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A MINIMAX INEQUALITY FOR A CLASS OF FUNCTIONALS
AND APPLICATIONS TO THE EXISTENCE OF
SOLUTIONS

FOR TWO - POINT BOUNDARY - VALUE PROBLEMS
GHASEM ALIZADEH AFROUZI , SHAPOUR HEIDARKHANI
ABSTRACT . In this paper , we establish an equivalent statement to minimax
inequality for a special class of functionals . As an application , we prove the

existence of three solutions to the Dirichlet problem

o (2) + m(@)u(x) = M, u(x)), @ € (ab)
u(a) = u(b) =0,

where A >0, f : [a, b] X R — R is a continuous function which changes sign on
[a, b] X R and m(x) € C([a, b]) is a positive function .
1. INTRODUCTION
Given two G G teaux differentiable functionals ® and T on a real Banach space
X, the minimax inequality

(®(u)
sup inf +A(p —T(u))) < inf sup(®(u) + A(p — T(u))), p€ER, (1.1)
A>0 ueX ueX A>0

plays a fundamental role for establishing the existence of at least three critical points
for the functional ®(u) — AT'(u).
In this work some conditions that imply the minimax inequality (1. 1) are pointed
out and equivalent formulations are proved .
In this paper , our approach is based on a three critical - point theorem proved in
[ 8] ( Theorem 2 . 1) which stated below for the reader ’ s convenience . Also we state
a technical lemma that enables us to apply the theorem .
Lemma 2 . 2 below establishes an equivalent statement of minimax inequality
(1. 1) for a special class of functionals , while its consequences ( Lemmas 2 . 5 and 2
. 7) guarantee some conditions so that minimax inequality holds .
Finally , we apply Theorem 2 . 1 to elliptic equations , by using an immediate con
- sequence of Lemma 2 . 2 : We consider the boundary - value problem

7u//(z) + m(x)ugf)(a) == )‘i(x,(b)ig)f))’ T € (avb)v (12)
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2 G . A.AFROUZI, S . HEIDARKHANI EJDE-206/121
where A > 0,f : [a,b] x R — R is a continuous function which changes sign on
[a,b] x R,m is a continuous , positive function and we establish some conditions on f
so that problem (1. 2 ) admits at least three weak solutions .

We say that u is a weak solution to (1. 2) if u € Wy"*([a, b]) and

b b b
/ u’(x)v’(x)dx—i—/ m(x)u(z)v(z)dz — )\/ f(x,u(x))v(z)de =0
foreveryv € Wy *([a, b]).

By arguments similar to those in problem (1. 2 ), we will have the existence of at
least three weak solutions for the problem

—u(x) + m(x)u(i)(:a):/\h;(m)?lf)(;‘(m))’o, x € (a,b) (1.3)

where hy € C([a,b]) is a function which changes sign on [a,b] and hs € C(R) is a
positive function .  The existence of at least three weak solutions is also proved for
the problem

—u" () + m(z)" ) = = uz\bf)(i(g?)’ z € (a,b) (1.4)

where f : R — R is a continuous function which changes sign on R.

Conditions that guarantee the existence of multiple solutions to differential equa -
tions are of interest because physical processes described by differential equations can
exhibit more that one solution . For example , certain chemical reactions in tubu - lar
reactors can be mathematically described by a nonlinear , two - point boundary value
problem with the interest in seeing if multiple steady - states to the problem exist . For
a recent treatment of chemical reactor theory and multiple solutions see [ 2 , section 7
] and references therein .

In recent years , many authors have studied multiple solutions from several points
of view and with different approaches and we refer to [ 1, 3,4, 7 ] and the references
therein for more details , for instance , in their interesting paper [ 3], the authors
studied problem

a'fof My == 0, (L5)
(in the case independent of \) by using a multiple fixed - point theorem to obtain three
symmetric positive solutions under growth conditions on f.

Also , in [ 4 ], the author proves multiplicity results for the problem ( 1 . 5 ) which
for each A\ € [0, +oo, admits at least three solutions in W,([0,1]) when f is a
continuous function .

In particular , in [ 1 ] we obtained the existence of an interval A C [0, +o0o] and a
positive real number ¢ such that , such that for each A € A problem

Aptt+ M (s uz) = Oagn(2)i" "o, in®, (1.6)

where Apu = div (| Vu [P=2 Vu) is the p— Laplacian operator , C RV (N > 2) is non
empty bounded open set with smooth boundary 9Q,p > NA > 0,f: QxR - Ris a
continuous function and positive weight function a(z) € C( ), admits at least
three weak solutions whose norms in VVO1 P(Q) are less than q.
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additional approaches to the existence of multiple solutions to boundary -
value problems , see [ 2, 5, 6 ] and references therein .
2. MAIN RESULTS
First , we recall the three critical point theorem by Ricceri [ 8 ] when choosing

Theorem 2. 1. Let X be a s eparable and reflexive real Banach space ;@ : X — R
a continuously G a teauz differentiable and s equentially weakly lower s emicontinuous
functional whose G a t eauz derivative admits a continuous inverse on X*; W : X — R
a continuously G a t eaux differentiable functional whose G a teaux derivative is com
- pact . Assume that

| i |y o (®(u) + A (u)) = +oc
for all X\ €[0,+00], and that th ere exists p € R such that

(@ (u)
sup inf +AU(u) + Ap) < inf sup(®(u) + AU(u) + Ap).
A>0 ueX ueX A>0

Then , there exists an open interval A C [0,+o0[ and a positive real number q such
that , for each X\ € A, the equation

D' (u) + AV (u) =0

has at least three s o lutions in X whose norms are less than q.
Here and in the sequel , X will denote the Sobolev space I/VO1 ’2([a, b]) with the
norm

b
lul = / W/ (z) P dz)1)2,

f:]a,b] x R — R is a continuous function and g : [a,b] x R — R is defined by

o(e,1) = /0 Fl €)de

for each (z,t) € [a,b] x R. Now , we define

[ ||+ = (/ (| /(@) [* +m(@) | u(@) [*)dz)1/2,

So the Poincar é ’ s inequality and the positivity of the function m(z) € C([a,?]),
there exist positive suitable constants ¢; and ¢y such that

9

allul<fulla<er |ul (2.1)

(i. e. , the above norms are equivalent ) .  We now introduce two positive
special functionals on the Sobolev space X : For u € X, let

lul?

D(u) : 5

) :
T(u) ::/ g(x,u(x))dz
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that 0 < p < T'(w) and 0 < r < ®(w). We put

1 = p—" 2.2
Bl(p,w) pT(w)7 (22)
_ T(w)
62(7‘, w) - 7Aq)(u}) ’ (2.3)
1 b—a 1/2
B3(p, w) == —( Bl(p,w)), (2.4)
C1 2
Clearly , 81(p, w), 82(r,w) and B3(p,w) are positive . Now , we put
o N1/2
5= inf 8D e RY Tw) 2 g},
201
e f(0=a)'? +
b2 := inf {=5— || u [«€ RT, such that
b—a)l/? b—a)l/?
(b~ a)(e.) € fa.b] x fmax— P Oy g0y > )
e &
and
5p = (51 — (52. (25)

Clearly , 47 > d2. Taking into account that for every u € X,

(b— a)1/2
< N 77
Jmax | u(z) [< 5 [l
and (2. 1), we have
bh— 1/2
max | u(@) |< 2D |y,
z€la,b] 2cq

for each u € X. So that

b
T(u) = / g(z,u(z))dz < (b — a) max g(z,t)

b— 1/2 bh— 1/2
where(z,t) € [a, ] x [—% | wl *, % | w ||«]- Namely
T(u) < (b — a) max g(a, ),
b—a)l/? b— a)l/2 b—a)l/?
where(z, ) € [o0)x [P ugs LS g, (P52 e
RT;T(u) > p} is a subset of
b— 1/2
{¢ | u ||«+€ R*suchthat
261

(b—a)1/2 . (b—a)1/2
2(31 1wl ’ 261

(b—a)(z,t) € [a,b] x [max — [l gz, t) = p}.



So , we have §; > 5 and 6, > 0.
Our main results depend on the following lemma :
Lemma 2 . 2. Assume that there exist p € Ryw € X such that

(i) 0<p<T(w),

( ii ) (bia) max(x,t)e[a,b] x[—B3(p,w)+5,, ﬁ?’(pv w)fép]g(xa t) <p, where ﬂ?’(pv w)
is givenby (2.4 )and d,by (2.5).
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Then , there exists p € R such that

sup e x (P(u) + A(p — T(w))) < inf sup(®(u) + Alp — T (u)))-
A>0 ueX \>0

Proof . From (ii), we obtain

B3(p,w) — 8 element — slash{l € R" : (b — a)(x,t) €™ [a,b] x [~1,]g(x,t) > p}.

Moreover

inf{l € R™; (b —a)(z,t) €™ [a,b] x =1, lg(z,t) > p} > B3(p,w) — Oy
in fact , arguing by contradiction , we assume that there is I; € R* such that

(b—a)(z,t) € [ max Iy,li]g(x,t) > p

a,b]x[—

and

ll < 63(,0, U)) - 6pa

SO

(b—a)(z,t) € [a,b] x[—B3(max p, w)+6,, B3(p, w)—d,lg(x,t) > (b—a)(z,t) € [max —I1,l1]g(z,t) > p.

a,b] x|

This is a contradiction . So

inf{l € R™; (b —a)(z,t) €™ [a,b] x [~1,lg(z,t) > p} > B3(p,w) — J,.

Therefore ,

o (b—a)'? +.
inf{ 2, [wl] *eR":
b— 1/2 h— 1/2
(b a)(w,1) € [a,8] x fmax— L= OZDT oy o > )
201 H“H 201
> 53(p7 ’lU) - 5,0;
namely £3(p,w) < d1. So , we have
N 7 p—
inf{ === € R T(u) 2 p} > Bl(p, w),
or equivalently
) _ D (w)
f{®(u); 7! —
wi(0(; v e T (b} > s

and , taking in to account that (i) holds , one has

mf{®(u); ueT H([p,+ool)}  P(w) —inf{P(u); ue T ([p,+oc])}
p T(w)—p



Now , there exists A € R such that

O(w) —inf{®(u); ue T '([p,+o0[)}

A= () —p

and

{&(
A <infu); we T ([p,+o0])}.

p

or equivalently

inf{@(u); uwe T ([p,+oc)} > B(w) + Ap — T(w))
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Ao < inf{®(u); ue T ([p,+0o])}.
Therefore , thanks to the 0 < p < T'(w), we obtain

(2(w)

inf +A(p— T(u))) < inf{@(u); u e T ([p,+oo)}. (2.6)
On other hand ,
(®(u)
inf +A(p — T(w))) < (8(0) + Ap — T(0)) = Ap. (2.7)

So,with (2.6 )and (2. 7), one has
sup wex(®(u) + Mp — T(w) < inf{®(u); e T ([p,+oo)}.
Therefore , thanks to the

inf sup(®(u) + Ap— T(w)) = nf{@(u); ue T ([p,+o0]},
uEX \>0

we have

sup e x (®(u) + A(p — T(u))) < inf sup(®(u) + Alp — T (u)))-
A>0 ueX \>0

O

Remark 2. 3. Note that supy>qinfuex(®(u)+A(p—T(u))) is well defined , because
A= infuex (®(u) + AM(p — T(u))) is upper semicontinuous in [0, +oo[ and tends to

—ooasA — +oo.

Remark 2 . 4. 1If 33(p,w) — 0, < 0in Lemma 2 . 2, ; then then the lemma still
holds .
Because , 33(p, w) < §; — d2 < 1, and by arguing as in the proof of Lemma 2 . 2 , the
results holds .

If instead of condition ( ii ) in Lemma 2 . 2 , we put

(b= a)(o1) € a.b] x [ mx B3(p.w)lg(a) < p.

then the result holds , because

(b—a)(z,t) € [a,b] x [=B3(max p,w) + 0, B3(p,w) — 6,]g(x,t)
< (b-a)(z,t) € [a,b] x [_glax ), B3(psw)lg(z,t) < p.

)

So , we have the following result .
Lemma 2. 5. Assume that there exist p € R, w € X such that

(i) 0<p<T(w),

. (i1) (b—a)max(g ey X[—83(p, w), B3(p, w)|g(x,t) < p, where B3(p,w) is
given



by (2.4) Then, there exists p € R such that

sup e x (P(u) + A(p — T(w))) < inf sup(®(u) + A(p — T(u))).
A>0 ueX A>0

Proposition 2. 6 . The fo l lowing ass ertions are equivalent : (a )  There are
p € R,w € X such that

(1)0 < p < T(w),

(i ) (b—a)max( ejap X[—B3(p,w), B3(p,w)]g(x,t) < p, where B3(p,w)
is gwen by (2.4).
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There are r € R,w € X such that

(149)0 < r < P(w),

X b—a) max \/
( ) ( ) (ac,t)e[a,b]

g(z,t) <  B2(r,w), where

B2(r,w) is given by (2. 3 ). Proof. (a) (b). First we note that
0 < ®(w), because if ®(w) =0, one has
(b—a)

Ser || w || * = 0. Hence , taking into account ( ii ) , one has

(b _ a)1/2 ” (b _ a)1/2
261 lw * 201

T(w) < (b—a)(z,t) € [a,b] x [max — | wl +]g(x,t) =0,
and that is in contradiction to (i) . We now put S1(p, w) = r. We obtain p = 2(r, w)
and 83(p,w) = —11/ b= “r Therefore , from (i) and (ii), one has 0 < r < ®(w) and

c

(b — a)(x,t) € [a,b] x [max—l\/b;“r, 1\/b ; Lrlg(a,t) < B2(r,w).

C1 C1

( a ) First we note that 0 < T'(w), because if 0 > T'(w), from ( 11ii ) one has
0; namely , 82(r,w) < 0. Hence , from ( iv ) one has

(())
fS

0=T(0) < (b—a)(z,t) € [a,b] x [maxfa T o 5

and this is a contradiction . We now put S2(r,w) = p. We obtain r = 81(p,w) and

é b=ay = B3(p,w). Therefore , from (iii ) and (iv ), we have the conclusion . O
The following lemma is another consequence of Lemma 2 . 2 .

Lemma 2. 7. Assume that there exist r € R, w € X such that
(i) 0<r<d(w),

(ii) (b—a) max(z’t)e[a’b]x[ii@, %1/%7"]9(1’,25) < B2(r,w), where
B2(r,w)

is given by (2.3). Then, there exists p € R such that

sup ™ ¢ (®(u) + AMp — T(u))) < inf sup(®(u) + A(p — T'(u))).
A>0 uEX A>0
The above lemma follows from Lemma 2 . 5 and Proposition 2 . 6 .
Finally , we are interested in ensuring the existence of at least three weak solutions

for the Dirichlet problem (1. 2 ) . Now , we have the following result .
Theorem 2 . 8 .  Assume that th ere exist p € R,ay € L'([a,b]),w € X and a
positive
constant ~y with ~ < 2 such that

b
() 0<p< [ gloulz)ds

il b—a max ,B3(p,w)lg(z,t) <
(i) ( )(I’t)e[a’b]x[fﬁg(p’w)ﬂ(p Ng(z,t) <p



(iii) gz, t) <ai(x)(A+]t]Y) almost everywhere in [a,b] and for ea ch
teR,
where B3(p,w) is given by (2.4).
Then , there exists an open interval A C [0,4o00[ and a positive real number q such

that , for each X\ € A, problem (1. 2) admits at least three s o lutio ns in X whose
norms are less than q.
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we put

_ Nl
D(u) = 5

b
W(w) =~ [ oo, ulw))da.
J(u) = d(u) + AU (u).

In particular , for each u,v € X one has

b b
@@WOZ/Oﬂwﬂw+m@W@W@M%WWW0:—/f@w@ﬁ@ﬂw

It is well known that the critical points of J are the weak solutions of (1. 2 ) , our goal
is to prove that ® and ¥ satisfy the assumptions of Theorem 2 . 1.  Clearly ,® is
a continuously G a teaux differentiable and sequentially weakly lower semi continuous
functional whose G @ teaux derivative admits a continuous inverse on X* and ¥
is a continuously G & teaux differentiable functional whose G @ teaux derivative is
compact .

Thanks to (iii ), for each A > 0 one has

[ wlim || (®(u) + AV (u)) = +oc.
Furthermore , thanks to Lemma 2 . 5 , from (1) and (11) , we have

P(u
sup (irif) +AT(u) + Ap) < inf sup(P(u) + A (u) + Ap).
A>0 ueX ueX A>0
Therefore , we can apply Theorem 2 . 1 . It follows that there exists an open interval
A C [0, +00[ and a positive real number ¢ such that , for each A € A, problem (1. 2)
admits at least three solutions in X whose norms are less than ¢q. [
We also have the following existence result .
Theorem 2 . 9. Assume that there exist r € R,as € L*([a,b]),w € X and a positive
constant ~y with ~ < 2 such that

2
(1) 0<r<7”u;”*;

(i) (b—a) max 1, /ba

)
(@ €elab]x[- 2 /T €1 2

rlg(z,t) < B2(r,w);

(iii) g(z,t) <ag(z)(14+|t|") almost everywhere in [a,b] and for ea ch

t € R,
where [2(r,w) is given by (2.3 ).
Then , there exists an open interval A C [0,400] and a positive real number q such
that , for each A€ A, pro blem (1.2) admits at least three s o lutions in
X whose norms are less than q.
The above theorem follows from Lemma 2 . 7 and Theorem 2 . 8 .
Let hy € C([a,b]) be a function which changes sign on [a,b] and hy € C(R) be a

positive function . For for (z,t) € [a,b] X R, put

f(@,t) = ha(z)ha(2).
For for t € R, put
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almost every z € [a, b], put

_ a(x)

 ha(a)

Then , using Theorem 2 . 8 , we have the following result . Theorem 2 . 10 .
Assume that there exist p € R, a3 € LY [a,b]), weX anda

positive constant ~y with ~ < 2 such that

as(x)

b
o>o<p</kmwmwu»mu

" P
(i) (b—a) mmax, (o) < Cr3(ow))’
(iii) at) <az(x)(14+|t]7) almost everywhere in [a,b] and for each t € R,
where
B3(p,w) is given by (2.4).
Then , there exists an open interval A C [0,4o00] and a positive real number q such
that , for each X € A, problem (1. 3) admits at least three s o lutio ns in X whose
norms are less than q.
Put

_ as(z)

hi(z)
for almost every « € [a,b]. Then , by Theorem 2 . 9, we have the following existence
result .

Theorem 2 . 1 1. Assume that th ere evist r € R, a4y € L'([a,b]), weX
and a positive constant v with v < 2 such that

ay(x)

| w | 2«
2 b)
B2(r, w)

ii b—a) max hi(z) < ————;
@) G-e) my i) <~

(iii) at) <ag(x)(14+ | t]7) almost everywhere in [a,b] and for each t € R,
where

(i) 0<r<

B2(r,w) is given by (2.3).
Then , there exists an open interval A C [0,400] and a positive real number g such
that , for each A€ A, problem (1.3) admits at least three s o lutions in
X  whose norms are less than q.

We now want to point out two simple consequences of Theorems 2 . 8 and 2 . 9 .
Let f: R — R be a continuous function which changes sign on R.  For ¢t € R, put
g(t) = fot f(&)d¢. So we have the following results .

Theorem 2 . 12 . Assume that there exist p € R,w € X and two positive
constants v and n with v < 2 such that

b
() 0<p< [ glu@)ds

ii b—a max ,B3(p,w)]g(t) < p;
(i) G-a)_mx 3wl <p
(iii) g) <n(l+|t]|") for ea ch t € R, where B3(p,w) is given by (2.4).
Then , there exists an open interval A C [0,400] and a positive real number g such
that , for each A€ A, problem (1.4) admits at least three s o lutions in
X  whose norms are less than q.



Theorem 2 . 13 . Assume that the re exist r € Ryw € X and two positive
constants vy and p with v < 2 such that

[w | 2.
2 )

. 1 /b—a ]
((ii) (b—a)te[ rlnaxl%arya\/ 5 Tl9(t) < B2(r,w);

c1

(i) 0<r<
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(i) gt) <pd+|t]Y) for ea ch t € R, where [2(r,w) is given by (2. 3) .
Then , there exists an open interval A C [0,4o00[ and a positive real number q such
that , for each A€ A, problem (1.4) admits at least three s o lutions in X
whose

norms are less than q.

Example 2 . 14 . Let © = (0,1) and consider the problem

*’LL,/ + eIu = u?o(;MZQL?El) +_ u)())’ T € (O, 1) (28)

Then , there exists an open interval A C [0, +o00[ and a positive real number ¢ such that
, for each A € A, problem ( 2. 8 ) admits at least three solutions in W, *([0, 1]) whose
norms are less than ¢. In fact , by choosing p = % and

z, x€(0,1)

w(zr) = .
0, otherwise

so that 33(p,w) = i(%e_’gl%)l/ 2. all assumptions of Theorem 2 . 12, are satisfied with

~v = 1,c¢; is positive constant such that the inequality ( 2 . 1) hold for m(x) = ¢* and
7 sufficiently large , also with choose r = % so that 52(r,w) = % all assumptions of
Theorem 2 . 1 3 | are satisfied with u sufficiently large . ’
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