t), uz(t) are the ones that maximize H( we are
ignoring abnormal controls see [1]) . PMP implies that at optimal traj ectories the
following transversality conditions will hold [ 1 4 ]

pS(0) =pI(0) =0 and pS(t*) = pI(t*) = 0. (4.4)
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This is implied by the boundary conditions to be satisfied by w. The derivatives of the
functions ¢1 and ¢2 along the flow of hamiltonian dynamical system induced

by (4. 1) can be computed using (2. 5 ) and (4. 3 ). We obtain

1 = uzIS(pS + 1), (4.5)
$2 = —u IS(pS +1). (4.6)

From where it follows that

U1l + upd2 = 0.

Remark 4. 1. The existence of the optimal control for problem C is given by an
application of Filipov ’ s theorem [ 1,1 5] : We observe that the vector field X defined
by (2. 5 ) is bounded in M and complete (M is compact ) .  Also the controls are
bounded and for each fixed allowed pair (u1,us) the set

U7 0
X(up,ug) ={SI| —uy | +I| uy |, forS,Ie M}
0 0

is convex , which implies that the set X (uy,us) = {X for S,I € M} is convex . To
apply directly Filipov ’ s theorem it remains to establish the compact support of the
vector fields .  But this is not necessary by the boundness and completeness of the
vector fields ( see discussionin [1]and [5]) .

4. 1. Controlling the infection parameter . In this subsection we will
control only the infection parameter ; 1. e . , we will assume uy(t) = = for all
t > 0. The pre - hamiltonian (4 . 1) is given by

H = Bpw —~I(pI + 1) + uy(t)pl. (4.7

We observe that the derivative of the switching function ¢1 = ~SI(pS + 1) is a
continuous function and its number of zeros is determined only by the behavior of

pSsince — vIS # 0.

Lemma 4 . 2. If wus(t) = in th e control problem (2. 5) then there is no open
interval

wheregl(t) = ¢1(t) = 0.

Proof . Assume there exists an open interval D, where ¢1(t) = $1(t) = 0 for t € D.
The derivative of ¢1 being zero implies that pS = —1 in D what implies that pS = 0
and by the first equation of ( 4 . 3 ) we have that pI = pS = —1 in D; but equations
(4. 3) imply that pI = pS = —1 for all future t(pI = pS = —1 is an equilibrium point
for the vector field ( 4 . 3 ) ) what contradicts the transversality condition (4.4). O
Theorem 4 . 3. If wus(t) =~y in the control pro blem (2. 5), th e optimal
control w*1(t) has at most two switches .

Proof . First we observe that when ¢1 = 0 we have by (4 . 7 ) that

H — ppw = —~vI(pI +1).

For latter use we multiply this equation by —% obtaining the equality



SI(pI +1)= fg(H — Bpw). (4.8)

When ¢1 = 0 we have that SI(pl — pS) = pw. Solving for pS and substituting back in
¢1, we obtain

$1 =~SI(pS +1) = ~v(SI(pI +1) — pw).
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o1,

é)l = (fpw — H)S — pw (4.9)

From equation (4 . 9 ) we define the function

h=(Bpw — H)S — pw.

By the first equation of ( 2. 1) we see that S is a strictly monotone function . There
- fore since pw  and H are constant along the flow we have that h is a monotonic
function . (4. 9 ) shows that at the zeros of ¢1,¢1 = h. Therefore , we have
that

at the zeros of the C'! function ¢1, the values of its derivative ¢1 is a monotonic
function .  Therefore (;.51 can switch signs at most one time .  What implies that ¢1
can have at most two switches of sign ( and at most three zeros ). O

4. 2. Controlling the removal parameter . In this section we will assume
that u; = 8 for all times . The pre - hamiltonian is

H = —pwy + BSI(pI — pS) + uz2. (4.10)
We observe that ¢p2 = —8SI(pS + 1) is a continuous function . Lemma 4 . 4 . If
u1(t) =+ in th e control problem (2 .5) then there is no s ingular
optimalcontrolus(t).

The proof of the above lemma is similar to the proof of lemma ( 4 . 2 ) . Therefore

b

it is omitted . Theorem 4 . 5 . If wuy(t) =B in th e control pro b lem (2.5),
the optimal contro | us(t)
has at most two switches .  Proof . When ¢2 = 0 we have that pI — 1 = pw/I.

Since at the zeros of ¢2 we have

H + vypw = BSI(pI — pS)
it follows that

$2 = H + pw(y — 8S). (4.11)

The argument here is the same as the in proof of theorem (4 . 3 ) . The left hand side
of (4. 11)isamonotonic function . Therefore we have that at the zeros of the C'
function ¢2, 2 can switch signs at most one time .  Therefore ¢2 can have at most
two switches of sign ( and at most three zeros ). O

4. 3. Controlling the infection and the removal parameters .
In this case we are working in a more complex case . We recall that ¢p1 = usIS(pS+1)
and ¢2 = —ug1IS(pS + 1). The functions #1 and ¢2 depend on the controls and are
not

necessarily continuous ( we are assuming that u (t) and ug(t) are measurable lo cally

bounded functions ) . Therefore ¢1 and ¢2 are not C! functions and the previous
reasoning does not apply in this case .
Theorem 4 . 6 . Along the op timal s o lution the re is no time instant t for

which



o1(") = ¢2(') = 0.

Proof . At £ we would have that pS = pI = —1 what contradicts the boundary
conditions for w at t =t*. O

A corollary of this fact is that H — g # 0. As in lemma 4 . 2 , we can prove the
following result .
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is no time inte rval for which ¢1(t) = ¢p1(t) =0 and for which

$2(t) = ¢2(t) = 0.

Theorem 4 . 8. The two types of campaign , that is , the campaign for
reducing [ and the campaign for increasing ~y are e ither time disjo int o r time nested

The theorem says , for example , that if you start a reducing infection rate cam -
paign ( RIRC ) , when there is no campaign being made , then there are only two
possibilities : either you start and finish a increasing removal rate campaign ( IRRC )
before you finish the RIRC of you wait until the RIRC is over to start the IRRC .
Proof . We recall that

H = g+ w101 + ux¢2.

Since g is constant and H is a first integral for the control system it follows that the
two functions f1 = u1¢l and f2 = w92 add to a constant . The proof is a direct
consequence of this fact . A campaign will start or end at a switch time , 1. e .
at a time where some of the functions ¢1 or ¢2 changes sign . Now let « = H — g.
Therefore if f1(¢1) is zero we have that f2 = « and vice - versa .  Assume , by way
of contradiction , that campaigns are neither disj oint neither nested .  We have two
cases to consider a ) The number of total switches is two or b ) The number of total
switches is greater than two . ( the case of only one switch satisfies the theorem ) .
If we are in case a ) the only situation that does not satisfy the theorem is the

one where each function has one switch and one of the campaigns ( say campaign 2 )
starts when the other campaign ( say campaign 1) is still on . In this case , since there
is only one switch left , it follows that only one of the two will be turned off .  As
a net result we will have at least one campaign being made during all epidemic time
what is ruled out by the main hypothesis of the paper : one can not make campaign for
all times ( see remark 2. 2 ). In case b ) We have at least three zeros . Now assume
, by way of contradiction , that there are two campaigns that are neither disj oint or
nested .  Then there is at least one switching time ¢ for say f2 that is inside the f1
campaign interval I =  [t1,t2].  Assume without lost of generality that ¢ is a

start and that there is no other switch of f2 in the interval I = [*, t,]( intersection
hypothesis ) Now at ¢; we have f1(t;) =0 and f2(¢t1) = a. At t2 we also have that
f1(t2) = 0 and f2(t2) = . But this impossible , since f2 switches signs at ¢ and does
not switch signs in the interval 7. [

5. CONTROLLING AN EPIDEMIC
In this section we study an example numerically .  We will be controlling only the
infection parameter .  We assume that the campaign cost is independent of the number

of infected , 1. e. We will be considering the problem C2. Since the optimal
campaign has at most two switches it will consist of only one campaign with maximal
effort . Therefore , to determine the optimal campaign , one must only to determine
the time instant when it starts .  We call it the optimal start . The strategy to
determine the optimal control numerically is as follows :  For a fixed campaign time
C we fix the susceptible and infective initial values . A grid of IV starting campaign
times ¢;,i = 1,..N is then specified . The equations for S(t) and

I(t)( the adjoints are not used ) are then integrated N times , one for each campaign
starting time ¢;. The total number of infected T; by the end of the epidemic outbreak
is them computed . The optimal start is the ¢; that results in the smaller of all T;.
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Our goal is to understand how the optimal start depends on the campaign total time
C( we will present only the results for reducing S since the results for increasing
v are equal in nature ) .  The model case is a severe flu epidemic described in the
4 th March 1 978 issue of the British Medical Journal .  The parameters for the
epidemic were determined by a best fit numerical technique in [ 1 3 ] . The values for
the influenza epidemic are N = 763, 5(0) = 762,1(0) = 1,7 = 2.18 x 1073 and 3 =
0.44036. Time is measured in days .  We plot the epidemic dynamics in figure 1 .
The maximum number of infected occurs at ¢ = 6.49.  This instant is called
( according Bailey [ 2 ] ) the central epoch .

FIGURE 1 . Epidemic dynamics : The number of infected I and the
number of susceptibles S. Time is measured in days .

We used a Runge - Kutta Fehlberg 7 - 8 to integrate the system of equations with
tolerance 108 and step size h = 0.01. We will take 3,, = 1.8 x 1073 what gives a
reduction of 50% of the infection rate .  The results obtained are valid for all ranges
of reduction studied . The optimal start can be determined numerically by a simple
search procedure .  We partition the time interval in intervals of length 0. 1.  Then
we do the campaign ( reducing the infection parameter by 50%)  during time C for all
starting times .  In figure 2 we show the number of infected at the end of the epidemic
as a function of the st arting time .  Each curve represents different campaign times .

In figure 3 we show the optimal starting t ime as a function of the campaign time
. We observe that as the campaign t ime increases the starting time decreases until
eventually becomes zero .

Figure 4 shows that the optimal campaigns always include the central epoch . In
other words , limited cost campaigns are optimal around the central epoch for non
- controlled epidemics . In the figure we show in the horizontal axis the campaign
duration . The two solid curves represent the time when the campaign starts ( lower )

and the time when the campaign finishes ( upper ) .  The dashed curve shows the
central epoch . It is always inside the campaign duration even for very small t imes .
Conclusions . In this paper we studied optimal strategies for a limited cost educa

- tional campaign during the outbreak of an epidemic . Optimality was measured by
the minimality of the total number of infected at the end of the outbreak . Assum - ing
that the effect of the campaign was to decrease ( or increase ) infection ( removal )
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FIGURE 2 . Number of total infected at the end of epidemics as a
function of the campaign starting time . Different curves represent
different campaigns times C.

FIGURE 3 . Optimal starting time for different values of campaign
values C.
rate we were able to show , using the Pontryagin Maximum Principle , that the op -
timal campaign must consist of only one maximum effort .  Numerical simulations ,

concerning a particular epidemic , gave us additional information about the optimal
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FIGURE 4. Relative position of the central epoch  ( dashed line )
with respect to the optimal campaign interval .
start ;1. e . the time to st art this maximum effort , in order to minimize our objective
functional . Calling # the central epoch we summarize our results in the following : If
the campaign cost is proportional to the number of infected than both campaigns , to
decrease infection rate and to increase removal rate must be done with maximum
intensity at the start of the epidemic .  If the campaign cost is independent of the
number of infected and only one scenario is chosen , then 1 ) only one maximum
effort campaign should be made , 2 ) all campaigns should include ¢, If the goals of the
campaign is both to decrease infection rate and to increase removal rate then campaign
for different scenarios must be nested or disj oint . They should never start or end at
the same time .
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