$\label{eq:local_control} \textit{Electronic Journal of Differential Equations} \quad \text{, Vol. 2007 (2007)} \quad \text{, No. 52 , pp. 1-10.} \\ \text{ISSN}: 1\ 72\ -\ 6691 \quad \text{URL}: \text{http://ejde.math.txstate.edu or http://ejde.math.unt.edu} \quad \text{edu or http://ejde.math.txstate.edu} \quad \text{(login:ftp.)}$

EXISTENCE OF $\psi-$ BOUNDED SOLUTIONS FOR NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

PHAM NGOC BOI

ABSTRACT . In this article we present a necessary and sufficient condition for the existence of $\psi-$ bounded solution on $\mathbb R$ of the nonhomogeneous linear differential equation x'=A(t)x+f(t). We associate that with the condition of the concept $\psi-$ dichotomy on $\mathbb R$ of the homogeneous linear differential equation

$$x' = A(t)x$$
.

1. Introduction

The existence of $\psi-$ bounded and $\psi-$ stable solutions on \mathbb{R}_+ for systems of ordinary differential equations has been studied by many authors; see for exam - ple Akinyele [1], Avramescu [2], Constantin [4], Diamandescu [5,6,7]. Denote

by \mathbb{R}^d the d- dimensional Euclidean space . Elements in this space are denoted by $x=(x_1,x_2,...,x_d)^T$ and their norm by $\|x\|=\max\{|x_1|,|x_2|,...,|x_d|\}$. For real $d\times d$ matrices , we define norm $\|A\|=\sup_{\|x\|\leq 1}\|Ax\|$. Let $\mathbb{R}_+=[0,\infty)$,

 $\mathbb{R}_-=(-\infty,0],\quad J=\mathbb{R}_-,\mathbb{R}_+ \text{ or }\mathbb{R} \text{ and } \psi i \quad : \quad J\to \quad (0,\infty), i=1,2,...,d$ be con - tinuous functions . Set

$$\psi = \operatorname{diag}[\psi 1, \psi 2, ..., \psi d].$$

Definition 1.1. A function $f: J \to \mathbb{R}^d$ is said to be

• ψ - bounded on J if $\psi(t)f(t)$ is bounded on J.

- • ψ integrable on J if f(t) is measurable and $\psi(t)f(t)$ is Lebesgue integrable on J.
- • ψ integrally bounded on J if f(t) is measurable and the Lebesgue integrals $\int_t^{t+1} \| \psi(u) f(u) \| du$ are uniformly bounded for any $t, t+1 \in J$.

In \mathbb{R}^d , consider the following equations

$$x' = A(t)x + f(t), \tag{1.1}$$

$$x' = A(t)x. (1.2)$$

where A(t) is continuous matrix on J, f(t) is a continuous function on J. Let Y(t) be fundamental matrix of (1 . 2) with $Y(0) = I_d$, the identity $d \times d$ matrix. The

2000~Mathematics~Subject~Classification . ~34~A~1~2 , 34~C~1~1 , 34~D~5 .

Key words and phrases $.\psi-$ bounded solution $;\psi-$ integrable $;\psi-$ integrally bounded $;\psi-$ exponential dichotomy .

circlecopyrt-c2007 Texas State University - San Marcos .

² P.N.BOI EJDE - 27 / 52 $d \times d$ matrices P_1, P_2 is said to be the pair of the supplementary projections if

$$P_1^2 = P_1, P_2^2 = P_2, P_1 + P_2 = I_d.$$

Definition 1.2. The equation (1.2) is said to have a $\psi-$ exponential dichotomy

on J if there exist positive constants K, L, α, β and a pair of the supplementary projections P_1, P_2 such that

$$| \psi(t)Y(t)P_1Y^{-1}(s)\psi^{-1}(s) | \leq Ke^{-\alpha(t-s)} \quad \text{for } s \leq t, s, t \in J,$$
 (1.3)

$$|\psi(t)Y(t)P_2Y^{-1}(s)\psi^{-1}(s)| \leqslant Le^{\beta(t-s)} \quad \text{for } t \leqslant s, s, t \in J.$$

$$\tag{1.4}$$

The equation (1 . 2) is said to have a $\psi-$ ordinary dichotomy on J if (1 . 3) , (1 . 4) hold

with
$$\alpha = \beta = 0$$
.

We say that (1 . 2) has a ψ - bounded grow if for some fixed h > 0 there exists a constant $C \ge 1$ such that every solution x(t) of (1 . 2) is satisfied

$$\|\psi(t)x(t)\| \leqslant C \|\psi(s)x(s)\| \text{ for } s \leqslant t \leqslant s+h, s,t \in J.$$

$$\tag{1.5}$$

Remark 1.3. It is easy to see that if (1.2) has a ψ - exponential dichotomy on \mathbb{R}_+ and on \mathbb{R}_- with a pair of the supplementary projections P_1, P_2 then (1.2) has a ψ - exponential dichotomy on \mathbb{R} with the pair of the supplementary projections

$$P_1, P_2.$$

Theorem 1.4 ([3,5,7]). (a) The equation (1.1) has at least one ψ -bounded s o lution on \mathbb{R}_+ for every ψ - integrable function f on \mathbb{R}_+ if and only if (1.2) has a ψ - o rdinary dichotomy on \mathbb{R}_+ . (b) The equation (1.1) has at least one ψ - bounded s o lution on \mathbb{R}_+ for every ψ - inte- grally bounded function f on \mathbb{R}_+ if and only if (1.2) has a ψ - exponential dichotomy on \mathbb{R}_+ . (c) Suppose that (1.2) has a ψ - bounded grow on \mathbb{R}_+ . Then, (1.1) has at least one ψ - bounded s o lution on \mathbb{R}_+ for every ψ - bounded function f on \mathbb{R}_+ if and only if (1.2) has a ψ - exponential dichotomy on \mathbb{R}_+ .

Theorem 1.5 ([7]). Suppose that (1.1) has a ψ - exponential dichotomy on \mathbb{R}_+ and, $P_1 \neq 0, P_2 \neq 0$. If $\lim_{t \to \infty} \| \psi(t) f(t) \| = 0$ then every ψ - bounded s o lution x(t) of (1.1) is such that $\lim_{t \to \infty} \| \psi(t) x(t) \| = 0$.

2. Preliminaries

Lemma 2.1. (a) Let (1.2) has a $\psi-$ exponential dichotomy on \mathbb{R}_+ with a pair of the supplementary projections P_1,P_2 . If Q1,Q2 is a pair of the supplementary projections such that $ImP_1=ImQ1$, then (1.2) als o has a $\psi-$ exponential dichotomy on \mathbb{R}_+ with the pair of the supplementary projections Q1,Q2. (b) Let (1.2) have a $\psi-$ exponential dichotomy on \mathbb{R}_- with a pair of the supplementary projections P_1,P_2 . If Q1,Q2 is a pair of supplementary projections such that $ImP_2=ImQ2$, then (1.2) als o has a $\psi-$ exponential dichotomy on \mathbb{R}_- with the pair of the supplementary projections Q1,Q2.

Proof. First, we prove in the case of $J = \mathbb{R}_+$. Note that (1.2) has a ψ -exponential dichotomy on \mathbb{R}_+ with the pair of the supplementary projections P_1, P_2 if only if following st atements are satisfied:

 $\| \psi(t)Y(t)P_1\xi \| \leq K'e^{-\alpha(t-s)} \| \psi(s)Y(s)\xi \| \quad \text{for all } \xi \in \mathbb{R}^d \text{ and } t \geq s \geq 0, \quad (2.1)$ $\| \psi(t)Y(t)P_2\xi \| \leq L'e^{\beta(t-s)} \| \psi(s)Y(s)\xi \| \quad \text{for all } \xi \in \mathbb{R}^d \text{ and } s \geq t \geq 0. \quad (2.2)$

EJDE - 207/52 EXISTENCE OF $\psi-$ BOUNDED SOLUTIONS 3 In fact , if (1.3) and (1.4) are true , we have for any vector $y \in \mathbb{R}^d$

$$\| \psi(t)Y(t)P_{1}Y^{-1}(s)\psi^{-1}(s)y \| \leq Ke^{-\alpha(t-s)} \| y \| \quad \text{for } t \geq s \geq 0,$$

$$\| \psi(t)Y(t)P_{2}Y^{-1}(s)\psi^{-1}(s)y \| \leq Le^{\beta(t-s)} \| y \| \quad \text{for } s \geq t \geq 0.$$

Choose $y=\psi(s)Y(s)\xi,$ we obtain (2 . 1) , (2 . 2) . Conversely , suppose that inequalities

(2.1), (2.2) are true. For any vector $y \in \mathbb{R}^d$, putting $\xi = Y^{-1}(s)\psi^{-1}(s)y$ we get (1.3), (1.4).

Now prove the lemma . It follows from $KerP_2 = ImP_1 = ImQ1 = KerQ2$ that $P_2Q1 = 0$. Hence $P_1Q1 = P_1Q1 + P_2Q1 = Q1$. Similarly $Q1^P1 = P_1$. Then

$$P_1 - Q1 = P_1^2 - P_1Q1 = P_1(P_2 - Q2), (2.3)$$

$$P_1 - Q1 = -Q1^P 2 = P_1 P_2 - Q1^P 2 = (P_1 - Q1)P_2.$$
(2.4)

For each $u \in \mathbb{R}^d$, put $\xi = (P_1 - Q_1)u$. The relation (2.3) implies that $\xi \in ImP_1$, then $P_1\xi = \xi$. Result from (2.1), for s = 0 that

$$\| \psi(t)Y(t)[P_1 - Q1]u \| \leqslant K'e^{-\alpha t} \| \psi(0)[P_1 - Q1]u \|, t \geqslant 0.$$
 (2.5)

By (2.4) we conclude

$$K'e^{-\alpha t} \parallel \psi(0)[P_1 - Q1]u \parallel = \leqslant K^{K'_{,e} - \alpha t_{\parallel}}_{|\psi(0)|} \psi^{(0)}_{|P_1 - Q1|_{e} - \alpha t_{\parallel}} P_2u_{\parallel}, \quad t \geqslant 0.$$
 (2.6)

Applying $(2 \cdot 2)$, for t = 0, we get

$$|| P_{2}u || = || \psi^{-1}(0)\psi(0)P_{2}u ||$$

$$\leq | \psi^{-1}(0) || || \psi(0)P_{2}u ||$$

$$\leq L'e^{-\beta s} || \psi^{-1}(0) || || \psi(s)Y(s)u ||, \quad \text{for } s \geq 0.$$
(2.7)

The relations (2.5) - (2.7) imply

$$\| \psi(t)Y(t)[P_1 - Q1]u \| \leqslant_{\leqslant} K_1^{K'L'|\psi(0)|} \|_{\psi}^{H'(0)|} \|_{\psi}^{H'(0)|} \|_{(s)Y(s)u}^{P_1} \| - Q_{\text{for}}^1 \| e^{-\alpha t} t_{,s \geqslant 0}^{e^{-\beta t}} \psi(s)Y(s)u \|$$

$$(2.8)$$

On the other hand, by (2.2) we get

$$\|\psi(t)Y(t)P_2u\| \leqslant L'e^{\beta(t-s)} \|\psi(sY(s))u\|, \quad \text{for } 0 \leqslant t \leqslant s.$$
 (2.9)

It follows from $Q2 = P_2 + P_1 - Q1$, (2.8) and (2.9) that

$$\| \psi(t)Y(t)Q2^{u} \| \leqslant \| \psi(t)Y(t)P_{2}u \| + \| \psi(t)Y(t)[P_{1} - Q1]u \|$$

$$\leqslant (L' + K_{1})e^{\beta(t-s)} \| \psi(s)Y(s)u \|$$

$$\leqslant L_{2}e^{\beta(t-s)} \| \psi(s)Y(s)u \|, \text{ for } 0 \leqslant t \leqslant s.$$
(2.10)

Similarly, for $u \in \mathbb{R}^d$, we have

$$\| \psi(t)Y(t)Q1^u \| \le K_2 e^{-\alpha(t-s)} \| \psi(s)Y(s)u \|, \quad \text{for } 0 \le s \le t.$$
 (2.11)

Then from this inequality , (2 . 1 0) and the preceding note it follows that (1 . 2) has a ψ - exponential dichotomy on \mathbb{R}_+ with the pair of the supplementary projections Q1,Q2. In the case of $J=\mathbb{R}_-$, the proof is similar . \square

Remark 2.2. (a) Suppose that (1.2) has a ψ - exponential dichotomy on \mathbb{R}_+

a pair of supplementary projections P_1, P_2 . The set $P_1\mathbb{R}^d$ is the subspace of \mathbb{R}^d consisting of the values x(0) of all ψ - bounded solutions x(t) on \mathbb{R}_+ of (1, 2). In fact

denote by X_1 this subspace, if $v \in P_1 \mathbb{R}^d$ then $v \in X_1$ by virtue of (2.1). Conversely if $u \in X_1$, we have to show that $P_2u = 0$. Suppose otherwise that $P_2u \neq 0$ 0, by (2.1), (2.2) we have $\|\psi(t)Y(t)P_1u\|$ is bounded and the limit of $\|\psi(t)Y(t)P_2u\|$ is ∞ , as t tend to ∞ . Denote y the solution of (1.2), y(0) =The relation $\psi(t)y(t) - \psi(t)Y(t)P_1u = \psi(t)Y(t)P_2u$ follows that y is non ψ bounded on \mathbb{R}_+ , which is a contradiction.

(b) Similarly if (1.2) has a ψ - exponential dichotomy on \mathbb{R}_{-} with a pair of supple

mentary projections P_1, P_2 then the set $P_2\mathbb{R}^d$ is the subspace of \mathbb{R}^d consisting of the values x(0) of all ψ - bounded solutions x(t) on \mathbb{R}_{-} of (1, 2).

(c) Suppose that (1.2) has a ψ - exponential dichotomy on \mathbb{R} , then (1.2) has no nontrivial ψ bounded solution on \mathbb{R} . In fact if x(t) is the ψ bounded solution of (1.2) on \mathbb{R} then it is ψ – bounded on \mathbb{R}_+ and on \mathbb{R}_- . Because equation (1.2) has a ψ exponential dichotomy on \mathbb{R}_+ , and on \mathbb{R}_- with a pair of supplementary projections P_1, P_2 , by preceding notice we have $P_2x(0) = 0$ and $P_1x(0) = 0$. Hence x(0) = 0, then x(t) is the trivial solution of (1.2).

Lemma 2.3 ([8]). Let h(t) be a non-negative, locally integrable such that $\int_t^{t+1} h(s) ds \leqslant c, \quad \textit{for all} \ \ t \in \mathbb{R}$ If $\theta > 0$ then, for all $t \in \mathbb{R}$,

$$\int_{t}^{\infty} e^{-\theta(s-t)} h(s) ds \leqslant c[1 - e^{-\theta}]^{-1}, \tag{2.12}$$

$$integral display - minus_{\infty}^{t} e^{-\theta(t-s)} h(s) ds \leqslant c[1 - e^{-\theta}]^{-1}. \tag{2.13}$$

Proof. We prove (2.12), the proof of (2.13) is similar.

$$\begin{split} \int_{t+m}^{t+m+1} e^{-\theta(s-t)}h(s)ds &\leqslant \int_{t+m}^{t+m+1} e^{-\theta(t+m)}e^{\theta t}h(s)ds \\ &= \int_{t+m}^{t+m+1} e^{-\theta m}h(s)ds \leqslant ce^{-\theta m} \end{split}$$

implies that

$$\int_{t}^{\infty} e^{-\theta(s-t)} h(s) ds = \sum_{\infty}^{m=0} \int_{t+m}^{t+m+1} e^{-\theta(s-t)} h(s) ds \leqslant c \sum_{m=0}^{m=0} e^{-\theta m} = c[1 - e^{-\theta}]^{-1}$$

Equation (1.1) has at least one ψ -bounded so lution on \mathbb{R} for every ψ - integrally bounded function f on \mathbb{R} if and only if the following three conditions are satisfied:

- (1) Equation (1.1) has at least one s o lution on \mathbb{R}, ψ -bounded on \mathbb{R}_+ for every ψ - integrally bounded function f on \mathbb{R}_+
- (2) Equation (1.1) has at least one s o lution on \mathbb{R}, ψ -bounded on \mathbb{R}_- for every ψ - integrally bounded function f on \mathbb{R}_{-} .

(3) Every s o lution of (1.2) is the sum of two s o lution of (1.2), one of that is $\psi-$ bounded on \mathbb{R}_+ , another is $\psi-$ bounded on \mathbb{R}_- .

Proo f-period Suppose the three conditions are satisfied we have to prove that (1 . 1) has at least one $\psi-$ bounded solution on $\mathbb R$ for every $\psi-$ integrally bounded function f on $\mathbb R$. Every $\psi-$ integrally bounded function f on $\mathbb R$ and on $\mathbb R_-$. Then for each $\psi-$ integrally bounded function f on $\mathbb R$ exists the solution f and f on f

 \mathbb{R}_+ and on \mathbb{R}_- . Denote by x(t) the solution of (1.2) such that x(0)=y2(0)-y1(0). By 3, we get $x(t)=x_1(t)+x_2(t)$, here x_1,x_2 are two solutions of (1.2), that are corresponding $\psi-$ bounded solution on \mathbb{R}_+ and \mathbb{R}_- . Set $z_1=y1+x_1,z_2=y2-x_2$. Hence z_1 and z_2 are the solutions of (1.1) corresponding $\psi-$ bounded solution on \mathbb{R}_+ and on \mathbb{R}_- . Further, $z_2(0)=y2(0)-x_2(0)=y1(0)+x_1(0)=z_1(0)$, then $z_1=z_2$. Consequently z_1 is a $\psi-$ bounded solution on \mathbb{R} of (1.1).

Conversely , now if (1 . 1) has at least one $\psi-$ bounded solution on $\mathbb R$ for every $\psi-$ integrally bounded function f on $\mathbb R$ we have to prove three condition are satisfied . The conditions 1 , 2 are satisfied since every $\psi-$ integrally bounded function f on $\mathbb R_+$, or $\mathbb R_-$ is the restriction of a $\psi-$ integrally bounded function f on $\mathbb R$. We prove that the condition 3 is satisfied . Set

$$h(t) = \begin{cases} &0 \quad \text{for } \mid t \mid \geqslant 1\\ &1 \quad \text{for} t = 0\\ &\text{linear} \quad \text{for} t \in [-1, 0], t \in [0, 1] \end{cases}$$

Fix a solution x(t) of (1 . 2). Then h(t)x(t) is a ψ - integrally bounded function on \mathbb{R} . Set $y(t) = x(t) \int_0^t h(s) ds$, we have

$$y'(t) = A(t)x(t) \int_0^t h(s)ds + h(t)x(t) = A(t)y(t) + h(t)x(t).$$

By hypothesis, the equation

$$y'(t) = A(t)y(t) + h(t)x(t)$$

has a solution $\widetilde{y}(t)$, which is $\psi-$ bounded on \mathbb{R} . Set $x_1(t)=\widetilde{y}(t)-y(t)+\frac{1}{2}x(t)$ and $x_2(t)=\widetilde{y}(t)+y(t)+\frac{1}{2}x(t)$. It follows from $\int_{-1}^0 h(t)dt=\int_0^1 h(t)dt=\frac{1}{2}$ that $x_1(t)=\widetilde{y}(t)$ for $t\geqslant 1; x_2(t)=\widetilde{y}(t)$ for $t\leqslant -1$. Then x_1,x_2 are the corresponding $\psi-$ bounded solutions on $\mathbb{R}_+,\mathbb{R}_-$ of (1.2). Consequently the solution x(t) of (1.2) is the sum of two solutions $x_1(t)$ and $x_2(t)$ of (1.2), those solutions satisfy the

condition 3 . The lemma is proved . \qed

3. Main results

Theorem 3.1. Equation (1.1) has at least one ψ -bounded s o lution on \mathbb{R}_- for every ψ - integrally bounded function f on \mathbb{R}_- if and only if (1.2) has a ψ - exponential dichotomy on \mathbb{R}_- .

Proof . This Theorem can be shown as in $[\ 3\ ,$ Theorem $3\ .\ 3\]$. We give the main steps

of the proof as follows . In the proof of " if part " : Suppose that $\int_{t-1}^t \|\psi(s)f(s)\|$ $ds \leqslant c$

 $\parallel integral display - minus_{\infty}^{t} \psi(t) Y(t) P_{1} Y^{-1}(s) ds \parallel \quad \leqslant minus - integral display_{\infty}^{t} \mid \psi(t) Y(t) P_{1} Y^{-1}(s) \psi^{-1}(s) \mid \mid \\ \leqslant integral display - minus_{\infty}^{t} e^{-\alpha(t-s)} \parallel \psi(s) f(s) \parallel ds \leqslant minus - integral display_{\infty}^{t} \mid \psi(t) Y(t) P_{1} Y^{-1}(s) \psi^{-1}(s) \mid \mid \\ \leqslant integral display - minus_{\infty}^{t} e^{-\alpha(t-s)} \parallel \psi(s) f(s) \parallel ds \leqslant minus - minus_{\infty}^{t} e^{-\alpha(t-s)} \parallel \psi(s) f(s) \parallel ds \leqslant minus - minus_{\infty}^{t} e^{-\alpha(t-s)} \parallel \psi(s) f(s) \parallel ds \leqslant minus - minus_{\infty}^{t} e^{-\alpha(t-s)} \parallel \psi(s) f(s) \parallel ds \leqslant minus_{\infty}^{t} e^{-\alpha(t-s)} e^{-\alpha(t-$

and

$$\| \int_{t}^{0} \psi(t)Y(t)P_{2}Y^{-1}(s)f(s)ds \| \leq \int_{t}^{0} e^{-\beta(s-t)} \| \psi(s)f(s) \| ds$$
$$\leq \int_{t}^{\infty} e^{-\beta(s-t)} \| \psi(s)f(s) \| ds \leq c(1 - e^{-\beta})^{-1}.$$

It follows that the function

$$\widetilde{x}(t) = minus - integral display_{\infty}^t \psi(t) Y(t) P_1 Y^{-1}(s) f(s) ds - \int_t^0 \psi(t) Y(t) P_2 Y^{-1}(s) f(s) ds$$

is bounded on $\mathbb R$ $\,$. Hence the function

$$x(t) = \psi^{-1}(t)\widetilde{x}(t)$$
$$= integral display - minus_{\infty}^{t}\psi(t)Y(t)P_{1}Y^{-1}(s)f(s)ds - \int_{t}^{0}\psi(t)Y(t)P_{2}Y^{-1}(s)f(s)ds$$

is ψ – bounded on \mathbb{R}_{-} . On the other hand

$$x'(t) = A(t)(integral display - minus_{\infty}^{t} Y(t) P_{1} Y^{-1}(s) f(s) ds - \int_{t}^{0} Y(t) P_{2} Y^{-1}(s) f(s) ds) + Y(t) P_{1} Y^{-1}(t) f(t) + Y(t) P_{2} Y^{-1}(t) f(t)$$

$$= A(t) x(t) + f(t),$$

it implies that x(t) is a solution of (1.1). In the proof of "only if part": The set

$$\widetilde{C}_{\psi} = \{x : \mathbb{R}_{-} \to \mathbb{R}^d : x\}$$

is $\psi-$ bounded and continuous on \mathbb{R}_- }. It is a Banach space with the norm $\|x\|_{C-e_\psi}=\sup t\leqslant 0 \|\psi(t)x(t)\|$. The first step: we show that (1.1) has a unique $\psi-$ bounded solution x(t) with $x(0)\in \widetilde{X}_1=P_1\mathbb{R}^d$ for each $f\in \widetilde{C}_\psi$ and $\|x\|C-e_\psi\leqslant r\|f\|_{e-C_\psi}$, here r

is a positive constant independent of f.

The next steps of the proof are similar to the proof of [3 , Theorem 3 . 3] , with the corresponding replacement (for example replace $t \geq t_0 \geq 0$ by $0 \geq t_0 \geq t$, P_1 by $-P_2, P_2$ by $-P_1, \infty$ by $-\infty, -\infty$ by ∞, \ldots). \square

Theorem 3.2. The equation (1.1) has a unique ψ -bounded s o lution on \mathbb{R} for ev- ery ψ - integrally bounded function f on \mathbb{R} if and only if (1.2) has a ψ - exponential dichotomy on \mathbb{R} .

Proof . First , we prove the " if " part . By Lemma 2 . 3 and in the same way as in the

proof of Theorem 3.1, the function

$$x(t) = -t \infty Y(t) P_1 Y^{-1}(s) f(s) ds - \int_t^\infty Y(t) P_2 Y^{-1}(s) f(s) ds$$

EJDE - 2 0 7 / 5 2 EXISTENCE OF $\psi-$ BOUNDED SOLUTIONS 7 is $\psi-$ bounded and continuous on $\mathbb R$. Moreover ,

$$x'(t) = A(t)(-t^{-1} \infty Y(t)P_1 Y^{-1}(s)f(s)ds - \int_t^{\infty} Y(t)P_2 Y^{-1}(s)f(s)ds)$$
$$+Y(t)P_1 Y^{-1}(t)f(t) - Y(t)P_2 Y^{-1}(t)f(t)$$
$$= A(t)x(t) + f(t),$$

it follows that x(t) is a solution of (1.1).

The uniqueness of the solution x(t) result from (1 . 2) having no nontrivial ψ -bounded solution on $\mathbb{R}($ Remark 2 . 2) . Suppose that y is a ψ -bounded solution of (1 . 1) then x-y is a ψ -bounded solution of (1 . 2) on \mathbb{R} . We conclude x=y since x-y is the trivial solution of (1 . 2).

We prove the "only if " par t Suppos tha (1 . 1 ha uniqu $\psi-$ bounded solution on $\mathbb R$ for every $\psi-$ integrally bounded function f on $\mathbb R$, we have to prove that (1 . 1)

has a $\psi-$ exponential dichotomy on \mathbb{R} . By Lemma 2 . 4 , Theorem 1 . 4 and Theorem 3 . 1 we get (1 . 2) has a $\psi-$ exponential dichotomy on \mathbb{R}_+ with a pair of the supplementary projections P_1, P_2 and has a $\psi-$ exponential dichotomy on \mathbb{R}_- . with a pair of the supplementary projections Q_1, Q_2 . Remark 2 . 2 follows that $P_1\mathbb{R}^d$ is the subspace of \mathbb{R}^d consisting of the values x(0) of all $\psi-$ bounded solutions x(t) on \mathbb{R}_+ of (1 . 2) and

(1 . 2) and $Q2^{\mathbb{R}^d}$ is the subspace of \mathbb{R}^d consisting of the values x(0) of all $\psi-$ bounded solutions x(t) on \mathbb{R}_- of (1 . 2) . We are going to prove that

$$\mathbb{R}^d = P_1 \mathbb{R}^d \oplus Q2^{\mathbb{R}^d} \tag{3.1}$$

For each $u \in \mathbb{R}^d$, denote by x = x(t) the solution of (1.2), x(0) = u. By Lemma 2 . 4 we get $x = x_1 + x_2$, where x_1, x_2 are the solutions of $(1 \cdot 2)$ corresponding ψ - bounded on $\mathbb{R}_+, \mathbb{R}_-$. It follows from Remark 2 . 2 that $x_1(0) \in P_1\mathbb{R}^d$ and $x_2(0) \in Q_2^{\mathbb{R}^d}$ It follows from $u = x_1(0) + x_2(0)$, that

$$\mathbb{R}^d = P_1 \mathbb{R}^d + Q 2^{\mathbb{R}^d} \tag{3.2}$$

By hypothesis (1 , 1) with f=0 has unique $\psi-$ bounded solution on $\mathbb R$ i , e , (1 , 2) have

no nontrivial ψ - bounded solution on \mathbb{R} . For any $v \in P_1\mathbb{R}^d \cap Q2^{\mathbb{R}^d}$ denote by x(t) the solution of (1 . 2) such that x(0) = v. Then x(t) is the ψ - bounded solution of (1 . 2), it implies that x(t) is the trivial solution. Hence v = 0. Consequently

$$P_1 \mathbb{R}^d \cap Q 2^{\mathbb{R}^d} = 0. \tag{3.3}$$

The relations (3 . 2) and (3 . 3) imply (3 . 1) . Now , we prove the existence of a pair supplementary projections , for which (1 . 1) has a $\psi-$ exponential dichotomy on \mathbb{R} .

Choose the projection P of \mathbb{R}^d such that $ImP = P_1\mathbb{R}^d$, $\ker P = Q2^{\mathbb{R}^d}$. By Lemma 2. 1, (1. 2) has a $\psi-$ exponential dichotomy on \mathbb{R}_+ , and have a $\psi-$ exponential dichotomy on \mathbb{R}_- with the pair of the supplementary projections $P, I_d - P$. From Remark 1. 3 it follows that (1. 2) has a $\psi-$ exponential dichotomy on \mathbb{R} with the pair of the supplementary projections $P, I_d - P$. The proof is complete . \square

Theorem 3.3. Suppose that (1.2) has a $\psi-$ exponential dichotomy on \mathbb{R} . If

$$\lim_{t \to t} \int_{t}^{t+1} \| \psi(s)f(s) \| ds = 0$$
(3.4)

then the $\ \psi-\ bounded\ s$ o lution of $\ (\ 1\ .\ 1\)$ is such that

$$\lim_{t \to t^{\pm \infty}} \| \psi(t)x(t) \| = 0.$$
 (3.5)

8 P.N.BOI EJDE - 27 / 52 Proof. By Theorem 3.2, the unique solution of (1.1) is

$$x(t) = integral display - minus_{\infty}^{t} Y(t) P_{1} Y^{-1}(s) f(s) ds - \int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) f(s) ds.$$

$$\parallel \psi(t) x(t) \parallel \leq integral display - minus_{\infty}^{t} \parallel \psi(t) Y(t) P_{1} Y^{-1}(s) f(s) \parallel ds + \int_{t}^{\infty} \parallel \psi(t) Y(t) P_{2} Y^{-1}(s) f(s) \parallel ds$$

$$\leq Kintegral display - minus_{\infty}^{t} e^{-\alpha(t-s)} \parallel \psi(s) f(s) \parallel ds + L \int_{t}^{\infty} e^{-\beta(s-t)} \parallel \psi(s) f(s) \parallel ds$$

$$\leq K_{1} \{ integral display - minus_{\infty}^{t} e^{-\alpha(t-s)} \parallel \psi(s) f(s) \parallel ds + \int_{t}^{\infty} e^{-\beta(s-t)} \parallel \psi(s) f(s) \parallel ds \},$$

$$(3.6)$$

where $K1 = \max\{K, L\}$. Denote by $\gamma = \min\{\alpha, \beta\}$. Under the hypothesis (3.4), for a given $\varepsilon > 0$, there exists T > 0 such that

$$\int_{t}^{t+1} \| \psi(s)f(s) \| ds < \frac{\varepsilon}{2K_1}(1 - e^{-\gamma}) \quad \text{for } |t| > T.$$

Then from Lemma 2 . 3 and inequality (3 . 6) it follow that

$$\begin{split} \parallel \psi(t) x(t) \parallel & \quad \leqslant K_{1_{\overline{2K}}}^{\varepsilon} \frac{(1}{1 - e^{-\gamma}}) [(1 - e^{-\alpha})^{-1} + (1 - e^{-\beta})^{-1}] \\ & \quad \leqslant K_{1_{\overline{2K}}}^{\varepsilon} \frac{(1}{1 - e^{-\gamma}}) 2 (1 - e^{-\gamma})^{-1} = \varepsilon \quad \text{forall} \mid t \mid > T, \end{split}$$

this implies (3.5). The proof is complete. \square Corollary 3.4. Suppose that (1.2) has a ψ -exponential dichotomy on \mathbb{R} . If

$$\lim_{t \to +\infty} \| \psi(t)f(t) \| = 0 \tag{3.7}$$

then the ψ -bounded s o lution of (1.1) is such that

$$\lim_{t \to \infty} \| \psi(t)x(t) \| = 0. \tag{3.8}$$

 Proof . It is easy to see that (3 . 7) implies (3.4) $\ \square$ Now , we consider the perturbed equation

$$x'(t) = [A(t) + B(t)]x(t)$$
(3.9)

where B(t) is a $d \times d$ continuous matrix function on \mathbb{R} . We have the following result . Theorem 3.5. Suppose that (1.2) has a $\psi-$ exponential dichotomy on \mathbb{R} . If $\delta=$

 $\sup_{t\in\mathbb{R}}\int_t^{t+1}\mid \psi(s)B(s)\psi^{-1}(s)\mid ds$ is sufficiently small , then (3 . 9) has a $\ \psi-exponential$

dichotomy on \mathbb{R}

Proof. By Theorem 3. 2 it suffices to show that the equation

$$x'(t) = [A(t) + B(t)]x(t) + f(t)$$
(3.10)

has a unique $\psi-$ bounded solution on $\mathbb R$ for every $\psi-$ integrally bounded f function on $\mathbb R$. Denote by G_ψ the set

 $G_{\psi} = \{x : \mathbb{R} \to \mathbb{R}^d : x \text{ is } \psi \text{- bounded and continuous on } \mathbb{R}\}.$

EJDE - 207/52 EXISTENCE OF $\psi-$ BOUNDED SOLUTIONS 9 It is well - known that G_{ψ} is a real Banach space with the norm

$$\parallel x \parallel G_{\psi} = \sup_{t \in R} \parallel \psi(t)x(t) \parallel.$$

Consider the mapping $T: G_{\psi} \to G_{\psi}$ which is defined by

$$Tz(t) = -t \infty Y(t) P_1 Y^{-1}(s) [B(s)z(s) + f(s)] ds$$
$$- \int_{t}^{\infty} Y(t) P_2 Y^{-1}(s) [B(s)z(s) + f(s)] ds.$$

It is easy verified that $Tz \in G_{\psi}$. More ever if $z_1, z_2 \in G_{\psi}$ then

$$\parallel Tz_1 - Tz_2 \parallel G_{\psi}$$

$$\leq integral display - minus_{\infty}^{t} \mid \psi(t)Y(t)P_{1}Y^{-1}(s)\psi^{-1}(s) \mid \mid \psi(s)B(s)\psi^{-1}(s) \mid \mid \psi(s)z_{1}(s) - \psi(s)z_{2}(s) \mid \mid ds \\ + \int_{t}^{\infty} \mid \psi(t)Y(t)P_{2}Y^{-1}(s)\psi^{-1}(s) \mid \mid \psi(s)B(s)\psi^{-1}(s) \mid \mid \psi(s)z_{1}(s) - \psi(s)z_{2}(s) \mid \mid ds$$

By Lemma 2 . 3 , we have

Hence, by the contraction principle, if $\delta[K(1-e^{-\alpha})^{-1}+L(1-e^{-\beta})^{-1}]<1$, then the mapping T has a unique fixed point. Denoting this fixed point by z, we have

$$z(t) = integral display - minus_{\infty}^{t} Y(t) P_{1} Y^{-1}(s) [B(s)z(s) + f(s)] ds$$
$$- \int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) [B(s)z(s) + f(s)] ds.$$

It follows that z(t) is a solution on \mathbb{R} of (3 . 1 0) .

Now , we prove the uniqueness of this solution . Suppose that x(t) is a arbitrary ψ -bounded solution on $\mathbb R$ of (3 . 1 0) . Consider the function

$$y(t) = x(t) - integral display - minus_{\infty}^{t} Y(t) P_{1} Y^{-1}(s) [B(s)x(s) + f(s)] ds$$
$$+ \int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) [B(s)x(s) + f(s)] ds.$$

It is easy to see that y(t) is a $\psi-$ bounded solution on $\mathbb R$ of (1 . 2) . Then from Theorem 3 . 2 follows that y(t) is the trivial solution . Then

$$x(t) = -t \infty Y(t) P_1 Y^{-1}(s) [B(s)x(s) + f(s)] ds$$
$$- \int_t^\infty Y(t) P_2 Y^{-1}(s) [B(s)x(s) + f(s)] ds.$$

10 P.N.BOI EJDE - 27/52

Hence x(t) is the fixed point of mapping T. From the uniqueness of this point , it follows that x=z. The proof is complete . \square

Corollary 3 . 6 . Suppose that (1.2) has a $\psi-$ exponential dichotomy on \mathbb{R} . If $\delta=$

 $\sup_{t\in\mathbb{R}} |\psi(t)B(t)\psi^{-1}(t)|$ is sufficiently small, then (3.9) has a ψ -exponential di-chotomy on \mathbb{R} .

References

[1] O . Akinyele ; On partial stability and boundedness of degree k, Atti . Acad . Naz . Lincei Rend . Cl . Sei . Fis . Mat . Natur . , (8) , 65 (1 978) , 259 - 264 . [2] C . Avramescu ; Asupra compor t^{-a} rii asimptotice a solutiilor unor ecuatii funcionable , Analele Universit \tilde{a} tii din Timisoara , Seria Stiinte Matamatice - Fizice , Vol . VI , 1 968 , 41 - 55 . [3] P . N . Boi ; On the ψ - dichotomy for homogeneous linear differential equations . Electron . J . of Differential Equations , vol . 2006 (2006) , No . 40 , 1 - 1 2 . [4] A . Constantin ; Asymptotic properties of so lution of differential equation , Analele Universit \tilde{a} t ii din Timisoara , Seria Stiinte Matamatice , Vol . XXX , fasc . 2 - 3 , 1 992 , 183 - 225 . [5] A . Diamandescu ; Existence of ψ - bounded solutions for a system of differential equations ; Electron . J . of Differetial Equations , vol . 2004 (2004) , No . 63 , 1 - 6 . [6] A . Diamandescu ; On the ψ - stab il ity of a nonlinear Volterra integro - differential system , Elec - tron . J . of Differetial Equaitons , Vol . 2005 (2005) , No . 56 , 1 - 14 . [7] A . Dimandescu ; Note on the ψ - boundedness of the solutions of a system of differential equa - tions . Acta Math . Univ . Comenianea . vol . LXXIII , 2 (2004) , 223 - 233 . [8] J . L . Massera and J . J . Schaffer ; Linear differential equations and functional analysis , Ann . Math . 67 (1 958) , 5 17 - 573 .

Рнам Ngoc Boi

Department of Mathematics , Vinh University , Vinh City , Vietnam

 $\textit{$E$ - mail address : pnbo } \quad \textbf{i}____ \quad \text{vn} \quad @\textbf{y}^{\textbf{a}-\textbf{h}} \text{ oo . } \quad \textbf{com}$