$\label{eq:local_problem} Electronic\ Journal\ of\ Differential\ Equations\ \ ,\ Vol\ .\ 2006\ (\ 2006\)\ ,\ No\ .\ 1\ 2\ 1\ ,\ pp\ .\ 1\ -\ 1\ 0\ .$ ISSN: 1 72 - 6691 . URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde . math . txstate . edu (login : ftp)

A MINIMAX INEQUALITY FOR A CLASS OF FUNCTIONALS AND APPLICATIONS TO THE EXISTENCE OF SOLUTIONS

FOR TWO - POINT BOUNDARY - VALUE PROBLEMS

GHASEM ALIZADEH AFROUZI, SHAPOUR HEIDARKHANI

ABSTRACT . In this paper , we establish an equivalent statement to minimax inequality for a special class of functionals . As an application , we prove the existence of three solutions to the Dirichlet problem

$$u''_{-}(x) + m(x)u(x) = \lambda f(x, u(x)), \quad x \in (a, b),$$

 $u(a) = u(b) = 0.$

where $\lambda>0, f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is a continuous function which changes sign on $[a,b]\times\mathbb{R}$ and $m(x)\in C([a,b])$ is a positive function . 1. Introduction

Given two G \hat{a} teaux differentiable functionals Φ and T on a real Banach space X, the minimax inequality

$$\sup_{\lambda \ge 0} \inf_{u \in X} + \lambda(\rho - T(u)) < \inf_{u \in X} \sup_{\lambda \ge 0} (\Phi(u) + \lambda(\rho - T(u))), \quad \rho \in \mathbb{R}, \tag{1.1}$$

plays a fundamental role for establishing the existence of at least three critical points for the functional $\Phi(u) - \lambda T(u)$.

In this work some conditions that imply the minimax inequality (1 . 1) are pointed out and equivalent formulations are proved .

In this paper , our approach is based on a three critical - point theorem proved in $[\ 8\]$ (Theorem 2 . 1) which stated below for the reader 's convenience . Also we state a technical lemma that enables us to apply the theorem .

Lemma 2. 2 below establishes an equivalent statement of minimax inequality (1.1) for a special class of functionals, while its consequences (Lemmas 2.5 and 2.7) guarantee some conditions so that minimax inequality holds.

Finally , we apply Theorem 2 . 1 to elliptic equations , by using an immediate con - sequence of Lemma 2 . 2 : We consider the boundary - value problem

$$-u''(x) + m(x)u_u^{(x)}{}_{(a)} = \lambda_u^{f(x, u(x)), (x)} \quad x \in (a, b), \quad (1.2)$$

 $2000\ Mathematics\ Subject\ Classification$. $\ 35\ J\ 65$.

Key words and phrases . Minimax inequality; critical point; three solutions; multiplicity results; Dirichlet problem .

 $\label{eq:circlecopyrt} circlecopyrt-c2006 \mbox{ Texas State University - San Marcos} \ .$ Submitted August 22 , 2006 . Published October 2 , 2006 .

where $\lambda>0, f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is a continuous function which changes sign on $[a,b]\times\mathbb{R}, m$ is a continuous, positive function and we establish some conditions on f so that problem (1.2) admits at least three weak solutions.

We say that u is a weak solution to (1 . 2) if $u \in W_0^{1,2}([a,b])$ and

$$\int_a^b u'(x)v'(x)dx + \int_a^b m(x)u(x)v(x)dx - \lambda \int_a^b f(x,u(x))v(x)dx = 0$$
forevery $v \in W_0^{1,2}([a,b])$.

By arguments similar to those in problem (1 . 2) , we will have the existence of at least three weak solutions for the problem

$$-u''(x) + m(x)u_{u(a)=}^{(x)=} \lambda h_u^{1(x)h_2(u(x))}, \quad x \in (a,b)$$
 (1.3)

where $h_1 \in C([a,b])$ is a function which changes sign on [a,b] and $h_2 \in C(\mathbb{R})$ is a positive function. The existence of at least three weak solutions is also proved for the problem

$$-u''(x) + m(x_u^{)u(x)}{}_{(a)=} = u_{(b)=0,}^{\lambda f(u(x))}, \quad x \in (a,b)$$
(1.4)

where $f: \mathbb{R} \to \mathbb{R}$ is a continuous function which changes sign on \mathbb{R} .

Conditions that guarantee the existence of multiple solutions to differential equations are of interest because physical processes described by differential equations can exhibit more that one solution . For example , certain chemical reactions in tubu - lar reactors can be mathematically described by a nonlinear , two - point boundary value problem with the interest in seeing if multiple steady - states to the problem exist . For a recent treatment of chemical reactor theory and multiple solutions see [2 , section 7] and references therein .

In recent years , many authors have studied multiple solutions from several points of view and with different approaches and we refer to $[\ 1\ ,\ 3\ ,\ 4\ ,\ 7\]$ and the references therein for more details , for instance , — in their interesting paper — $[\ 3\]$, the authors studied problem

$$u_{(0)}^{u''} \lambda_{=u(1)}^{f(u)} =_{=} 0_{0}^{,}$$
 (1.5)

(in the case independent of λ) by using a multiple fixed - point theorem to obtain three symmetric positive solutions under growth conditions on f.

Also , in [4] , the author proves multiplicity results for the problem (1.5) which for each $\lambda \in [0, +\infty[$, admits at least three solutions in $W_0^{1,2}([0,1])$ when f is a continuous function .

In particular , in [1] we obtained the existence of an interval $\Lambda \subseteq [0, +\infty[$ and a positive real number q such that , such that for each $\lambda \in \Lambda$ problem

$$\Delta_p u + \lambda f(x_u, u_{=}) = 0 a_{\text{on}}(x)_{\partial}^{|u|^{p-2} u} \Omega, \quad \text{in} \Omega,$$
(1.6)

where $\Delta_p u = \text{div } (|\nabla u|^{p-2} \nabla u)$ is the p- Laplacian operator $,\Omega \subset \mathbb{R}^N (N \geq 2)$ is non-

empty bounded open set with smooth boundary $\partial\Omega, p > N, \lambda > 0, f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a continuous function and positive weight function $a(x) \in C(\underline{\hspace{1cm}}\Omega)$, admits at least three weak solutions whose norms in $W_0^{1,p}(\Omega)$ are less than q.

EJDE - 2 0 6 / 1 2 1 A MINIMAX INEQUALITY FOR A CLASS OF FUNCTIONALS 3 For additional approaches to the existence of multiple solutions to boundary - value problems , see $[\ 2\ ,\ 5\ ,\ 6\]$ and references therein .

2. Main results

First, we recall the three critical point theorem by Ricceri [8] when choosing

$$h(\lambda) = \lambda \rho$$
.

Theorem 2.1. Let X be a separable and reflexive real Banach space $; \Phi : X \to \mathbb{R}$ a continuously G \hat{a} teaux differentiable and sequentially weakly lower semicontinuous functional whose G \hat{a} teaux derivative admits a continuous inverse on $X^*; \Psi : X \to \mathbb{R}$ a continuously G \hat{a} teaux differentiable functional whose G \hat{a} teaux derivative is compact. Assume that

$$\|u\lim\|_{\to +\infty} (\Phi(u) + \lambda \Psi(u)) = +\infty$$

for all $\lambda \in [0, +\infty[$, and that there exists $\rho \in \mathbb{R}$ such that

$$\sup_{\lambda>0}\inf_{u\in X}^{(\Phi(u)}+\lambda\Psi(u)+\lambda\rho)<\inf_{u\in X}\sup_{\lambda>0}(\Phi(u)+\lambda\Psi(u)+\lambda\rho).$$

Then, there exists an open interval $\Lambda \subseteq [0, +\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, the equation

$$\Phi'(u) + \lambda \Psi'(u) = 0$$

has at least three s o lutions in X whose norms are less than q.

Here and in the sequel , X will denote the Sobolev space $W_0^{1,2}([a,b])$ with the norm

$$||u|| := (\int_a^b |u'(x)|^2 dx)1/2,$$

 $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is a continuous function and $g:[a,b]\times\mathbb{R}\to\mathbb{R}$ is defined by

$$g(x,t) = \int_0^t f(x,\xi)d\xi$$

for each $(x,t) \in [a,b] \times \mathbb{R}$. Now , we define

$$||u|| * := (\int_a^b (|u'(x)|^2 + m(x) |u(x)|^2) dx) 1/2.$$

So the Poincar \acute{e} 's inequality and the positivity of the function $m(x) \in C([a,b])$, there exist positive suitable constants c_1 and c_2 such that

$$c_1 \| u \| \le \| u \|_* \le c_2 \| u \|$$
 (2.1)

(i . e . , the above norms—are equivalent) . We now introduce two positive special functionals on the Sobolev space X: For $u \in X$, let

$$\Phi(u) := \frac{\parallel u \parallel_*^2}{2}.$$

$$T(u) := \int_{a}^{b} g(x, u(x)) dx$$

4 G . A . AFROUZI , S . HEIDARKHANI EJDE - 2 0 6 / 1 2 1 Let $\rho, r \in \mathbb{R}, w \in X$ be such that $0 < \rho < T(w)$ and $0 < r < \Phi(w)$. We put

$$\beta 1(\rho, w) := \rho \frac{\Phi(w)}{T(w)} \tag{2.2}$$

$$\beta 2(r,w) := r \frac{T(w)}{\Phi(w)} \tag{2.3}$$

$$\beta 3(\rho, w) := \frac{1}{c_1} \left(\frac{b - a}{2} \beta 1(\rho, w) \right)^{1/2}, \tag{2.4}$$

Clearly $,\beta 1(\rho,w),\beta 2(r,w)$ and $\beta 3(\rho,w)$ are positive . Now , we put

$$\delta_1 := \inf \{ \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel_* \in \mathbb{R}^+; T(u) \ge \rho \},$$

$$\delta_2 := \inf \{ \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel_* \in \mathbb{R}^+, \text{ such that }$$

$$(b-a)(x,t) \in [a,b] \times [\max - \frac{(b-a)^{1/2}}{2c_1} \|u\|^*, \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel_*] g(x,t) \ge \rho\}$$

and

$$\delta_{\varrho} := \delta_1 - \delta_2. \tag{2.5}$$

Clearly, $\delta_1 \geq \delta_2$. Taking into account that for every $u \in X$,

$$\max_{x \in [a,b]} \mid u(x) \mid \leq \frac{(b-a)^{1/2}}{2} \parallel u \parallel$$

and (2.1), we have

$$\max_{x \in [a,b]} \mid u(x) \mid \leq \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel_*$$

for each $u \in X$. So that

$$T(u) = \int_a^b g(x,u(x)) dx \leq (b-a) \max g(x,t)$$
 where $(x,t) \in [a,b] \times [-\frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel *, \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel *]$. Namely
$$T(u) \leq (b-a) \max g(x,t),$$
 where $(x,t) \in [a,b] \times [-\frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel *] , \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel *]$; \therefore , $\{\frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel *\}$ $\in \mathbb{R}^+$; $T(u) \geq \rho\}$ is a subset of

$$\left\{ \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel_* \in \mathbb{R}^+ \text{ such that } \right. \\ (b-a)(x,t) \in [a,b] \times \left[\max - \frac{(b-a)^{1/2}}{2c_1} \right]_{\|u\|} *, \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel * \left] g(x,t) \ge \rho \right\}.$$

So , we have $\delta_1 \geq \delta_2$ and $\delta_\rho \geq 0$. Our main results depend on the following lemma :

Lemma 2 . 2 . Assume that there exist $\rho \in \mathbb{R}, w \in X$ such that

(i)
$$0 < \rho < T(w)$$
,

 $\begin{array}{lll} \text{(ii)} & (b-a)\max_{(x,t)\in[a,b]\times[-\beta3(\rho,w)+\delta_\rho,}\beta3(\rho,w)-\delta_\rho]g(x,t) & <\rho, & \textit{where } \beta3(\rho,w) \\ \textit{is given by } (\ 2\ .\ 4\) & \textit{and} & \delta_\rho & \textit{by } (\ 2\ .\ 5\) \ . \end{array}$

5

Then, there exists $\rho \in \mathbb{R}$ such that

$$\sup_{\lambda \geq 0} \inf_{u \in X} (\Phi(u) + \lambda(\rho - T(u))) < \inf_{u \in X} \sup_{\lambda \geq 0} (\Phi(u) + \lambda(\rho - T(u))).$$

Proof. From (i i) , we obtain

$$\beta 3(\rho,w) - \delta_{\rho} element - slash\{l \in \mathbb{R}^+ : (b-a)(x,t) \in^{\max} [a,b] \times [-l,l]g(x,t) \ge \rho\}.$$

Moreover

$$\inf\{l \in \mathbb{R}^+; (b-a)(x,t) \in^{\max} [a,b] \times [-l,l]g(x,t) \ge \rho\} \ge \beta 3(\rho,w) - \delta_{\rho};$$

in fact , arguing by contradiction , we assume that there is $l_1 \in \mathbb{R}^+$ such that

$$(b-a)(x,t) \in [\max_{a,b] \times [-} l_1, l_1]g(x,t) \ge \rho$$

and

$$l_1 < \beta 3(\rho, w) - \delta_{\rho},$$

so

$$(b-a)(x,t) \in [a,b] \times [-\beta 3(\max \rho,w) + \delta_\rho, \beta 3(\rho,w) - \delta_\rho] g(x,t) \geq (b-a)(x,t) \in [\max_{a,b] \times [} -l_1, l_1] g(x,t) \geq \rho.$$

This is a contradiction . So

$$\inf\{l \in \mathbb{R}^+; (b-a)(x,t) \in^{\max} [a,b] \times [-l,l]g(x,t) \ge \rho\} > \beta 3(\rho,w) - \delta_{\rho}.$$

Therefore,

$$\inf \left\{ \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel * \in \mathbb{R}^+ : \right.$$

$$(b-a)(x,t) \in [a,b] \times \left[\max - \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel *, \frac{(b-a)^{1/2}}{2c_1} \parallel u \parallel * \right] g(x,t) \ge \rho \right\}$$

$$> \beta 3(\rho, w) - \delta_{\rho};$$

namely $\beta 3(\rho, w) < \delta_1$. So, we have

$$\inf\{\frac{\|u\|_*^2}{2} \in \mathbb{R}^+; T(u) \ge \rho\} > \beta 1(\rho, w),$$

or equivalently

$$\inf\{\Phi(u);\quad u\in T^{-1}([\rho,+\infty[)\}>\rho\frac{\Phi(w)}{T(w)}$$

and , taking in to account that (i) holds , one has

$$\frac{\inf\{\Phi(u); \quad u \in T^{-1}([\rho, +\infty[)\}}{\rho} > \frac{\Phi(w) - \inf\{\Phi(u); \quad u \in T^{-1}([\rho, +\infty[)\}}{T(w) - \rho}$$

Now , there exists $\lambda \in \mathbb{R}$ such that

$$\lambda > \frac{\Phi(w) - \inf\{\Phi(u); \quad u \in T^{-1}([\rho, +\infty[)\}}{T(w) - \rho}$$

and

$$\lambda < \inf_{-}^{\{\Phi(u)\}} u); \quad u \in T^{-1}([\rho, +\infty[)]).$$

or equivalently

$$\inf\{\Phi(u);\quad u\in T^{-1}([\rho,+\infty[)]>\Phi(w)+\lambda(\rho-T(w))$$

$$\lambda \rho < \inf \{ \Phi(u); \quad u \in T^{-1}([\rho, +\infty[)] \}.$$

Therefore, thanks to the $0 < \rho < T(w)$, we obtain

$$\inf_{u \in X} +\lambda(\rho - T(u)) < \inf\{\Phi(u); \quad u \in T^{-1}([\rho, +\infty[)]\}.$$
 (2.6)

On other hand,

$$\inf_{u \in X} +\lambda(\rho - T(u)) \le (\Phi(0) + \lambda(\rho - T(0))) = \lambda \rho. \tag{2.7}$$

So, with (2.6) and (2.7), one has

$$\sup_{\lambda>0} \inf_{u \in X} (\Phi(u) + \lambda(\rho - T(u))) < \inf \{\Phi(u); \quad u \in T^{-1}([\rho, +\infty[)]).$$

Therefore, thanks to the

$$\inf_{u \in X} \sup_{\lambda > 0} (\Phi(u) + \lambda(\rho - T(u))) = \inf \{\Phi(u); \quad u \in T^{-1}([\rho, +\infty[)],$$

we have

$$\sup_{\lambda \geq 0} \inf_{u \in X} (\Phi(u) + \lambda(\rho - T(u))) < \inf_{u \in X} \sup_{\lambda \geq 0} (\Phi(u) + \lambda(\rho - T(u))).$$

Remark 2. 3. Note that $\sup_{\lambda \geq 0} \inf_{u \in X} (\Phi(u) + \lambda(\rho - T(u)))$ is well defined, because $\lambda \to \inf_{u \in X} (\Phi(u) + \lambda(\rho - T(u)))$ is upper semicontinuous in $[0, +\infty[$ and tends to

$$-\infty as \lambda \to +\infty$$
.

Remark 2 . 4 . If $\beta 3(\rho, w) - \delta_{\rho} \leq 0$ in Lemma 2 . 2 , ; then then the lemma still holds

Because $,\beta 3(\rho,w) \leq \delta_1 - \delta_2 \leq \delta_1,$ and by arguing as in the proof of Lemma 2 . 2 , the results holds .

If instead of condition (ii) in Lemma 2 . 2 , we put

$$(b-a)(x,t) \in [a,b] \times [\max_{-\beta 3(\rho,w)}, \beta 3(\rho,w)]g(x,t) < \rho,$$

then the result holds, because

$$(b-a)(x,t) \in [a,b] \times [-\beta 3(\max \rho, w) + \delta_{\rho}, \beta 3(\rho, w) - \delta_{\rho}]g(x,t)$$

$$\leq (b-a)(x,t) \in [a,b] \times [\max_{-\beta 3(\rho,w)}, \beta 3(\rho,w)]g(x,t) < \rho.$$

So, we have the following result.

Lemma 2.5. Assume that there exist $\rho \in \mathbb{R}$, $w \in X$ such that

(i)
$$0 < \rho < T(w)$$
,

(i i) $(b-a)\max_{(x,t)\in[a,b]}\times[-\beta 3(\rho,w),\beta 3(\rho,w)]g(x,t)<\rho,$ where $\beta 3(\rho,w)$ is given

by (2.4) Then, there exists $\rho \in \mathbb{R}$ such that

$$\sup_{\lambda \geq 0} \inf_{u} {}_{\in X} (\Phi(u) + \lambda(\rho - T(u))) < \inf_{u \in X} \sup_{\lambda \geq 0} (\Phi(u) + \lambda(\rho - T(u))).$$

Proposition 2.6. The following assertions are equivalent: (a) There are $\rho \in \mathbb{R}, w \in X$ such that

$$(i)0 < \rho < T(w),$$

(ii) $(b-a) \max_{(x,t) \in [a,b]} \times [-\beta 3(\rho,w), \beta 3(\rho,w)] g(x,t) < \rho$, where $\beta 3(\rho,w)$ is given by (2 . 4) .

$$(iii)0 < r < \Phi(w),$$

$$(iv) \quad (b-a) \max_{(x,t) \in [a,b]} \times [-\frac{1}{c_1} \sqrt{\frac{b-a}{2}} r, \frac{1}{c_1} \sqrt{\frac{b-a}{2}} r] g(x,t) \quad < \quad \beta 2(r,w), \quad where$$

 $\beta 2(r,w)$ is given by (2 . 3) . Proof . (a) \Rightarrow (b) . First we note that 0 < $\Phi(w)$, because if $\Phi(w)=0,$ one has $\frac{(b-a)^{1/2}}{2c_1}\parallel w\parallel *=0.$ Hence , taking into account (ii) , one has

$$T(w) \leq (b-a)(x,t) \in [a,b] \times \left[\max - \frac{(b-a)^{1/2}}{2c_1} \right]_{\parallel w} \parallel_*, \frac{(b-a)^{1/2}}{2c_1} \parallel w \parallel_*] g(x,t) = 0,$$

and that is in contradiction to (i) . We now put $\beta 1(\rho,w) = r$. We obtain $\rho = \beta 2(r,w)$ and $\beta 3(\rho,w) = \frac{1}{c_1} \sqrt{\frac{b-a}{2}r}$ Therefore , from (i) and (i i) , one has $0 < r < \Phi(w)$ and

$$(b-a)(x,t) \in [a,b] \times [\max -\frac{1}{c_1} \sqrt{\frac{b-a}{2} r}, \frac{1}{c_1} \sqrt{\frac{b-a}{2} r}] g(x,t) < \beta 2(r,w).$$

(b) \Rightarrow (a) First we note that 0 < T(w), because if $0 \ge T(w)$, from (i ii) one has $r\frac{T(w)}{\Phi(w)} \le 0$; namely $,\beta 2(r,w) \le 0$. Hence , from (iv) one has

$$0 = T(0) \le (b - a)(x, t) \in [a, b] \times \left[\max -\frac{1}{c_1} \sqrt{\frac{b - a}{2} r}, \frac{1}{c_1} \sqrt{\frac{b - a}{2} r} \right] g(x, t) < 0,$$

and this is a contradiction . We now put $\beta 2(r,w) = \rho$. We obtain $r = \beta 1(\rho,w)$ and $\frac{1}{c_1}\sqrt{\frac{b-a}{2}r} = \beta 3(\rho,w)$. Therefore, from (i ii) and (iv), we have the conclusion. \Box The following lemma is another consequence of Lemma 2.2.

Lemma 2.7. Assume that there exist $r \in \mathbb{R}$, $w \in X$ such that

(i)
$$0 < r < \Phi(w)$$
,

(ii)
$$(b-a)\max_{(x,t)\in[a,b]\times[-\frac{1}{c_1}\sqrt{\frac{b-a}{2}r},\frac{1}{c_1}\sqrt{\frac{b-a}{2}r}]g(x,t)<\beta 2(r,w), where$$

 $\beta 2(r, w)$

is given by (2.3). Then, there exists $\rho \in \mathbb{R}$ such that

$$\sup_{\lambda>0}\inf_{u\in X}(\Phi(u)+\lambda(\rho-T(u)))<\inf_{u\in X}\sup_{\lambda>0}(\Phi(u)+\lambda(\rho-T(u))).$$

The above lemma follows from Lemma 2.5 and Proposition 2.6.

Finally , we are interested in ensuring the existence of at least three weak solutions for the Dirichlet problem (1.2). Now , we have the following result .

Theorem 2.8. Assume that there exist $\rho \in \mathbb{R}, a_1 \in L^1([a,b]), w \in X$ and a positive

constant γ with $\gamma < 2$ such that

$$(i)\quad 0<\rho<\int_a^bg(x,w(x))dx,$$

$$(ii)\quad (b-a)\max_{(x,t)\in[a,b]\times[-\beta3(\rho,w)},\beta3(\rho,w)]g(x,t)<\rho$$

(ii i) $g(x,t) \le a_1(x)(1+\mid t\mid^\gamma)$ almost everywhere in [a,b] and for ea ch $t\in\mathbb{R},$

where $\beta 3(\rho, w)$ is given by (2.4).

Then, there exists an open interval $\Lambda \subseteq [0, +\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, problem (1.2) admits at least three s o lutio ns in X whose norms are less than q.

8 G . A . AFROUZI , S . HEIDARKHANI EJDE - 2 0 6 / 1 2 1 Proof . For each $u \in X$, we put

$$\begin{split} \Phi(u) &= \frac{\parallel u \parallel_*^2}{2}, \\ \Psi(u) &= -\int_a^b g(x,u(x)) dx. \\ J(u) &= \Phi(u) + \lambda \Psi(u). \end{split}$$

In particular, for each $u, v \in X$ one has

$$\Phi'(u)(v) = \int_a^b (u'(x)v'(x) + m(x)u(x)v(x))dx, \\ \Psi'(u)(v) = -\int_a^b f(x, u(x))v(x)dx.$$

It is well known that the critical points of J are the weak solutions of (1 . 2), our goal is to prove that Φ and Ψ satisfy the assumptions of Theorem 2 . 1 . Clearly , Φ is a continuously G \hat{a} teaux derivative admits a continuous inverse on X^* and Ψ is a continuously G \hat{a} teaux derivative is compact .

Thanks to (i ii) , for each $\lambda > 0$ one has

$$\|u\lim\|_{\to+\infty}(\Phi(u)+\lambda\Psi(u))=+\infty.$$

Furthermore , thanks to Lemma 2 . 5 , from (i) and (i i) , we have

$$\sup_{\lambda \geq 0} \inf_{u \in X}^{(\Phi(u)} + \lambda \Psi(u) + \lambda \rho) < \inf_{u \in X} \sup_{\lambda \geq 0} (\Phi(u) + \lambda \Psi(u) + \lambda \rho).$$

Therefore , we can apply Theorem 2 . 1 . It follows that there exists an open interval $\Lambda \subseteq [0, +\infty[$ and a positive real number q such that , for each $\lambda \in \Lambda$, problem (1 . 2) admits at least three solutions in X whose norms are less than q. \square

We also have the following existence result.

Theorem 2.9. Assume that there exist $r \in \mathbb{R}$, $a_2 \in L^1([a,b])$, $w \in X$ and a positive constant γ with $\gamma < 2$ such that

(i)
$$0 < r < \frac{\parallel w \parallel_*^2}{2}$$
;
(ii) $(b-a) \max_{(x,t) \in [a,b] \times [-\frac{1}{c_1}\sqrt{\frac{b-a}{2}r}]}, \frac{1}{c_1}\sqrt{\frac{b-a}{2}r}]g(x,t) < \beta 2(r,w)$;

(ii i) $g(x,t) \leq a_2(x)(1+\mid t\mid^{\gamma})$ almost everywhere in [a,b] and for ea ch $t\in\mathbb{R},$

where $\beta 2(r, w)$ is given by (2.3).

Then, there exists an open interval $\Lambda \subseteq [0, +\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, problem (1.2) admits at least three s o lutions in X whose norms are less than q.

The above theorem follows from Lemma 2 . 7 and Theorem 2 . 8 .

Let $h_1 \in C([a,b])$ be a function which changes sign on [a,b] and $h_2 \in C(\mathbb{R})$ be a positive function . For for $(x,t) \in [a,b] \times \mathbb{R}$, put

$$f(x,t) = h_1(x)h_2(t).$$

For for $t \in \mathbb{R}$, put

$$\alpha(t) = \int_0^t h_2(\xi) d\xi.$$

$$a_3(x) = \frac{a_1(x)}{h_1(x)}$$

Then, using Theorem 2.8, we have the following result. **Theorem 2.10**. Assume that there exist $\rho \in \mathbb{R}$, $a_3 \in L^1([a,b])$, $w \in X$ and a positive constant γ with $\gamma < 2$ such that

(i)
$$0 < \rho < \int_a^b (h_1(x)\alpha(w(x)))dx;$$

(ii)
$$(b-a) \max_{x \in [a,b]} h_1(x) < \frac{\rho}{\alpha(\beta 3(\rho, w))};$$

(ii i) $\alpha(t) \leq a_3(x)(1+\mid t\mid^{\gamma})$ almost everywhere in [a,b] and for each $t\in\mathbb{R},$ where

$$\beta 3(\rho, w)$$
 is given by (2.4) .

Then, there exists an open interval $\Lambda \subseteq [0, +\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, problem (1.3) admits at least three s o lutio ns in X whose norms are less than q.

Put

$$a_4(x) = \frac{a_2(x)}{h_1(x)}$$

for almost every $x \in [a,b]$. Then , by Theorem 2 . 9 , we have the following existence result .

Theorem 2.11. Assume that there exist $r \in \mathbb{R}$, $a_4 \in L^1([a,b])$, $w \in X$ and a positive constant γ with $\gamma < 2$ such that

(i)
$$0 < r < \frac{\parallel w \parallel 2_*}{2}$$
;

(ii)
$$(b-a) \max_{x \in [a,b]} h_1(x) < \frac{\beta 2(r,w)}{\alpha(\frac{1}{c_1}\sqrt{\frac{b-a}{2}r})};$$

(ii i) $\alpha(t) \leq a_4(x)(1+\mid t\mid^{\gamma})$ almost everywhere in [a,b] and for each $t\in\mathbb{R},$ where

$$\beta 2(r, w)$$
 is given by (2.3) .

Then, there exists an open interval $\Lambda \subseteq [0, +\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, problem (1.3) admits at least three s o lutions in X whose norms are less than q.

We now want to point out two simple consequences of Theorems 2 . 8 and 2 . 9 . Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function which changes sign on \mathbb{R} . For $t \in \mathbb{R}$, put $g(t) = \int_0^t f(\xi) d\xi$. So we have the following results .

Theorem 2. 12. Assume that there exist $\rho \in \mathbb{R}, w \in X$ and two positive constants γ and η with $\gamma < 2$ such that

(i)
$$0 < \rho < \int_a^b g(w(x))dx;$$

(ii)
$$(b-a) \max_{t \in [-\beta 3(\rho,w)]} \beta 3(\rho,w)]g(t) < \rho;$$

(ii i) $g(t) \leq \eta(1+|t|^{\gamma})$ for each $t \in \mathbb{R}$, where $\beta 3(\rho,w)$ is given by (2.4). Then, there exists an open interval $\Lambda \subseteq [0,+\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, problem (1.4) admits at least three s o lutions in X whose norms are less than q.

Theorem 2. 13. Assume that the re exist $r \in \mathbb{R}, w \in X$ and two positive constants γ and μ with $\gamma < 2$ such that

$$(i) \quad 0 < r < \frac{\parallel w \parallel 2_*}{2};$$

$$((ii) \quad (b-a) \max_{t \in [-\frac{1}{c_1}\sqrt{\frac{b-a}{2}r}]} \frac{1}{c_1} \sqrt{\frac{b-a}{2}r}]g(t) < \beta 2(r,w);$$

(ii i) $g(t) \leq \mu(1+\mid t\mid^{\gamma})$ for each $t\in\mathbb{R}$, where $\beta 2(r,w)$ is given by (2 . 3). Then, there exists an open interval $\Lambda\subseteq[0,+\infty[$ and a positive real number q such that, for each $\lambda\in\Lambda$, problem (1.4) admits at least three s o lutions in X whose

norms are less than q.

Example 2.14. Let $\Omega = (0,1)$ and consider the problem

$$-u'' + e^x u = u_{(0)}^{\lambda(e^u u^2(3)} +_{= u(1)} +_{= u(1)}^{0}, \quad x \in (0, 1)$$
 (2.8)

Then, there exists an open interval $\Lambda \subseteq [0, +\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, problem (2.8) admits at least three solutions in $W_0^{1,2}([0,1])$ whose norms are less than q. In fact, by choosing $\rho = \frac{1}{4}$ and

$$w(x) = \begin{cases} & x, & x \in (0,1) \\ & 0, & \text{otherwise} \end{cases}$$

so that $\beta 3(\rho,w)=\frac{1}{c_1}(\frac{e-1}{96-32e})^{1/2}$, all assumptions of Theorem 2 . 1 2 , are satisfied with $\gamma=1,c_1$ is positive constant such that the inequality (2 . 1) hold for $m(x)=e^x$ and η sufficiently large , also with choose $r=\frac{1}{2}$ so that $\beta 2(r,w)=\frac{6-2e}{e-1}$, all assumptions of Theorem 2 . 1 3 , are satisfied with μ sufficiently large .

References

- $[\ 1\]$ G . a . Afrouzi , S . Heidarkhani ; Three solutions for a Dirichlet boundary value problem involv ing the p Laplacian , Nonlinear Anal . (to appear)
- [2] R. P. Agarwal , H. B. Thompson , C. C. Tisdell ; On the existence of multiple s olutions to boundary value problems for s econd order , ordinary differentntial equations . Dynam . Systems Appl . (in press)
- [3] R . I . Avery , J . Henderson ; Three symmetric positive solutions for a s econd order boundary value problem , Appl . Math . Lett . 1 3 (2000) 1 7 .
- [4] G . Bonanno , Existence of three s olutions for a two point boundary value problem , Appl . Math . Lett . 1 3 (2000) 53 57 .
- [5] Johnny Henderson , H . b . Thompson ; Existence of multiple s olutions for s econd order bound ary value problems . J . Differential Equations 1 66 (2000) , no . 2 , 443 454 .
- $[\ 6\]\ Johnny\ Henderson\ ,\ H\ .\ B\ .\ Thompson\ ; \qquad \textit{Multiple symmetric positive so lutions for a second order boundary value problem}\ .\ \ Proc\ .\ Amer\ .\ Math\ .\ Soc\ .\ 1\ 28\ (\ 2000\)\ ,\ no\ .\ 8\ ,\ 2373\ -\ 2379\ .$
- $[\ 7\]$ P . Korman , T . Ouyang ; Exact multiplicity results for two classes of boundary value problem , Diff . Integral Equations 6 ($1\ 993$) 1 507 1 $5\ 17$.
- [8] B . Ricceri ; On a three critical points theorem , Arch . Math . (Basel) 75 (2000) 220 226 . Ghasem Alizadeh Afrouzi

Department of Mathematics , Faculty of Basic Sciences , Mazandaran University , Babol - sar , Iran

$$E$$
 - $mail\ address$: afrouz i $@$ umz . ac . ir Shapour Heidarkhani

Department of Mathematics , Faculty of Basic Sciences , Mazandaran University , Babol - sar , Iran

E - $mail\ address$: s . he idarkh a — n i @ umz . ac . ir