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EXISTENCE OF y— BOUNDED SOLUTIONS FOR
NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS
PHAM NGOC BOI
ABSTRACT . In this article we present a necessary and sufficient condition for
the existence of 1% — bounded solution on R of the nonhomogeneous linear dif -
ferential equation x’ = A(t)ac + f(t) We associate that with the condition of
the concept % — dichotomy on IR of the homogeneous linear differential equation

= A(t)x.

1. INTRODUCTION
The existence of ¥»— bounded and ¥— stable solutions on Ry  for systems of or -

dinary differential equations has been studied by many authors ; see for exam - ple
Akinyele [1], Avramescu [2], Constantin [4], Diamandescu [5,6
, 7]. Denote

by R the d— dimensional Euclidean space . Elements in this space are denoted
by x = (z1,%2,...,24)" and their norm by | z || = max {| z1 |,| 22 |,...,] za |}-
For real d x d matrices, we definenorm |A| = supjz|[<1| Az |. Let
Ry = [0,00),

R. = (-00,0,, J=R_,RiorRand¢i: : J— (0,00),i= 1,2,....d be

con - tinuous functions . Set

b = diagpl, 2, ..., vd).
Definition 1. 1. A function f :.J — R? is said to be
o)— bounded on J if ¢(t) f(¢) is bounded on J.
e)— integrable on J if f(t) is measurable and ¥(t) f(t) is Lebesgue integrable
on J.

e)— integrally bounded on J if f(¢) is measurable and the Lebesgue integrals

ftt—H Il ¥(u)f(u) || du are uniformly bounded for any ¢,t + 1 € J.
In R9, consider the following equations

¥ =At)x + f(t), (1.1)
' = A(t)x. (1.2)

where A(t) is continuous matrix on J, f(¢) is a continuous function on J. Let Y () be
fundamental matrix of ( 1. 2 ) with Y (0) = I, the identity d x d matrix .  The
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2 P . N . BOI EJDE - 27 /52 d X d matrices Py, P, is said to be the pair of the
supplementary projections if

P! =P\, P} =P, P+ P, =1,

Definition 1. 2. The equation (1.2) issaid to have a ©)— exponential
dichotomy

on J if there exist positive constants K, L, a;, 8 and a pair of the supplementary projec-
tions Py, P, such that

| Y)Y () PLY " H(s)p ™ (s) |[< Ke @) fors < t,s,t € J, (1.3)
| V()Y () PyY " (s)p ™ (s) |[< LePt=9) fort < s,s,t € J. (1.4)

The equation ( 1. 2 ) is said to have a ¢— ordinary dichotomy on Jif (1.3), (1.
4 ) hold

witha = 8 = 0.

We say that (1. 2 ) has a ¢»— bounded grow if for some fixed h > 0 there exists a
constant C' > 1 such that every solution z(¢) of ( 1. 2) is satisfied

lv@)z@t) ]| <O ¥(s)x(s) || fors <t < s+ h,s,te (1.5)

Remark 1. 3. It is easy to see that if (1. 2 ) has a ¥»— exponential dichotomy on
Ry and on R_ with a pair of the supplementary projections Py, P, then (1. 2 ) has a
1)— exponential dichotomy on R with the pair of the supplementary projections

Py, Ps.

Theorem 1.4 ([3,5,7]). ( @ ) The equation (1. 1) has at least one h—
bounded s o lution on Ry for every — integrable function f on Ry if and only if
(1.2) has a ¥— o rdinary dichotomy on Ry. (b ) The equation (1. 1) has at
least one ¥— bounded s o lution on Ry for every — inte - grally bounded function
fon Ryifand onlyif (1. 2) has a v— exponential dichotomy on Ry. (¢ )
Suppose that (1. 2) has a ¥— bounded grow on Ry. Then, (1. 1) has at least
one Y— bounded s o lution on Ry for every w— bounded function f on Ry if
and only if (1.2) has a ¥— exponential dichotomy on R..

Theorem 1.5 ([7]). Suppose that (1. 1) has a ¥— exponential dichotomy
on Ryand, Pp#0,P,#0. If limy,o || (@) f(t) ||= 0 then every — bounded s

o lution z(t) of (1.1) issuchthat limy,o || ¥(t)x(t) || =0.
2. PRELIMINARIES
Lemma 2 . 1. (a)Let (1.2) hasa t— exponential dichotomy on R,

with a pair of the supplementary projections Py, Py. If Q1,Q2 is a pair of the
supplementary projections such that ImP; = ImQ1, then (1. 2) als o has a —
exponential dichotomy on Ry with the pair of the supplementary projections Q1,Q2. (
b)Let (1.2) have a ¥— exponential dichotomy on R_ with a pair of the supplemen
- tary projections Py, Py. If Q1,Q2 s a pair of supplementary projections such
that ImPy, = ImQ2, then (1. 2) als 0 has a ¥— exponential dichotomy on R_
with the pair of th e supplementary projections Q1,Q2.

Proof . First , we prove in the case of J = R,. Note that ( 1. 2 ) has a ¢¥—
exponential dichotomy on Ry with the pair of the supplementary projections Py, Ps if
only if following st atements are satisfied :



oY (OPE] < K'e =) [ g(s)Y(s)¢ || for all ¢ € RY and
t>s5>0, (2.1)
| ()Y () Pa€ ||< L'eBE=5) || 4(s)Y(s)¢ || forall ¢ € RTand s >t > 0. (2.2)
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(1.4) are true , we have for any vector y € R?
[o@Y OPY () (s)y || < Ke 9 [ly || fort > s>
I @)Y (O PY ()¢ (s)y [|< LeP ™) ||y | fors > ¢ >
Choose y = ¥(s)Y(s)§, we obtain (2. 1), (2. 2 ). Conversely , suppose that
inequalities
(2.1),(2.2) aretrue . For any vector y € R?, putting £ = Y ~1(s)y ™1 (s)y we get
(1.3),(1.4).
Now prove the lemma . It follows from KerP, = ImP; = ImQ1 = Ker@2 that
P»Q1 = 0. Hence P,Q1 = P,Q1 + P,Q1 = Q1. Similarly Q171 = P,. Then

)

0
0

- QL =P - Q1= P(P, - Q2), (2.3)
—Ql=-Q1"2=P P, - Q1"2= (P, — Q1)P>. (2.4)

For each u € RY, put &€ = (P; — Q1)u.  The relation ( 2 . 3 ) implies that £ € ImPy,
then P& = &. Result from (2. 1), for s =0 that

I @Y ()P — Q1Ju [|< K'e™®" || (0)[Pr — Q1]u ||, > (2.5)
By (2. 4 ) we conclude
K'e™ || p(0)[Pr — QUu || = <k™e s v SQlFe L t>0. (2.6)

Applying (2. 2) , for t =0, we get

| Poull= || &7 (0)%(0)Pou |
<[ 97H(0) [l ¥(0)Pau | (2.7)
< Le P17 10) || ¥(s)Y (s)u |, fors> 0.
The relations (2. 5) - (2. 7 ) imply

/ -1 P, atsre —Bt
1@y @[ — Q1 [|<< KO 1L OV Dy u = Qe | e="155 ()Y (s)u |
(2.8)

On the other hand , by (2. 2 ) we get

| Y)Y (£)Pou ||< L'ePE=%) || h(sY (s))u ||, ford <t < s. (2.9)
It follows from Q2 = P, + P, — Q1,(2.8) and (2. 9 ) that

[vOY@®)Q2" < [[v@OY O Pul  + [[v@®)Y ([P — QlJu ||
(L + K1)eP ) || 4p(s)Y (s)u | (2.10)
< LB || ()Y (s)u ||, for0 <t < s.

Similarly , for v € R?, we have

I9OY (HQL" || < Ko™ [[(s)Y (s)u ||, for0 <s <t (2.11)

Then from this inequality , ( 2. 1 0 ) and the preceding note it follows that ( 1. 2)
has a ¢)— exponential dichotomy on R with the pair of the supplementary projections
Q1, Q2. In the case of J = R_, the proof is similar . [
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Remark 2. 2. (a) Suppose that ( 1. 2 ) has a ¢»— exponential dichotomy on R
with

a pair of supplementary projections P;, P,.  The set PiR? is the subspace of R? con-
sisting of the values x(0) of all 1»— bounded solutions z(¢) on Ry of (1. 2 ) . In fact

denote by X this subspace , if v € PR then v € X, by virtue of (2. 1) . Conversely if
u € X1, we have to show that P,bu = 0. Suppose otherwise that Pobu  #
0,by (2. 1), (2. 2) we have | ¥(#)Y(¢t)Pru || is bounded and the limit of
Il v()Y (t)Pou || is oo, ast tend to co.  Denote y the solution of (1.2), y(0) =
u.  The relation ¥(t)y(t) — (&)Y (t)Piu = ()Y (t)Pyu follows that y is non ¢—
bounded on R, which is a contradiction .

(b ) Similarly if ( 1. 2) has a ¥— exponential dichotomy on R_ with a pair of supple
mentary projections Py, P, then the set P,R? is the subspace of R? consisting of the
values z(0) of all ¥»— bounded solutions z(¢t) on R_ of (1. 2).

(¢ ) Suppose that (1. 2) has a 1)— exponential dichotomy on R, then (1. 2) has
no nontrivial ¢»— bounded solution on R.  In fact if z(¢) is the ¥— bounded solution of
(1.2)onR then it is ¥»— bounded on Ry and on R_. Because equation (1. 2 ) has a
1»— exponential dichotomy on Ry, and on R_ with a pair of supplementary projections
Py, Py, by preceding notice we have Pox(0) = 0 and Pyxz(0) = 0. Hence x(0) = 0, then
x(t) is the trivial solution of (1. 2) .

Lemma2.3 ([8]). Let h(t) be a non - negative , locally integrable such that
:H h(s)ds <c¢, forall teR
If 6 >0 then , for all teR,

/ e 06 (s)ds < e[l — e 071, (2.12)
t
integraldisplay — minust_ e =) h(s)ds < ¢[1 — 971, (2.13)

Proof . We prove (2. 12), the proof of (2. 13 ) is similar .

t+m+1 t+m+1
/ e 06 n(s)ds < / e 00FM) I p(5)ds
t+m t+m

t+m+1
= / e M h(s)ds < ce”™
t+m

implies that

m=0 t4m+1

/ e 0D n(s)ds = Z / e 06 (s)ds < =070 = ¢[1 — 7071

t o Jt+m

O

Lemma 2 . 4. Equation (1. 1) has at least one 11— bounded s o lution on R
for every — integrally bounded function f on R if and only if the fo I lowing three
conditions are satisfied :

(1) FEquation (1.1) has at least one s o lution on R,1p— bounded on Ry for
every Y— integrally bounded function f on Ry

(2) PEquation (1. 1) has at least one s o lution on R,v— bounded on R_ for
every Y— integrally bounded function f on R_.
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(3) Ewvery s o lution of (1. 2) is th e sum of two s o lution of (1. 2),
one of that is 1— bounded on R, another is ¥— bounded on R_.

Proo f — period Suppose the three conditions are satisfied we have to prove that (
1. 1) has at least one ©»— bounded solution on R for every ¥— integrally bounded
function f on R. Every 1 — integrally bounded function f on R is ¢)— integrally bounded
function f on R, and on R_. Then for each 1— integrally bounded function f on R
exists the solution y1 and y2 of (1. 1), which is defined on R and corresponding ¢ —
bounded on

R, and on R_. Denote by z(t) the solution of ( 1. 2 ) such that z(0) = y2(0) — y1(0).
By 3, we get x(t) = x1(t) + z2(t), here x1,z2 are two solutions of ( 1. 2 ), that are
corresponding ¢¥— bounded solution on R, and R_. Set z; = yl + x1,20 = y2 — 2.
Hence z; and z;  are the solutionsof (1. 1)  corresponding ¥)— bounded solution
on Ry and on R_. Further , 25(0) = y2(0) — 22(0) = y1(0) 4+ 21(0) = 21(0), then
21 = 2. Consequently z; is a ¢»— bounded solution on R of (1. 1) .

Conversely , now if ( 1. 1) has at least one ¥»— bounded solution on R for every
1)— integrally bounded function f on R we have to prove three condition are satisfied .
The conditions 1 , 2 are satisfied since every ¥— integrally bounded function f on R
,or R_ is the restriction of a ¥— integrally bounded function f on R. We prove that
the condition 3 is satisfied . Set

0 for|t|>1
h(t) = 1 fort=0
linear fort € [—1,0],t € [0, 1]

Fix a solution z(t) of (1. 2 ). Then h(t)x(t) is a ¢p— integrally bounded function
on R. Set y(t) = z(t) fot h(s)ds, we have

y () = AB)a(t) /0 h(s)ds + h(E)z(t) = A@)y(t) + h(B)a(t).

By hypothesis , the equation

y'(t) = A)y(t) + h(t)z(t)
has a solution y(t), ~ which is ¢— bounded on R.  Set z1(t) = y(t) —y(t) + sz(t)
and za(t) = §(t) + y(t) + La(t). It follows from [° h(t)dt = [y h(t)dt = 1 that
x1(t) = y(t) for t > 1;22(t) = y(t) for t < —1. Then z1, x5 are the corresponding ¥ —
bounded solutions on R;,R_of (1.2). Consequently the solution z(¢) of (1. 2)
is the sum of two solutions z1(t) and zo(t) of (1.2), those solutions satisfy
the
condition 3 . The lemma is proved . 0O

3. MAIN RESULTS

Theorem 3 . 1. Equation (1. 1) has at least one p— bounded s o lution on
R_ for every — integrally bounded function f on R_ ifand onlyif (1.2)
has a ¥— exponential
dichotomy on R_.
Proof . This Theorem can be shown as in [ 3 , Theorem 3 . 3] . We give the main
steps
of the proof as follows . In the proof of “if part ” : Suppose that ftt—l IFw(s)f(s) |l
ds <c
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|| integraldisplay — minust ()Y (t)PyY "1 (s)ds | < minus — integraldisplay’, | ()Y (£)P1Y "1 (s)y~1(s) ||
< integraldisplay — minust e || ¢ (s) f(s) || ds <

(oo}

and

’ 0
| /t VY () PY " (s) f(s)ds || g/t B0 || ()£ (o) | ds
< /t°° e PO | p(s) f(s) || ds < (1 — e P)~ 1.

It follows that the function

0
Z(t) = minus—integraldisplayéow(t)Y(t)PlY_l(s)f(s)ds—/t ()Y () PyY " (s) f(s)ds

is bounded on R . Hence the function

w(t) =~ (H)Z(2)
0
= integraldisplay — minus’ _(t)Y (t)PLY "1 (s) f(s)ds — /t V()Y () PoY "1 (s) f(s)ds

is ©»— bounded on R_. On the other hand

0
2’ (t) = A(t)(integraldisplay — minus Y (t)P,Y ~'(s) f(s)ds — /t Y (t)PY "1(s)f(s)ds)
)

+Y(PY L) f(t) + Y () PY L) f(t
= A(t)z(t) + f(t),

it implies that z(t) is a solution of ( 1. 1) . In the proof of “ only if part ” : The set

Cyp={z:R_. >R :z

is ¢— bounded and continuous on R_}. It is a Banach space with the norm || = [[c—c, =
supt < O || ¥(¢)x(t) || . The first step:  we show that (1.1) hasa unique ¢—
bounded solution z(t) with z(0) € X; = P,R¢ for each f € (~7¢ and [z | C —ey <
7| f lle-c,, here r

is a positive constant independent of f.

The next steps of the proof are similar to the proof of [ 3, Theorem 3 . 3], with
the corresponding replacement ( for example replace ¢t > tg > 0 by 0 > tg > ¢, P; by
—P5, P, by —P;,00 by —00, —00 by o0,...). O
Theorem 3 . 2. The equation (1. 1) has a unique — bounded s o lution on
R for ev - ery — integrally bounded function f on R if and onlyif (1.2) has a
— exponential dichotomy on R.

Proof . First , we prove the “if 7 part . By Lemma 2 . 3 and in the same way as in
the
proof of Theorem 3 . 1, the function

2(t) = oo (1) PLY 1 (s) f(s)ds — /t T YO PY () f(5)ds



EJDE-207/52 EXISTENCE OF %— BOUNDED SOLUTIONS 7 is ©»— bounded and
continuous on R. Moreover ,

2(t) = A(t)(—tocY () Py §)ds — / Y (£)PyY L (s) f(s)ds)
Y (H)PY Y @ORY 0 £(0)
— A(t)x(t) + £ (1),

it follows that z(t) is a solution of (1. 1) .

The uniqueness of the solution x(¢) result from ( 1. 2 ) having no nontrivial ¢—
bounded solution on R( Remark 2. 2 ).  Suppose that y is a ¢p)— bounded solution
of (1. 1) then z —y is a v»— bounded solution of (1. 2 ) on R. We conclude z =y
since & — y is the trivial solution of (1. 2) .

We prove the “only if 7 part Suppos tha (1. 1 ha uniqu ¥—
bounded solution on R for every @ — integrally bounded function f on R, we have to
prove that (1. 1)
has a ¢— exponential dichotomy on R. By Lemma 2 . 4 , Theorem 1 . 4 and Theorem
3. 1lweget (1. 2) has a ¢)— exponential dichotomy on R, with a pair of the
supplementary projections P;, P, and has a 1— exponential dichotomy on R_.  with
a pair of the supplementary projections Q1, Q2. Remark 2 . 2 follows that P,R? is the
subspace of R? consisting of the values x(0) of all )— bounded solutions x(t) on R, of
(1.2)and
QQRd is the subspace of R? consisting of the values z(0) of all 9— bounded solutions
xz(t) on R_ of (1. 2). We are going to prove that

R? = PRY @ Q2% (3.1)

For each u € R?, denote by 2 = z(t) the solution of (1.2),7(0) = u. By Lemma 2 . 4 we
get © = x1 + a2, where x1, x5 are the solutions of (1. 2 ) corresponding ¥)— bounded
on R_,R_. It follows from Remark 2 . 2 that z1(0) € P,R? and z5(0) € Q28" 1t
follows from u = x1(0) + z2(0), that

R? = P RY 4+ Q2% (3.2)

By hypothesis (1. 1) with f = 0 has unique )— bounded solutionon Ri.e. (1.2
) have

no nontrivial ¥)— bounded solution on R. For any v € P{R? N QQ]’RFI denote by z(t) the
solution of ( 1. 2) such that (0) =wv. Then z(¢) is the )— bounded solution of ( 1
. 2), it implies that x(t) is the trivial solution . Hence v = 0. Consequently

PR N Q2% = 0. (3.3)

The relations (3.2 )and (3.3 )imply (3.1). Now , we prove the existence of
a pair supplementary projections , for which ( 1. 1) has a ¥— exponential dichotomy
on R.

Choose the projection P of R¢ such that ImP = PRY |, ker P = Q2].Rd
By Lemma 2 . 1, (1. 2 ) has a ¢»— exponential dichotomy on R, and have a 1)—
exponential dichotomy on R_ with the pair of the supplementary projections P, I; — P.
From Remark 1 . 3 it follows that ( 1. 2 ) has a ¢»— exponential dichotomy on R with
the pair of the supplementary projections P, I; — P. The proof is complete . [
Theorem 3 . 3. Suppose that (1.2 ) has a Y— exponential dichotomy on R.

If



t+1

lim 14(s)f(s) || ds =0

—¢too t

then the ¥— bounded s o lution of (1. 1) is such that

lim || (t)x(t) | = 0.

—¢+oo

(3.5)
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1.1)is

x(t) = integraldisplay — minus' )Y (t)P1Y "' (s)f(s)ds — /t h Y (t)PY " (s)f(s)ds.

| (t)2(t) ||< integraldisplay — minust, || $(E)Y ()PY ™ (s)f(s) || ds + /too I @)Y () PY " (s) f(s) || ds
< Kintegraldisplay — minus’ e =% || 4(s) f(s) || ds + L /t " B | (s)f(s) || ds

< Ki{integraldisplay — minust,e™ =) || (s) f(s) || ds + /t T el I'9(s)f(s) || ds},

(3.6)
where K1 = max {K,L}. Denote by v = min {«,3}. Under the hypothesis ( 3. 4
), for a given € > 0, there exists T > 0 such that

9

t+1
[ 1) s < gt =) forl e

Then from Lemma 2 . 3 and inequality ( 3 . 6 ) it follow that

lo@e® || <KL Y q—e - )+ (1-e?)

2K

< KS a_ - e M2l —e )t =¢ forall |t |>T,

2K

this implies ( 3. 5 ) . The proof is complete . O Corollary 3 . 4 . Suppose that
(1.2) has a — exponential dichotomy on R. If

lim [ 4(8)f(t) =0 (3.7)

—¢too

then the ¥— bounded s o lution of (1. 1) is such that

im0 | =0, (3.8)
Proof . It is easy to see that ( 3 . 7 ) implies (3.4) O Now , we consider the
perturbed equation

a'(t) = [A(t) + B(t)](t) (3.9)

where B(t) is a d X d continuous matrix function on R.  We have the following result .
Theorem 3 . 5. Suppose that (1. 2) has a Y— exponential dichotomy on R. If
J =

SUD;cR ftt—H | ¥(s)B(s)y~1(s) | ds is sufficiently small , then (3. 9) has a 11—
exponential

dichotomy on R.

Proof . By Theorem 3 . 2 it suffices to show that the equation

'(t) = [A(t) + B(®)]z(t) + f(t) (3.10)

has a unique ¥— bounded solution on R for every ¢— integrally bounded f function
on R. Denote by G the set
Gy ={z:R — R?: 2 is ¢»)— bounded and continuous on R}.
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G is a real Banach space with the norm

211 Go = sup | 6(0)a(t) |
Consider the mapping T : Gy — Gy, which is defined by
Ta(t) = —too¥ ()Y (5) [ B(s)z(s) + f(s))ds
- [T YRy OB + feds

It is easy verified that Tz € G,. More ever if 21,2 € Gy, then

|| T21 — TZQ || Gw
< integraldisplay — minush, | $()Y (/PLY ™ ()6 (s) || ¥(s) B(s)o"(s) || ()21 (s) — v(s)za(s) | ds

+/too [ pOY (O PY ™ ()v™ () | () B(s)0 ™" () [I| ()21 (s) — 1(s)z2(s) || ds

By Lemma 2 . 3 , we have

| Tor =Tz [| Gy < K || 21— 22 || Gy " 000 | () B(s)y~"(5) | ds
FL| 21— | G¢/ eP1=5) | y(s)B(s)p~(s) | ds

t
<O[K(1 - 670‘)71 +L(1- efﬁ)fl] | 21 — 22 || Gy

Hence , by the contraction principle , if §[K(1 —e™*)~! + L(1 — e7#)71] < 1, then the
mapping 7" has a unique fixed point . Denoting this fixed point by z, we have

2(t) = integraldisplay — minust Y (t)PyY ~1(s)[B(s)z(s) + f(s)]ds
- [ Y@RY OB + f(s)ds
¢
It follows that z(t) is a solution on Rof (3.10) .
Now , we prove the uniqueness of this solution .  Suppose that x(¢) is a arbitrary
1— bounded solution on R of (3. 10 ) . Consider the function

y(t) = z(t) — integraldisplay — minus’ Y (t)PLY 1 (s)[B(s)x(s) + f(s)]ds

+f TV ()P (5) [Bls)a(s) + f(s))ds

It is easy to see that y(t) is a ¥— bounded solution on R of ( 1 . 2 ) . Then from
Theorem 3 . 2 follows that y(t) is the trivial solution . Then

£(t) = ~'oo¥ ()PY 1 (s)[B(s)x(s) + f(s)]ds
/ Y (1)PY 1 (5) [B(s)x(s) + f(s)]ds
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Hence z(t) is the fixed point of mapping 7. From the uniqueness of this point , it
follows that x = z. The proof is complete . [

Corollary 3. 6 . Suppose that (1. 2) has a — exponential dichotomy on R. If
J=

supier | Y(E)B@)YH(t) | is sufficiently small ,  then  (3.9) has a P—
exponential di - chotomy on R.
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