Electronic Journal of Differential Equations , Vol . 2007 (2007 ) ,No.21,pp.1-10.
ISSN :172-6691 . URL : http : / / ejde . math . txstate . edu or http : / / ej de . math .
unt . edu

ftp ejde . math . txstate . edu ( login : ftp )

EXISTENCE OF SOLUTIONS FOR A SECOND ORDER
ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATION WITH
STATE - DEPENDENT DELAY
EDUARDO HERN Anpgz M .

ABSTRACT . In this paper we study the existence of mild solutions for abstract

partial functional differential equation with state - dependent delay .
1. INTRODUCTION
In this note we study the existence of mild solutions for a second order abstract
Cauchy problem with state dependent delay described in the form

2"(t) = Ax(t) + f(t,2pt,z,)), tE€I=10,a],20=¢p€B, (1.1)
2'(0) =0 € X,

where A is the infinitesimal generator of a strongly continuous cosine function of
bounded linear operator (C(t))t € R defined on a Banach space (X, || - ||); the function
x5 : (—00,0] — X, z40) =uxz(s+86),belongs to some abstract phase space B
described axiomatically and f : I x B — X,p : I x B — (—00,a] are appropriate
functions .

Functional differential equations with st ate - dependent delay appear frequently in
applications as model of equations and for this reason the study of this type of equations
has received great attention in the last years .  The literature devoted to this subject
is concerned fundamentally with first order functional differential equations for which
the state belong to some finite dimensional space , see among
another works , [1,2,3,4,5,8, 10, 11, 12, 13, 19,24,23].
The problem of the existence of solutions for first order partial functional differential
equations with state - dependent delay have been treated in the literature recently in |
14,15,16].

To the best of our knowledge , the existence of solutions for second order abstract partial
functional differential equations with state - dependent delay is an untreated topic in
the literature and this fact is the main motivation of the present work .

2. PRELIMINARIES

In this section , we review some basic concepts , notations and properties needed to
establish our results . Throughout this paper , A is the infinitesimal generator of
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a strongly continuous cosine family (C(t))t € R of bounded linear operators on the
Banach space (X, || - ||). We denote by (S(t))t € R the associated sine function which
is defined by S(t)x = fot C(s)xds, for x € X, and t € R. In the sequel , N and N
are positive constants such that || C(t) [|< N and || S(t) [|< N for every t € I.

In this paper ,[D(A)] represents the domain of A endowed with the graph norm
givenby | z| A=|z]| +| Az |,z € D(A), while E stands for the space formed by
the vectors z € X for which C(-)z is of class C* on R.  We know from Kisi 7 sky [ 1
8], that E endowed with the norm

[zl E=[z]+ suwp [ASH)z], =€k, (2.1)
0<t<1

is a Banach space . The operator - valued function

) S
H(t) = [AS(t) C’(t)}

is a strongly continuous group of bounded linear operators on the space E' x X generated

by the operator A = { Sl é ] defined on D(A) x E. It follows from this that

AS(t) : E — X is a bounded linear operator and that AS(t)z — 0, as

t — 0, for each © € E. Furthermore , if z : [0,00) — X is lo cally integrable , then
y(t) = fot S(t — s)x(s)ds defines an E— valued continuous function . This assertion is
a consequence of the fact that

/ot Ht =) [ x?s) } ds= [/{S(t — s)z(s)ds /Ot C(t — s)z(s)ds]

defines an E x X — valued continuous function .  In addition , it follows from the
definition of the norm in E that a function u : I — FE is continuous if , and only if , is
continuous with respect to the norm in X and the set of functions {AS(t)u : ¢ €
[0, 1]} is an equicontinuous subset of C(I, X).

The existence of solutions for the second - order abstract Cauchy problem

2" (t) = Az(t) + h(t), tel, (2.2)
z(0) =w, 2'(0) =z,

where h : I — X is an integrable function , is studied in [ 22 ] . Similarly , the existence
of solutions of semi - linear second - order abstract Cauchy problems has been treated
in [21]. We only mention here that the function x(-) given by

z(t) = Ct)w+ S(t)z + /Ot S(t — s)h(s)ds, tel, (2.4)

is called a mild solution of (2. 2)- (2. 3), and that when w € F the function z(-)
is of class C'! on I and

2'(t) = AS(t)w + C(t)z + /t C(t—s)h(s)ds, tel. (2.5)
0

For additional details on the cosine function theory , we refer the reader to [ 6 , 22
,21].



In this work we will employ an axiomatic definition for the phase space B which is
similar at those introduced in [ 1 7 ] . Specifically , B will be a linear space of functions
mapping (—oo, 0] into X endowed with a seminorm || - || B and satisfying the following

asumptions :
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(A1) Ifz:(—o0,b] = X,b>0,is continuous on [0, b] and x¢ € B, then for every
t € [0, 8] the following conditions hold :
(a) x4 isin B.

(b) =@ < H [ || B.
(© e || B< M) | zo || B+ K(t)sup{]| (s) |0 <s <t}

where H > 0 is a constant ; K, M : [0,00) — [1,00), K is continuous , M is lo cally
bounded and H, K, M are independent of z(+).
(A2) For the function z in ( A 1),z is a B— valued continuous function on [0, ].

(B1) The space B is complete .

Example 2.1 ( The phase space C, x LP(g ;X )). Let
g : (-o00,—-r) —Rbea
positive Lebesgue integrable function and assume that there exists a non - negative and
lo cally bounded function 7 on (—o0, 0] such that g(§ +0) < v(£)g(d), for all £ <0 and
0 € (—o0,—7) \ Ne, where Ng C (—oo, —r) is a set with Lebesgue measure
zero . The space C,. x LP(g; X) consists of all classes of functions ¢ : (—00,0] — X
such that ¢ is continuous on [—r, 0], Lebesgue - measurable and ¢ || ¢ ||P is Lebesgue
integrable on (—oo, —). The seminorm in C,. x LP(g : X) is defined by

e |l B:=sup{[| 9(0) [| : —r <6 < O}+(integraldisplay—minus~Lg(0) || ¢(0) || pas)1/p.

Assume that g(-) verifies the conditions (g-5), (g-6) and ( g- 7) in the nomenclature
of [17]. In thiscase,B = C, x LP(g; X) verifies assumptions (A1), (A 2), (
B1)see[17, Theorem 1. 3. 8] for details .  Moreover , when r = 0 and p = 2
we have that

0
H=1,M(t) =~(—t)"?andK (t) = 1 + (/ g(0)do)"*fort > 0.
—t
Remark 2. 2. Let pe Bandt < 0. The notation ¢t represents the
function defined by ¢t(0) = ¢(t + 0). Consequently , if the function z in axiom ( A 1)
is such that z¢p = ¢, then x; = pt. We observe that ¢t is well defined for every ¢t < 0
since the domain of ¢ is (—o00,0].  We also note that , in general , ptelement — slashB3;
consider , for
example , the characteristic function Aj, o, 4 < —r < 0, in the space C,. x LP(g; X).
Some of our results will proved using the following well know result .
Theorem 2 . 3 ( Leray Schauder Alternative [ 7, Theorem 6 . 5. 4] ). Let D
be a convexr subset of a Banach space X  and assume that 0 € D. Let
G : D — D be a completely continuous map . Then the map G has
a fized point in D orthe s et

{z € D:z=\G(x),0 < X < 1}isunbounded.

The terminology and notation are those generally used in functional analysis . In
particular , for Banach spaces Z, W, the notation £(Z, W) stands for the Banach space
of bounded linear operators from Z into W and we abbreviate this notation to £(Z)
when Z = W. Moreover B,(z,Z) denotes the closed ball with center at z and radius
r > 0in Z and , for a bounded function z : [0,a] = X and 0 < ¢ < a we employ the
notation || z || ¢ for

| @ || ¢ = sup{]| z(s) [|: s € [0,¢]}. (2.6)



This paper has four sections .  In the next section we establish the existence of
mild solutions for the abstract Cauchy problem (1. 1)- (1. 2). In section 4
some applications are considered .
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3. EXISTENCE RESULTS

In this section we establish the existence of mild solutions for the abstract Cauchy
problem (1. 1)-(1.2). To prove our results , we assume that p: I x B — (—o0, a
is a continuous function and that the following conditions are verified .

(H1) The function f: I x B — X satisfies the following properties .
(a) The function f(-,4¢): I — X is strongly measurable for every ¢ € B.
(b) The function f(¢,-) : B— X is continuous for each t € I.

(¢ ) There exist an integrable function m : I — [0,00) and a continuous nonde-

creasing function W : [0,00) — (0, 00) such that

1) IS m@W([ ¢ || B), (t,¢) €I xB. (3.1)

(H2) The function ¢ — ¢t is well defined and continuous from the set R(p~) =
{p(s,v) : (s,9) € I x B, p(s,1) <0} into B and there exists a continuous and bounded
function J¥ : R(p) — (0,00) such that || ¢t || B< J?({) || ¢ | B

foreveryt € R(p).

Remark 3. 1. The condition ( H 2 ) is frequently verify by functions continuous
and bounded .  In fact , if B verifies axiom Cy in the nomenclature of [ 1 7], then there
exists L > 0 such that || ¢ || B < L supg<q || ¢(8) || for every ¢ € B continuous
and bounded , see [ 1 7 , Proposition 7 . 1. 1] for details . Consequently ,

SUPg<g Il () |l
¢l B

for every continuous and bounded function ¢ € B\ {0} and every ¢ < 0. We also

observe that the space C,. x LP(g; X) verifies axiom Co, see [1 7, p . 1 0] for details .
Motivated by ( 2 . 4 ) we introduce the following concept of mild solutions for the

system (1.1)-(1.2).

Definition 3. 2. A function x : (—oo0,a] — X s called

a mild s o lution of the abstract Cauchy pro blem (1. 1)- (1. 2)if

T = P, Tp(s,z,) € B for every s €I and

et | B<L el B

x(t) = C(t)p(0) + S(t)C0 + /0 S(t—s)f(s,Tp(s,2,))ds, tel

In the rest  of this paper, M, and K, are the constants defined
by M, =

sup M (t)and K, = sup K (t).
tel tel

Lemma3.3 ([15,Lemma2.1]). Let ¢ : (—oo0,a] — X be a function
such that

Then

ro = pandz | 0,a] € PC.
| 2o || B< (Mg +J%) || ¢ || B+ Kasup{|| z(6) ||;0 € [0, max{0, s}]},

seR(p ) UL whereJ® = sup J9(t).
tER(p™)



Now , we can prove our first existence result . Theorem 3 . 4 .

H1), (HZ2)hold and assume that S(t) is compact
for every teR. If

J\NTK hm mf /m )ds < 1,

then there exists a mild s o lution wu(-) of 1)-(1.2).

©(0) € E then u € CY(I,X) and condition ( 1 2 ) is verified .

Let conditions (

Moreover

if
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C(I,X) : u(0) = ¢(0)} endowed with the uniform
convergence topology , we define the operator I' : Y — Y by

Tz(t) = C(t)e(0) + S(¢)¢0 —l—/o St —5)f(5,Tpszs))ds, tel, (3.2)

where T : (—o0,a] — X is such that Zp = ¢ and Z =2 on I. From assumption ( A 1
) and our assumptions on ¢, we infer that I'z is well defined and continuous .

Let @ : (—o0,a] — X be the extension of ¢ to (—oo, a] such that () = ¢(0) on
Iand J? = sup {J¥(s): se€R(p~)}. We claim that there exists r > 0 such that
['(B.(p | 1,Y)) C B.(p | I,Y). 1If this property is false , then for every r > 0 there
exist " € B,(¢ | I,Y) and ¢" € I such that r <|| Tz"(t") — ¢(0) || . By using Lemma
3 . 3 we find that

r< [T (") — »(0) |l

<[ CE)e0) = (0) | + (1 S#)C0 || +/O IS = s) [l f(s, Ty(s, (@ )k |l ds

)ds

SHO ) o 1B+ R 1018 [ moW(-er

SHON 1) Lo I B4R 101 +F [ maW(y + 79 | B+ K, [l s
0
<HW+1) @] B+ 5[]

+NW (Mo + J?) || @ || B+ Ka(r+ 1 (0) [) /Oam(S)ds,

and hence

1 < NK, lim inf W(§)/ m(s)ds,
£—o00 5 0
which is contrary to our assumption .

Let r > 0 be such that I'(B,(¢ | I,Y)) C B.(¢ | I,Y). Next, we will prove that
I is completely continuous on B,.(¢ | I,Y). In the sequel ,r* r** are the numbers
defined by r* := (M, + j‘P) lell B+ Kq.(r+ || ©(0)]]) and r** := W(r*) foa m(s)ds
Step 1 The set I'(B.(¢ | I,Y)(t) = {Tz(t) : « € B.(¢ | I,Y)} is relatively compact
in X forall t € I.

The case t = 0 is obvious . Let 0 < e <t <a. Since the function ¢ — S(t) is
Lipschitz , we can select points 0 = ¢; < ty--- < t,, = ¢ such that | S(s) —S(s') |<e,
if s,s" € [ti,tiy1] for some i =1,2,....,.n—1. Ifz € B.(¢]|I,Y), from Lemma 3 . 3
follows that || Z (4 || B < r* and hence

I /0 f(8,Zp5,55))ds || < W(r*)/o m(s)ds =r*", T€l. (3.3)
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i+1

Fa(t) = C(H(0) + SHCO+ Y /f S(5) — S~ 5, Ty i)

i=1 tita1
+¥s() / F(t— 5, Bpiesier))ds
n—1 t;
n—1
€ {C()p(0) + S(t)C0} +C= + Y S(t;) By (0, X).
1=1

Thus ,

I(Br(p | LY)(t) € C: + Ko,

where K. is compact and diam (C;) < er**, which permit us concluding that the set
I'(B,(¢ | I,Y))(t) is relatively compact in X since ¢ is arbitrary .
Step 2 The set of functions I'(B,.(@ | I,Y)) is equicontinuous on .

Let 0 <e <t<aandd>0suchthat || S(s)x— S(s")x ||< e, for every s,8" € T
with | s — ¢’ |< 4. For x € B.(¢ | I,Y) and 0 <| h |< ¢ such that t + h € I we get

N t+h
| Tzt +h) —Tz() || < || (Ct+h)—C(t))pO) |+ ¢O | +NW(7’*)/t m(s)ds
W) / | (S(+h—s) — S(t—9)) | m(s)ds
0
- t+h
<[ (C(t+h) =Ct)e(0) || 4+ <Ol +NW(T*)/t m(s)ds

W (r*)e /Oam(s)ds,

which proves that I'(B,.(¢ | 1,Y)) is equicontinuous on 1.

Proceeding as in the proof of [ 15, Theorem 2 . 2 | we can prove that I is continuous
. Thus ,T" is completely continuous . Now , from the Schauder Fixed Point Theorem
we infer the existence of a mild solution u(-) for (1. 1)-(1.2). The assertion
concerning the regularity of w(-) follows directly from the properties of the space E.
The proof is complete . [
Theorem 3 . 5. Let conditions (H1 ), ( H 2 ) be satisfied . Suppose that S(t)
is compact for every t € R, p(t,v) <t for every (t,v) €I x B and

KY [Cmias < [
a m(s)as < =
0 c W(S),
whereC' = (KuNH+ M, +J?) || o | B+ EY | CO|| andJ® =  sup J#(t).
tER(p™)
Then there exists a mild s o lution of (1.1)-(1.2). If in addition
, ©(0) €E, then

u € CY(I,X) and condition (1. 2) is verified .

Proof . Foru € Y= C(,X) wedefineT'uby (3.2). Inorderto use
Theorem 2 . 3 | next we will shall a priori  estimates for the solutions of the integral
equation
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(0,1), from Lemma 3 . 3 we have that

t
lz*®) | <NH| ¢ B+N O] +/0 N[ f(s, Azp(s, @) |l ds

<NH || ¢|| B+N | ¢

t
A [ m@W(M, + 7)1 B+ Ko | 2 lisosts, AP
t
SNH o | B+ N +5 [ meW (O, + T7) | ¢ | B+ Ko || 2 || s
0

since p(s,-(z)s) < s for all s € I. Defining £X(t) = (My + J%) || ¢ | B+ Kq || 2* || ¢,
we obtain
_ N ot
M) < (KaNH + Mo+ J%) || @ || B+ K [ 0| +K(]1V/ m(s)W(EN(s))ds.  (3.4)
0
Denoting by SA(t) the right - hand side of ( 3. 4 ) , follows that

BA(1) < KN m()W(BA(1))

and hence

BA() ds A > ds
< Kflv/ m(s)ds <
/m(o)—c W(s) 0 c Wi(s),

which implies that the set of functions {SA(:) : A € (0,1)} is bounded in C(I : R).
This prove that {z*(-) : A € (0,1)} is also bounded in C(I, X).

Arguing as in the proof of Theorem 3 . 4 we can prove that I'(-) is completely
continuous , and from Theorem 2 . 3 we conclude that there exists a mild solution u(-)
for (1.1)-(1.2). Finally, it is clear from the preliminaries that u(-) is a function
in C*(I, X) which verifies ( 1. 2 ) when ¢(0) € E. The proof is finished . O

4. EXAMPLES
In this section we consider some applications of our abstract results .
The ordinary case . If X =R, our results are easily applicable . In

fact , in this case the operator A is a matrix of order n x n which generates the cosine
2n
function C(t) = cosh (tA'/?) = 3% L° A™ with associated sine function S(t) =

n=1 2n!
A~ 2% sinh (tAY/2) =32 %A” We note that the expressions cosh (£A/2)
and

sinh (¢ || A ||'/?) are purely symbolic and do not assume the existence of the square
roots of A. It is easy to see that C(t),S(t),t € R, are compact operators and that
| C(t) || <cosh(al A|'Y?)and| S(t)| < | A|'?sinh(al A|?)foralltcR.
The next result is a consequence of Theorems 3 . 4 and 3. 4 .
Proposition 4 . 1. Assume conditions ( H 1 ), (H2). If any of the
following condi - tio ns is verified ,
(a) Ki||A|1/2sinh (al Al 1/2) lim inf§_>oo—|—@ Jo m(s)ds < 1;
(b)) p(t,) <t forall (t,9p) €I x B and
> ds

K, || A||*? sinh(a || A ||'/? /amsds< —_—
AT sihta | A1) [msyis < [ e

where



C = (Kacosh(a|| Al 1/2)5 + %) | ¢ | B+ K || A 1/2sinh(a | Al 1/2) ]| O [l
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then there exists a mild s o lution of (1. 1)- (1.2). A partial differential
equation with state dependent delay . To complete

this section , we discuss the existence of solutions for the partial differential system

Pu(t,€)

205, ¢)

+ —tooay (s — t)u(s — pl(t)pZ(/OTr ax(0) | u(t,8) |* db), €)ds (4.1)

fort € I =1[0,a],& € [0, 7], subject to the initial conditions

u(t,0) =u(t,m) =0, t>0, (4.2)
u(r,§) = o(1,8), 7<0,0<E<T (4.3)

To apply our abstract results , we consider the spaces X = L2([0,7]); B = Cox L*(g, X)
and the operator Af = f” with domain

D(A)={z e X :2" € X,2(0) = z(7) = 0}.

It is well - known that A is the infinitesimal generator of a strongly continuous cosine
function (C(¢))t € R on X. Furthermore , A has a discrete spectrum , the eigenval

- ues are —n?,n € N, with corresponding eigenvectors z,(6) = (%)1/2 sin (nf). In
addition , the following properties hold :
(a) The set {z, :n € N} is an orthonormal basis of X.

(b) ForzeX,C(t)r=>,", cos (nt)(z, z,)2z,. From this expression , it follows
that S(t)z = Y07, %(m,zn)zn, | C@) || =] S) ||[<1forall ¢t € R and that
S(t) is compact for every ¢t € R.

(c) If ® is the group of translations on X defined by ®(t)z(§) = (£ +t), where
I is the extension of z with period 27, then C(t) = $(®(t) + ®(—t)) and A = B2, where
B is the generator of ® and

E ={z¢c H(0,7) : 2(0) = z(7) = 0},

see [ 6 ] for details .
Assume that ¢ € B, the functions a; : R — R, pi : [0,00) — [0,00),i = 1,2, are
continuous ,ag(t) > 0 for all t > 0 and L; = ( 0°° QZES)dS)l/Q < 0o. Under these
conditions , we can define the operators f: I x B — X,p: I x B — R by

F(t9)(€) = ~Poom () (s, €)ds,
p(5,) = 5 — pl()p2( / a2(8) | $(0.) [ db),

and transform system (4.1)-(4.3) into the abstract Cauchy problem (

1.1)-(1.2). Moreover , f is a continuous linear operator with || f || < L1,p
is continuous and p(t,¢) < s for every s € [0,a]. The next results are consequence of
Theorem 3 . 5

and Remark 3 . 1.

Proposition 4 . 2. Assume that ¢ satisfies (H 2 ) . Then there ezists a mild
s o lution of (4.1)- (4.3).

Corollary 4 . 3. If ¢ is continuous and bounded , th en there exists a mild s o

lution of (4.1)- (4.3).



EJDE-207/21 EXISTENCE OF SOLUTIONS 9

Acknowledgement . The author want express his gratitude to the anonymous
referee for his / her valuable comments and suggestions on the paper .
REFERENCES

[ 1] Arino , Ovide ; Boushaba , Khalid ; Boussouar , Ahmed . A mathematical model of the

dynamics of the phytoplankton - nutrient system . Spatial heterogeneity in ecological models ( Alcal

G de Henares , 1 998 ) . “ Nonlinear Analysis RWA . ” 1(2000),n0.1,69—87.
[ 2] Aiello , Walter G . ; Freedman , H.I.; Wu, J . Analysis of a model representing stage -
structured population growth with state - dependent time delay . SIAM J . Appl . Math . 52 (

1992 ),no0.3, 855—869.
[ 3 ] Mria Bartha , Periodic solutions for differential equations with state - dependent delay and
positive feedback . “ Nonlinear Analysis TMA .” 53 (2003 ),no.6,839-857.

[4] Cao, Yulin ; Fan , Jiangping ; Gard , Thomas C . The effects of state - dependent t ime delay
[13

on a stage - structured population growth model Nonlinear Analysis TMA . ” 19(1

992) ,mn0.2, 95— 105 .

[ 5] Alexander Domoshnitsky , Michael Drakhlin and Elena Litsyn On equations with delay de -
pending on solution . “ Nonlinear Analysis TMA . ” 49, (2002 ),n0.5,689-701.

[ 6] Fattorini , H. O ., Second Order Linear Differential Equations in Banach Spaces , North -
Holland Mathematics Studies , Vol . 108 , North - Holland , Amsterdam , 1 985 .

[ 7] Granas , A . and Dugundji , J . , Fixed Point Theory . Springer - Verlag , New York , 2003 .

[ 8 ] Fengde Chen , Dexian Sun and Jinlin Shi , Periodicity in a food - limited population model
with toxicants and state dependent delays . J . Math . Anal . Appl . 288 ,(2003),no. 1,1
36 - 146 .

[9] Hale, J. K. and Verduyn Lunel , S . M . , Introduction to Functional - Differential Equations

Appl . Math . Sci, 99 . Springer - Verlag , New York , 1993 . [10 ] Hartung , Ferenc . Linearized
stability in periodic functional differential equations with state - dependent delays . J . Comput .
Appl . Math . 174 (2005 ),n0.2,201-211. [11]Hartung, Ferenc . Parameter estimation
by quasilinearization in functional differential equa - t ions with state - dependent delays : a numerical
study . Proceedings of the Third World Con - gress of Nonlinear Analysts , Part 7 ( Catania , 2000 ) .
Nonlinear Analysis TMA . 47(2001), no. 7,4557—4566 . [1 2] Hartung , Ferenc ; Herdman
, Terry L . ; Turi , Janos . Parameter identification in classes of neutral differential equations with
state - dependent delays . “ Nonlinear Analysis TMA .” Ser . A : Theory Methods , 39 ( 2000
),no.3,305—-325. [13] Hartung, Ferenc ; Turi, Janos . Identification of parameters in delay
equations with state - dependent delays . “ Nonlinear Analysis TMA . ” 29 (1997), no .
11,1303-1318. [14]Hern @ ndez , Eduardo and McKibben , Mark . On State - Dependent
Delay Partial Neutral Func - t ional Differential Equations . To appear in Applied Mathematics and

Computation . [15] Hern G ndez , Eduardo ; Andra C . Prokopczyk and Luiz A . C . Ladeira
. A Note on State Depen - dent Partial Functional Differential Equations with Unbounded Delay .
Nonlinear Analysis, R . W .A.Vol. 7,No4,(2006),510-519. [16]Hern 4 ndez,

Eduardo ; Michelle Pierri & Gabriel Uni @ o . Existence Results for a Impulsive Abstract Partial
Differential Equation with State - Dependent Delay . Comput . Math . Appl . 52 (2006 ) , 41 1
- 420 . [ 17 ] Hino , Yoshiyuki ; Mura k — ami, Satoru ; Naito , Toshiki Functional - differential
equations with infinite delay . Lect ure Notes in Mathematics , 1473 . Springer - Verlag , Berlin , 1

99 1. [18] Kisy 7 ski, J ., On cosine operator functions and one parameter group of operators ,
Studia Math . 49 (1972), [19] Kuang,Y .; Smith , H. L . Slowly oscillating periodic solutions
of autonomous state - dependent delay equations . “ Nonlinear Analysis TMA . ” 19(1992)

,no .9,855endash — eight72. [ 20 ] Pazy , A . Semigroups of linear operators and applications to
partial differential equations .  Applied Mathematical Sciences , 44 . Springer - Verlag , New York -
Berlin , 1983 . [21] Travis, C. C . and Webb , G . F ., Cosine families and abstract nonlinear
second order differential equations . Acta Math . Acad . Sci . Hungaricae , 32 (1978 ) , 76 -
96 . [22] Travis, C.C . and Webb , G . F ., Compactness , regularity , and uniform continuity
properties of strongly continuous cosine families , Houston J . Math . 3 (4)(1977) 555 - 567

[ 23 ] Torrejn , Ricardo Positive almost periodic solutions of a state - dependent delay nonlinear in



- tegral equation . “ Nonlinear Analysis TMA .7 20 (1993 ),no.12,1383-1416.



10 E . HERN ANDEZ EJDE-27/21
[ 24 ] Yongkun Li , Periodic Solutions for Delay Lot k — a Volterra Competition Systems . J.
Math . Anal. Appl. 246, (2000 ) ,no. 1,230-244 .

[ 25 ] Wu , Jianhong , Theory and applications of partial functional - differential eq uations . Applied
Mathematical Sciences , 1 1 9 . Springer - Verlag , New York , 1 996 .

DEPARTAMENTO DE MATEM @ TICA , INSTITUTO DE CI € NCIAS MATEM @ TICAS DE S @,
CARLOS , UNIVERSIDADE DE S @, PAULO , CAIXA POSTAL 668 , 13 560-9 70 S @, CARLOS , SP
, BRAZIL

E - mail address : lalo h—m@ i cmc . sc . wusp . br



