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NONLINEAR ELASTIC MEMBRANES INVOLVING THE
P - LAPLACIAN OPERATOR
FABRIZIO CUCCU , BEHROUZ EMAMIZADEH , GIOVANNI PORRU
ABSTRACT . This paper concerns an optimization problem related to the Pois -
son equation for the p— Laplace operator , subject to homogeneous Dirichlet
boundary conditions . Physically the Poisson equation models , for example ,
the deformation of a nonlinear elastic membrane which is fixed along the
boundary , under load . A particular situation where the load is represented
by a characteristic function is investigated .
1. INTRODUCTION
Let Q be a bounded smooth domain in RY. This paper is concerned with an
optimization problem related to the Poisson boundary - value problem

—ApuuZy fon, nON% (1.1)

Here pe (1,00), and A, stands for the usual p— Laplacian ; thatis, Apu=V-:
(| Vu [P~2Vu). Let f0 € LQ), withgq=p/(p—1), andlet R be the class
of rearrangements of f0. We are interested in finding

5P e R/ fuydz (1.2)
Q

where u; is the ( unique ) solution of (1. 1) .

The p— Laplace operator arises in various physical contexts : non Newtonian fluids
reaction diffusion problems , non linear elasticity , electro chemical machining , elastic
- plastic torsional creep , etc . ,see [1], [10], and references therein .  For a
theoretical
develop of the theory of the p - Laplacian we refer to the monograph [9].  The case
of p = 2 is the most important and easier to discuss : it corresponds to a first
approximation , the linear case .  For non ideal materials , it is often appropriate to
involve a power of the gradient | Vu | to describe the law governing the model . For
example , problem ( 1. 1) models a nonlinear elastic membrane under load f. The
solution us st ands for the deformation of the membrane from the rest position .
Therefore , the functional fQ fuypdx measures the average deformation , with respect
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2 F . CUCCU , B. EMAMIZADEH , G . PORRU EJDE-26/49
to the measure fdz, of the membrane .  Thus , any solution to ( 1 . 2 ) determines
an optimal load chosen from the class R.
Our interest in (1. 2 ) spans questions such as existence , uniqueness ( in case
is a
ball ) , and qualitative properties of maximizers . In case of p = 2, the problem is well
understood , see [3],[4],[5],[6],[11]. In this case the functional [, fusdz
is weakly
sequentially continuous and strictly convex , say on L?(f2), so the classical results of R
. Burton are available to be applied to prove existence and some qualitative properties
of the maximizers . However , in the case p # 2, we will use a method which does not
need the convexity of the functional .  The existence in a similar situation has been
discussed in [ 7] .
2. PRELIMINARIES

In this section we collect some well known results . Let us begin with the definition
of a weak solution of (1. 1) .
Definition . A function u = uy € Wy?(Q) is a weak solution of (1. 1) provided

/Q | Vu |P~2 Vu - Vodr = /vadx, Yo € Wi P(9Q).

It is a standard result that (1. 1) has a unique weak solution uy, for which the
following equations hold

1
/qufdm = /Q | Vug |P dx :p_—lwéfgup((z) /Q(pfu— | Vu [P)dz. (2.1)

Definition . Suppose f: (X,%, 1) — R* and g : (X', ¥/, ') — RT are measurable
functions . We say f and g are rearrangements of each other if and only if

{z € X | f(2) > a}) = w'({fe € X' | gla) > a}), Va>0.

Henceforth we fix f0 € L% (Q), with ¢ = p/(p —1).  The set of all rearrangements of
f0 is denoted by R. Thus , for any f € R, we have

Ly(fe € Q] f(2) > a}) = La({z € Q| fO(z) > a}), Va >0,

where £y denotes the N— dimensional Lebesgue measure . For f: Q — R, f2 and
f denote the decreasing and Schwarz rearrangements of f, respectively . Recall
that f2 is defined on (0, Lx(2)), and f* is defined on B, the ball centered at the origin
with volume equal to Ly ().

Lemma 2. 1. Let q=p/(p—1),f € LL(Q),g € LE (). Suppose that every leve
setof g(thatis, setsof the form g~ '({a})), has measure zero . Then there
exists

an increasing function ¢ such that ¢ o g is a rearrangement of f.

Lemma 2 . 2. Suppose (€ L% (), and f e LL(Q). Suppose there exists an in -
creasing function ¢ such that ¢ o € R(f), th e s e t of rearrangements of f. Then
¢ o C is the unique mazximizer of the linear functional fQ h{dz, relative to h € -Ry),
where Ry denotes th e weak closure of R(f) in L(Q).

Lemma 2 . 3. Suppose g € L% (). Then the re exists f € R(f0) which
maximizes
the linear functional fQ hgdz, relative to h € -Ryq); that is ,

[Rr— U Y
Q Q
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For the proof of Lemma 2 . 1, see [ 5, Lemma 2 . 4 ], and for Lemmas 2 . 2 and
2.3,see[4,Lemma2.4].
Next we recall a well known rearrangement inequality . If u € Wy(€) is non -
negative and if u* denotes the Schwarz rearrangement of u, then u* € W;,*(2) and the
inequality

/ | Vu* |P dz S/ | Vu |P dx (2.2)
B Q

holds . The case of equality in ( 2 . 2 ) has been considered in [ 2 ] . The following
result

can be deduced from Lemma 3 . 2, Theorem 1. 1, and Lemma 2.3 (v ),in[2].
Theorem 2 . 4. Let ue Wol’p(Q) be non - negative , and suppose equality holds
n

(2.2). Then u™'(a,00) is a translate of uw*~1(a, 0), for every « € [0, M],
where M is the ess ential supremum of w o ver £, modulo s e ts of measure zero .
Moreover , if

N{z e Q| Vu(x)=0, 0<u(z)<M})=0, (2.3)

then u(z) = u(z — x0), for s ome xo € RY; that is ,u is a translation of u*.
3. MAIN RESULTS
We begin with the following result .
Theorem 3 . 1. The maximization problem (1.2) idssolvable; thatis,
there exists

f € R(f0)suchthat

/fﬁdx—f sup /fufdx
Q ER(fO
whereu:uf.

Proof . Let

I=f sup) [ fupdz.
ER(fO
We first show that I is finite .  Consider f € R(f0); then from ( 2. 1) followed by
H 6 lder ’ s inequality we find

/Q | Vuy P dz = /Q fugdz <| £ ol us I, (3.1)

Since || f lq= || fO|| ¢ it follows from ( 3. 1) and the Poincar € inequality that I is
finite . Let {fi} be a maximizing sequence and let u; = ug;. From (3. 1) it is clear
that

{u;} is bounded in W1P(Q), hence it has a subsequence ( still denoted {u;}) that
converges weakly to u € WO1 P(Q).  We also infer that {u;} converges strongly to u
in LP(©2).  On the other hand , since {fi} is bounded in L?(f2), it must contain a
subsequence ( still denoted {fi}) converging weakly to n € L?(f2). Note that n € -R,
the weak closure of R in L?(€)). Thus , using the weak lower semi - continuity of the
WyP(€2)— norm and (2. 1) we obtain



171 (pyu— | Vu [P)da. S ") da

I = lim fitide <7 pP~ Ve son [ [ pfivie | Vus
N (3.2)

1—00
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. 3 we infer the existence of f € R(f0) that maximizes the
linear functional fQ hudz, relative to h € -R o). As a consequence we obtain

/ nudx < / fudz. (3.3)
Q Q
Applying (2.1),(3.2)and (3. 3) we find

I< pi / (pfu— | Vu |P)dz < pi / (pfi— | Vi [P)dx = / fadz < I.
-1 Q -1 Q Q

Recall that @& = u;. Thus f is a solution to (1.2),asdesired. O The next issue
addressed is the so called Euler - Lagrange equation for solutions

of (1.2).

Theorem 3 . 2. Suppose f is a s o lution of (1. 2) with f0 non negative .
Then th ere

exists an increasing function ¢ such that

f=¢oi (3.4)

almost everywhere in S, where 4 = Uj. Equation (3. 4) is referred to as the Euler

Lagrange equation for f.

To prove Theorem 3 . 2 we need some preparations . Let us begin with the
following
result .
Lemma 3 . 3. Suppose f and 4 are as in Theorem 8 . 2. Then f mazximizes
the linear
functional [, hidzx, re lative to h € R(f0). Proof . Since f is a solution of (1. 2
) , the following inequality holds for every f €

R(f0)
/Qfﬁd:vz/ﬂfufd:c. (3.5)

Next , applying (2. 1) to the right hand side of ( 3 . 5 ) yields
o 1 R R
/ fudzr > p— / (pfa—| Vi |P)dx, (3.6)
Q -1 Ja

for every f € R(f0). We also have

~ 1 ~
/ fadez = p— / (pfu—| Vi |P)dx. (3.7
Q —1Jg
Combination of (3. 6 ) and ( 3.

7
/Q fade > /Q fadz,

for every f € R(f0). This completes the proof . [ In what follows we shall write
infres f(z)(sup,eg f(x)) for the essential inferior

) implies



( superior ) of f(z) in S.

Lemma 3 . 4. Let f and U be as in Theorem 3. 2, and le t
S(f) ={z € Q] f(x) > 0}.
Set

v= inf )a(z), 0=z € sup ;)i(x).
€ S(f O\ S(

Theny > 4.
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Proof . To derive a contradiction assume v < 4. Let us fix v < &1 < £€2 < 4.

Since 1 > +, there exists a set A C S(f), with positive measure , such that 4@ < £1
on A. Similarly ,£2 < § implies that there exists a set B C '\ S(f), with positive
measure , such that & > €2 on B.  Without loss of generality we may assume that
Ln(A) = Ly(B) > 0( otherwise we consider suitable subsets of A and B having

the same measures ) . Next , consider a measure preserving map T : A — B, see [ 1 2]

Using T we define a particular rearrangement of f denoted f.

f(Tz), zeA
-f(x) = braceex — bracele ftmid — braceex — bracele ftbt f(Tflx) r€B
f(z) Q\(AUB).

/foadas—/gfadx:/AUBjﬁdx—/AUB fadx
:/Bffﬁdx—/Afada:
252/Bffdx—§1/Afda:
:(§2—51)/Afdx>o.

Thus

Therefore , fQ -fudx > fQ fﬁdm, which contradicts the maximality of f ( see Lemma
3.3). O

Proof of theorem 3. 2 . Notice that from (1. 1) and [ 8, Lemma 7 . 7], it is
clear that the level sets of & restricted to  S(f), have measure zero. Therefore
applying Lemma 2. 1,  we infer existence of an increasing function ¢ such that ¢ o

is a rearrangement of f relative to the set S(f). Equivalently , ¢ o @, restricted to S(f),

is a rearrangement of j’iA restricted to the interval (0,s), where s = Lx(S(f)). Now ,
define

¢(t)={ o) t=7

0 t<n,
where y = infs(f) 4(x). Note that , since ¢ is non - negative , ¢ is an increas-
ing function .  Moreover , ¢ o4 is a rearrangement of f,A on (0,w), where w = Ly (Q).

Thus ¢o@ € R(f0), hence we can apply Lemma 2 . 2 to deduce that ¢ o is the unique
maximizer of the linear functional [, hiidz, relative to h € R(f0). This

obviously implies f = ¢ o1, almost everywhere in 2. [
Remark . The function ¢ in above can be extended to all of R.  Thus from ( 3 .

4 ) we infer S(f) = a"*(¢~1(0,00)). Since ¢ is increasing the set ¢~1(0,00) is either

the interval (v, c0) or [y, 00). In both cases , since the level sets of & on S(f) have

measure zero , we can write S(f) = {& > ~}. If we assume f0 € L*°(Q) then we have
the continuity of the solution @(see [15] ). In this situation the boundary of



S(f), denoteddS(f), satisfies

95(f) c{a =~} (3.8)
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thanks to the continuity of 4. Note that Ly (S(f0)) = Ln(S(f)). Therefore , if
Ln(S(f0)) < Ln(£2), it follows that ~ is strictly positive .

An example of interest is the following .
Example . Suppose f0 = xFEy, where xyFEy is the characteristic function of the
measurable set Fy C 2, and let Ly (Ep) < Ly (). Denoting a solution of (1. 2)
by f it is clear that f = X, for some measurable set EcQ, having the same measure as

FEy. From the last Remark we infer that @ = u 7 1s constant on OF. Also ,8F does not
intersect 0€).  So physically speaking , in order to maximize the average deformation
of the nonlinear elastic membrane under uniform loads ( given
by the appropriate rearrangement class ) it is best to place the load away from the
boundary ( independently of the geometry of the membrane ) . We will return to this
example in the last section .
We now address the question of uniqueness in a ball .

Theorem 3 . 5 . Suppose ) is a ball centered at the origin . Then the
mazimization problem (1.2) with f0O non negative and ess entially bounded has
a unique s o lution , namely , fi.

For the rest of this section €2 is always a ball . We need the following result .
Lemma 3. 6. If f >0, then

1
If/ | Vu* f |P d;v—&—f/f*uf*dacZ/f*u*fdx. (3.9)
Q qJa Q

Proof . From the variational characterization of us* the following inequality is clear

1
’1)/ |Vu*f|pd1:+f/f*uf*dx2 If/ |Vuf*|pdx—/f*uf*da:
Q q.Jq Q Q
1
—I—f/f*uf*dx—&—/f*u*fdx.
q.Jq Q

Since the first three terms on the right hand side of the above inequality drop out thanks
to(2.1), weobtain (3.9). O

Proof of Theorem 3. 5 . Suppose f is a solution of ( 1. 2 ) . Then , from Lemma
3 . 6 we have

1
11’/ \Vu*f\pda:—&—f/f*uf*dxz/f*u*fdm.
Q q.Jq Q

Applying the Hardy - Littlewood inequality [, f*u*fdz > [ fugdz to the right
hand side of the above inequality we find

1 1
f/ \Vu*f|pdx+f/f*uf*dx2/fufdx: ?/fufdx—l—*/fufdx.
Q qJa Q Q qJa
(3.10)

Since f is a solution of (1. 2) we have fQ fupdr > fQ ffup*dx. Moreover
., an application of (2. 1) yields [, fugdz = [, | Vuy [P dz. Therefore , (3. 10)
implies

/ | Vu*f |P dx > / | Vug |P dx. (3.11)
Q Q

Hence , from ( 2. 2) , we obtain equality in (3. 11).

Next we show that uy = u*f. According to Theorem 2 . 4 , we only need to show
that (2.3 ) holds. Let us consider z € 2 such that 0 < u(z) < maxg u(z), and set
S={z€Q: wu(z)>u(x)}, which is a closed ball by Theorem 2 . 4. If we define
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v(2) = u(z) —u(z), we have —Apv(z) = —Apu(z) > 0, since f is non - negative . Since
v vanishes on 95, by the strong maximum principle [ 1 6 , Theorem 5 | we have v > 0
in S.  Therefore ,u(z) > u(z) for all z € S.  Hence x must be a boundary point of

S. So , by the Hopf boundary lemma [ 1 6 , Theorem 5 | we derive %(x) = %(w) #0,
where v stands for the outward unit normal to 95 at x. Thus (2. 3 ) holds , as desired
. Finally , from ( 3. 4 ) , we deduce that f coincides with its Schwarz rearrangement ,

so f = f* = f§. This completes the proof of the theorem . O

4.  DOMAIN DERIVATIVE
This section is devoted to the example mentioned earlier .  We have seen that if
f= Xp is a solution of (1. 2), then @& = u; is constant on the free boundary oD,
A natural question arises : Does the same result hold if x5 is any critical point of
the functional fQ fuy, relative to the class of rearrangements of x p? We give an
affirmative answer to this question under some restrictions on D. In order to put

things in the right context we need to introduce the notion of domain derivative [ 1 3 |
,[14], that is specialized to our situation .

Let D be an open smooth subset of Q with dist (D, Q) > 0. Let V be a regular
( smooth ) vector field with support in Q. Define D' = (Id + tV)(D), with small
t € R such that D! C €. Here Id denotes the identity map . Note that for small ¢, the
operator Id + tV is a diffeomorphism . In particular , D! is an open and smooth set .
If DAD? denotes the familiar symmetric difference of D and D?, then

Ln(DAD") < ct, (4.1)

where ¢ is a positive constant independent of ¢. As a consequence of (4. 1), the
function xD' — xD tends to zero in L4(Q)( for any ¢ > 1) as ¢ tends to zero .  Let us
define

I(D):/Duclav7

where u satisfies

—Apu=xD inQ, w=0 ondQ. (4.2)
Also

where u! satisfies

—Ayut =xD' inQ, u'=0 ondQ. (4.3)
For the sake of the following definition we introduce V to be the set of all regular
vector fields with support in Q. Definition . We say that D( as above ) is a critical
point of the functional I provided
dI(D;V) = c¢dVol(D; V),

for some constant ¢ and every V € V. Here




Of course , if we consider measure preserving vector fields V' then dVol(D; V) = 0. We
are now ready to st ate the main result of this section .
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D is an open smooth subset of . Suppose dist (D,d) > 0,

and D is a critical point of I, re lative to T'. Then wu, the s o lution of (4.2), is
constant

ondD.

Lemma 4 . 2. Let uw and u' be the s o lutions of (4.2 )and (4.3),
respective ly . Then
ut = u, inWyP(Q), ast — 0%,

Proof . Let us recall the well known inequality ( see , for example , [15])

| Xz "y
(XT+[Y 27,

CIXP2X=|Y[P?Y, X -Y)>{ pr > <22 (4.4)

where X and Y are vectors in R™, | X | ( similarly | Y |) denotes the Euclidean length
n
of X,C is a positive constant , and (-,-) stands for the usual dot product in R Let

us consider two cases
Case 1:p>2:Using (4.4 ) we have

| Vul — Vu |2< c/ﬂq Vul =2 Vat— | Vu [P~ V) - (V! — Vu)da.
Using (4.2 ) and (4. 3 ) we can rewrite the above inequality as
| Vu' — Vu || p* < C/Q(th —xD)(u" — u)da.
So by applying the H 6 lder ’ s inequality followed by the Poincar € inequality we obtain
|V = Vul| < C([ XD =xD " do)/a

questiondown From the above inequality , the assertion of the lemma follows . Case
2:p < 2: Let us begin with the following observation

| Vul — Vu [P
2—
(I Vut | + | Vu | 2272

2_
| Vu! — Vu ||§:/Q (| Vu' | + | Vu \)de

|VUt7VU|2 l’p/2 ut u NPdx _
S(/Q(Ivut|+|vu)(2—p>d) (/Q<|V |+ | Vu |)Pdr)(2 - p)/2,

which follows from the H ¢ lder inequality , since 2/p > 1. Note that (u') is bounded in
VVO1 "P(Q). Thus from the above inequality we find

| Vu! — Vu |2
(I Vut | + | Vu [)E=r)

| Vul — Vau || p? < C( / da)P/2. (4.5)
Q

Now applying ( 4 . 4 ) to the right hand side of (4 . 5 ) , the assertion of the lemma
can



be confirmed using similar arguments as in the ending part of Case 1. [ Proof of
Theorem 4 . 1 . Let us begin with the identity

I(DY) — I(D) = /

Dt

(u' — u)dx + /

udm—/ udx. (4.6)
Dt D

Following [ 1 3 | , we define

oy g W) —u(@)
u'(z) = i1561+ —

(4.7)
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)
/ udx — / udx = / [u(z + V)| det(d;; + taVl | — u(z)]dx.
Dt D D Ox;

Since t is small , we find

/Dt uda:—/Dudm:/D[(u(gc)—i—tVu-V+o(t))(1+tV-V—|—0(t))—u(m)]dm
:t/D(Vu~V+uV-V)dx+o(t)
_y / V- (uV)dz + oft)
D
= t/aD w(V - v)do + o(t),

(4. 8) where v is the outward unit normal to 9D and do is the surface measure .
Inserting (4. 8 )and (4. 7 ) into (4. 6 ) yields

i 7I(Dt)_I(D)— u'dx w(V -v)do
lim —/D d +/6D (V -v)do. (4.9)

t—0+ t

Now multiply (4 . 2) by u?, (4.3) by u, subtract the new equations , and finally inte -
grate over ). We find

/ | Vut |P=2) — | v [(P—2)
Q

1 _at
Vu' - Vudr = 7[/ udx 7/ udx] +/ Y7 g
t ' e D bt

(4.10) Since u' tends to u in Wy () as ¢ tends to zero , and also
d
- | vul |PD= (p—2) | Vu |P Vu -V, @Qt=0,
taking the limit of (4. 10 ), when ¢ tends to zero , we find

(p— 2)/ | Vu |P=2) Yy - Vi'dz = / w(V - v)do —/ u'dz. (4.11)
Q oD D

If we multiply (4 . 2 ) by «/, and integrate we find ( recall that the support of V' is in

Q)

Vu P2 Vu- -Vi'de = | odz.
\
Q D

Inserting this equation in (4 . 1 1) we find

1
/ u'dr =p— uw(V - v)do.
D =1 Jap

Finally inserting the latter estimate into ( 4 . 9 ) yields

dI(D,V) = q/aD w(V - v)do.



Recalling the formula for the derivative of the volume , that is ,

AVol(D, V) = / (V - v)do,
oD

and the fact that D is a critical point of I, we derive
dI (D,V) =cdVol (D,V) < u(x) = constant , on dD.
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This obviously completes the proof of the theorem . [
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