Electronic Journal of Differential Equations $\,$, Vol. 2006 (2006) , No. 1 31 , pp. 1 – 1 5 . ISSN: 172 - 6691 . URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftpejde.math.txstate.edu (login: ftp)

A SEMILINEAR ELLIPTIC PROBLEM INVOLVING NONLINEAR BOUNDARY CONDITION AND SIGN - CHANGING POTENTIAL

TSUNG - FANG WU

ABSTRACT . In this paper , we study the multiplicity of nontrivial nonnegative solutions for a semilinear elliptic equation involving nonlinear boundary condition and sign - changing potential . With the help of the Nehari manifold , we prove that the semilinear elliptic equation :

$$-\Delta u + u = \lambda f(x) \mid u \mid^{q-2} u \quad \text{in}\Omega,$$
$$\frac{\partial u}{\partial \nu} = g(x) \mid u \mid^{p-2} u \quad \text{on}\partial\Omega,$$

has at least two nontrivial nonnegative solutions for $\ \lambda$ is sufficiently small .

1. Introduction

In this paper , we consider the multiplicity of nontrivial nonnegative solutions for the following semilinear elliptic equation

$$-\Delta u + u = \lambda f(x) \mid u \mid^{q-2} u \quad \text{in}\Omega,$$

$$\frac{\partial u}{\partial \nu} = g(x) \mid u \mid^{p-2} u \quad \text{on}\partial\Omega,$$
(1.1)

where $1 < q < 2 < p < \frac{2(N-1)}{N-2}, \lambda > 0, \Omega$ is a bounded domain in \mathbb{R}^N with smooth boundary , $\frac{\partial}{\partial \nu}$ is the outer normal derivative and $f,g: -\Omega \to \mathbb{R}$ are continuous functions which change sign in $-\Omega$. Associated with (1.1), we consider the energy

$$\operatorname{functional} J_{\lambda} \operatorname{in} H^{1}(\Omega),$$

$$J_{\lambda}(u) = \frac{1}{2} \parallel u \parallel_{H^{-1}}^{2} - \frac{\lambda}{q} \int_{\Omega} f \mid u \mid^{q} dx - \underline{\qquad}_{1}^{p} \int_{\partial \Omega} g \mid u \mid^{p} ds.$$

where ds is the measure on the boundary and $||u|| 2H_1 = \int_{\Omega} |\nabla u|^2 + u^2 dx$. It is well known that J_{λ} is of C^1 in $H^1(\Omega)$ and the solutions of equation (1.1) are the critical points of the energy functional J_{λ} .

The fact that the number of solutions of equation (1.1) is affected by the non-linear boundary conditions has been the fo cus of a great deal of research in recent years. Garcia - Azorero, Peral and Rossi [10] have investigated (1.1) when $f \equiv g \equiv 1$.

 $2000\ Mathematics\ Subject\ Classification$. $\ 35\ J\ 65$, $35\ J\ 50$, $35\ J\ 55$.

 $Key\ words\ and\ phrases$. Semilinear elliptic equations ; Nehari manifold ; Nonlinear boundary condition .

circlecopyrt-c2006 Texas State University - San Marcos .

Submitted July 6 , 2006 . Published October 17 , 2006 .

Partially supported by the National Science Council of Taiwan (R . O . C .) .

2 T.-F.WU EJDE-206/131

They found that there exist positive numbers Λ_1, Λ_2 with $\Lambda_1 \leq \Lambda_2$ such that equation (1.1) admits at least two positive solutions for $\lambda \in (0, \Lambda_1)$ and no positive solution exists for $\lambda > \Lambda_2$. Also see Chipot - Chlebik - Fila - Shafrir [4], Chipot - Shafrir - Fila

 $[\ 5\]$, Flores - del Pino $[\ 8\]$, Hu $[\ 1\ 1\]$, Pierrotti - Terracini $[\ 1\ 4\]$ and Terraccini $[\ 1\ 6\]$ where problems similar to equation ($1\ .\ 1$) have been studied .

The purpose of this paper is to consider the multiplicity of nontrivial nonnegative solutions of equation (1.1) with sign - changing potential. We prove that equation (1.1) has at least two nontrivial nonnegative solutions for λ is sufficiently small.

Theorem 1.1. There exists $\lambda_0 > 0$ such that for $\lambda \in (0, \lambda_0)$, equation (1.1) has at least two nontrivial nonnegative s o lutions.

Among the other interesting problems which are similar of equation (1 . 1) , Ambro -

setti - Brezis - Cerami [3] have investigated the equation

$$-\Delta u = \lambda \mid_{u} u \mid_{==0}^{q-2u} +_{\text{on}} |u|^{p-} \partial_{\Omega}^{2u} \quad \text{in}\Omega, \tag{1.2}$$

where $1 < q < 2 < p \le \frac{2N}{N-2}$. They proved that there exists $\lambda_0 > 0$ such that (1 . 2) admits at least two positive solutions for $\lambda \in (0, \lambda_0)$, has a positive solution for $\lambda = \lambda_0$, and no positive solution for $\lambda > \lambda_0$. Actually, Adimurthi - Pacella - Yadava [1], Damascelli - Grossi - Pacella [6], Ouyang - Shi [1 3] and Tang [1 7] proved that there

exists $\lambda_0 > 0$ such that equation (1.2) in the unit ball $B^N(0;1)$ has exactly two positive solutions for $\lambda \in (0,\lambda_0)$, has exactly one positive solution for $\lambda = \lambda_0$ and no positive solution exists for $\lambda > \lambda_0$. Generalizations of the result of equation (1.2) were done by Ambrosetti - Azorero - Peral [2], de Figueiredo - Gossez - Ubilla [9] and Wu [18].

This paper is organized as follows . In section 2 , we give some notation and preliminaries . In section 3 , we prove that (1.1) has at least two nontrivial nonnegative solutions for λ is sufficiently small .

2. Notation and Preliminaries

Throughout this section , we denote by S_p, C_p the best Sobolev embedding and trace constant for the operators $H^1(\Omega) \to L^p(\Omega), H^1(\Omega) \to L^p(\partial\Omega)$, respectively . Now , we consider the Nehari minimization problem : For $\lambda > 0$,

$$\alpha_{\lambda} = \inf\{J_{\lambda}(u) : u \in \mathbf{M}_{\lambda}\},$$
 where $\mathbf{M}_{\lambda} = \{u \in H^{1}(\Omega) \setminus \{0\} : \langle J'_{\lambda}(u), u \rangle = 0\}$. Define
$$\psi\lambda(u) = \langle J'_{\lambda}(u), u \rangle = \|u\|_{H^{-1}}^{2} - \lambda \int_{\Omega} f \mid u\mid^{q} dx - \int_{\partial\Omega} g \mid u\mid^{p} ds.$$
 Then for $u \in \mathbf{M}_{\lambda}$,
$$\langle \psi'_{\lambda}(u), u \rangle = 2 \|u\|_{H^{-1}}^{2} - \lambda q \int_{\Omega} f \mid u\mid^{q} dx - p \int_{\partial\Omega} g \mid u\mid^{p} ds.$$

Similarly to the method used in Tarantello [1 5], we split \mathbf{M}_{λ} into three parts:

$$\mathbf{M}_{\lambda}^{+} = \{ u \in \mathbf{M}_{\lambda} : \langle \psi_{\lambda}'(u), u \rangle > 0 \},$$

$$\mathbf{M}_{\lambda}^{0} = \{ u \in \mathbf{M}_{\lambda} : \langle \psi_{\lambda}'(u), u \rangle = 0 \},$$

$$\mathbf{M}_{\lambda}^{-} = \{ u \in \mathbf{M}_{\lambda} : \langle \psi_{\lambda}'(u), u \rangle < 0 \}.$$

Then, we have the following results.

Lemma 2.1. There exists $\lambda_1 > 0$ such that for ea ch $\lambda \in (0, \lambda_1)$ we have $\mathbf{M}_{\lambda}^0 = \phi$. Proof. We consider the following two cases.

Case (I): $u \in \mathbf{M}_{\lambda}$ and $\int_{\partial\Omega} g \mid u \mid^p ds \leq 0$. We have

$$\lambda \int_{\Omega} f \mid u \mid^{q} dx = \parallel u \parallel 2H_{1} - \int_{\partial \Omega} g \mid u \mid^{p} ds.$$

Thus,

$$\langle \psi_{\lambda}'(u), u \rangle = 2 \parallel u \parallel_{H}^{2} - \lambda q \int_{\Omega} f \mid u \mid^{q} dx - p \int_{\partial \Omega} g \mid u \mid^{p} ds$$
$$= (2 - q) \parallel u \parallel 2H_{1} + (q - p) \int_{\partial \Omega} g \mid u \mid^{p} ds > 0$$
$$\text{andso} u \in \mathbf{M}_{\lambda}^{+}.$$

Case (II): $u \in \mathbf{M}_{\lambda}$ and $\int_{\partial\Omega} g \mid u \mid^p ds > 0$. Suppose that $\mathbf{M}_{\lambda}^0 \neq \phi$ for all $\lambda > 0$. If $u \in \mathbf{M}_{\lambda}^0$, then we have

$$0 = \langle \psi_{\lambda}'(u), u \rangle = 2 \| u \|_{H^{-1}}^2 - \lambda q \int_{\Omega} f | u |^q dx - p \int_{\partial \Omega} g | u |^p ds$$
$$= (2 - q) \| u \| 2H_1 - (p - q) \int_{\partial \Omega} g | u |^p ds.$$

Thus,

$$||u||_{H^{-1}}^2 = p \frac{-q}{2-q} \int_{\partial \Omega} g |u|^p ds$$
 (2.1)

and

$$\lambda \int_{\Omega} f \mid u \mid^{q} dx = ||u||_{H}^{2} - \int_{\partial \Omega} g \mid u \mid^{p} ds = \frac{p-2}{2-q} \int_{\partial \Omega} g \mid u \mid^{p} ds.$$
 (2.2)

Moreover,

4 T.-F.WU EJDE-206/131 where $K(p,q) = \binom{line-minus-q2}{p-q}^{(p-1)/(p-2)} \binom{minus-line-p2}{2-q}$. Then $I_{\lambda}(u) = 0$ for all $u \in \mathbf{M}^{0}_{\lambda}$. Indeed, from (2.1) and (2.2) it follows that for $u \in \mathbf{M}^{0}_{\lambda}$ we have

$$I_{\lambda}(u) = K(p,q) \left(\frac{\parallel u \parallel_{H^{1}}^{2(p-1)}}{\int_{\partial \Omega} g \mid u \mid^{p} ds} \right)^{1/(p-1)} - \lambda \int_{\Omega} f \mid u \mid^{q} dx$$

EJDE - 2 0 6 / 1 3 1 — A SEMILINEAR ELLIPTIC PROBLEM — 5 Proof . — (i) Case (I) : $\int_{\partial\Omega}g\mid u\mid^p ds\leq 0$. We have

$$\lambda \int_{\Omega} f \mid u \mid^{q} dx = \parallel u \parallel 2H_{1} - \int_{\partial \Omega} g \mid u \mid^{p} ds > 0.$$

Case (II): $\int_{\partial\Omega} g \mid u \mid^p ds > 0$. We have

$$\parallel u \parallel 2H_1 - \lambda \int_{\Omega} f \mid u \mid^q dx - \int_{\partial \Omega} g \mid u \mid^p ds = 0$$

and

$$||u||_{H}^{2} > p \frac{-q}{2-q} \int_{\partial \Omega} g |u|^{p} ds.$$

Thus,

$$\lambda \int_{\Omega} f \mid u \mid^q dx = \quad \parallel u \parallel 2H_1 - \int_{\partial \Omega} g \mid u \mid^p ds > \frac{p-2}{2-q} \int_{\partial \Omega} g \mid u \mid^p ds > 0.$$

(ii) Since

$$(2-q) \| u \| 2H_1 - (p-q) \int_{\partial \Omega} g | u |^p ds = \langle \psi'_{\lambda}(u), u \rangle < 0.$$

It follows that $\int_{\partial\Omega} g \mid u \mid^p ds > 0$. This completes the proof . \square For each $u \in \mathbf{M}_{\lambda}^-$, we write

$$t_{\max} = (\frac{(2-q)\parallel u\parallel 2H_1}{(p-q)\int_{\partial\Omega}g\mid u\mid^p ds})1/(p-2) < 1.$$

Then we have the following lemma

Lemma 2 . 4 .

Let $p^* = line - p_{n-a}$ and

$$\lambda_{2} = \binom{\min u s - \lim - p^{2}}{p - q} \binom{\lim e - \min u s - q^{2}}{p - 2} \frac{2 - q}{p - 2} C_{p}^{\frac{p(2 - q)}{2 - p}} S_{p}^{-q} \parallel f \parallel_{Lp^{*}}^{-1}.$$

$$Then for$$

$$each \ u \in \mathbf{M}_{\lambda}^{-} \ and \ \lambda \in (0, \lambda_{2}), \ we \ have$$

(i) if $\int_{\Omega} f \mid u \mid^q dx \leq 0$, then $J_{\lambda}(u) = \sup_{t \geq 0} J_{\lambda}(tu) > 0$; (ii) if $\int_{\Omega} f \mid u \mid^q dx > 0$, then there is a unique $0 < t^+ = t^+(u) < t_{\text{max}}$ such that

$$t^+u \in \mathbf{M}_{\lambda}^+ and$$

$$J_{\lambda}(t^+u) = 0 \le t^{\mathrm{i}} \le_{t_{\mathrm{max}}}^{\mathrm{nf}} J_{\lambda}(tu), J_{\lambda}(u) = \sup_{\ge t^{\mathrm{t}_{\mathrm{max}}}} J_{\lambda}(tu).$$

Proof. Fix $u \in \mathbf{M}_{\lambda}^{-}$. Let

$$h(t) = t^{2-q} \| u \|_{H^{1}}^{2} - t^{p-q} \int_{\partial \Omega} g | u |^{p} ds \text{ for } t \ge 0.$$

We have $h(0)=0, h(t)\to -\infty$ as $t\to\infty, h(t)$ achieves its maximum at t_{\max} , increasing for $t\in[0,t_{\max})$ and decreasing for $t\in(t_{\max},\infty)$. Moreover,

$$\begin{split} h(t_{\max}) \\ &= (\frac{(2-q) \parallel u \parallel 2H_1}{(p-q) \int_{\partial \Omega} g \mid u \mid^p ds}) \frac{2-q}{p-2} \parallel u \parallel 2H_1 - (\frac{(2-q) \parallel u \parallel_{H^1}^2}{(p-q) \int_{\partial \Omega} g \mid u \mid^p ds}) \frac{p-q}{p-2} \int_{\partial \Omega} g \mid u \mid^p ds \\ &= \quad \parallel u \parallel qH_1[(\frac{2}{p}-\frac{q}{-q})\frac{2-q}{p-2} - (\frac{2}{p}-\frac{q}{-q})\frac{p-q}{p-2}](\frac{\parallel u \parallel_{H^1}^p}{\int_{\partial \Omega} g \mid u \mid^p ds}) \frac{2-q}{p-2} \end{split}$$

6 T.-F.WU EJDE-206/131 (i): $\int_{\Omega} f\mid u\mid^q dx \leq 0.$ There is a unique $t^->t_{\max}$ such that $h(t^-)=\lambda\int_{\Omega} f\mid u\mid^q dx$

$$\operatorname{and}h'(t^{-}) < 0.\operatorname{Now},$$

$$(2-q) \parallel t^{-}u \parallel 2H_{1} - (p-q) \int_{\partial\Omega} \mid t^{-}u \mid^{p} ds$$

$$= (t^{-})^{1+q} [(2-q)(t^{-})^{1-q} \parallel u \parallel 2H_{1} - (p-q)(t^{-})^{p-q-1} \int_{\partial\Omega} g \mid u \mid^{p} ds]$$

$$= (t^{-})^{1+q} h'(t^{-}) < 0,$$

and

$$\langle J'_{\lambda}(t^{-}u), t^{-}u \rangle$$

$$= (t^{-})^{2} \| u \|_{H^{1}}^{2} - (t^{-})^{q} \lambda \int_{\Omega} f | u |^{q} dx - (t^{-})^{p} \int_{\partial \Omega} g | u |^{p} ds$$

$$= (t^{-})^{q} [h(t^{-}) - \lambda \int_{\Omega} f | u |^{q} dx] = 0.$$

Thus $,t^-u\in \mathbf{M}_\lambda^-$ or $t^-=1.$ Since for $t>t_{\max},$ we have

$$(2-q) \parallel tu \parallel_{H^{-1}}^{2} - (p-q) \int_{\partial \Omega} g \mid tu \mid^{p} ds < 0,$$

$$\frac{d^{2}}{dt^{2}} J_{\lambda}(tu) < 0,$$

$$\frac{d}{dt} J_{\lambda}(tu) = t \parallel u \parallel 2H_{1} - \lambda t^{q-1} \int_{\Omega} f \mid u \mid^{q} dx - t^{p-1} \int_{\partial \Omega} g \mid u \mid^{p} ds = 0 \quad \text{for} t = t^{-}.$$
 Thus, $J_{\lambda}(u) = \sup_{t \geq 0} J_{\lambda}(tu)$. Moreover,
$$J_{\lambda}(u) \geq J_{\lambda}(tu) \geq \frac{t^{2}}{2} \parallel u \parallel_{H^{-1}}^{2} - \frac{t^{p}}{p} \int_{\partial \Omega} g \mid u \mid^{p} ds \quad \text{forall} t \geq 0.$$

By routine computations , $g(t) = \frac{t^2}{2} \parallel u \parallel 2H_1 - \frac{t^p}{p} \int_{\partial\Omega} g \mid u \mid^p ds$ achieves its maximum at

$$t_0 = (\| u \| 2H_1 / \int_{\partial\Omega} g | u |^p ds)^{1/(p-2)}. \text{Thus},$$
$$J_{\lambda}(u) \ge p \frac{-2}{2p} (\frac{\| u \| pH_1}{\int_{\partial\Omega} g | u |^p ds}) \frac{2}{p-2} > 0.$$

(ii) :
$$\int_\Omega f\mid u\mid^q dx>0. \text{ By (} 2\ .\ 6\) \text{ and}$$

$$h(0)=0<\lambda\int_\Omega f\mid u\mid^q dx\leq \lambda\parallel f\parallel Lp^*S_p^q\parallel u\parallel_{H^1}^q$$

EJDE - 206 / 131 A SEMILINEAR ELLIPTIC PROBLEM 7 We have $t^+u \in \mathbf{M}_{\lambda}^+, t^-u \in \mathbf{M}_{\lambda}^-$, and $J_{\lambda}(t^-u) \geq J_{\lambda}(tu) \geq J_{\lambda}(t^+u)$ for each $t \in [t^+, t^-]$ and $J_{\lambda}(t^+u) \leq J_{\lambda}(tu)$ for each $t \in [0, t^+]$. Thus $t^- = 1$ and

$$J_{\lambda}(u) = \sup_{t>0} J_{\lambda}(tu), J_{\lambda}(t^{+}u) = 0 \le t^{i} \le_{t_{\max}}^{\text{nf}} J_{\lambda}(tu).$$

This completes the proof . $\hfill\square$ Next , we establish the existence of nontrivial nonnegative solutions for the equa - tion

$$-\Delta u + u_u =_= \lambda_0 f(x_{\text{on}}) \mid u \mid^{q} \partial_{\Omega}^{2u} \quad \text{in}\Omega,$$
 (2.7)

Associated with equation (2.7), we consider the energy functional

$$K_{\lambda}(u) = \frac{1}{2} \parallel u \parallel_{H}^{2} {}_{1} - \frac{\lambda}{q} \int_{\Omega} f \mid u \mid^{q} dx$$

and the minimization problem

$$\beta \lambda = \inf\{K_{\lambda}(u) : u \in \mathbf{N}_{\lambda}\},\$$

where $\mathbf{N}_{\lambda} = \{u \in H_0^1(\Omega) \setminus \{0\} : \langle K'_{\lambda}(u), u \rangle = 0\}$. Then we have the following result . **Theorem 2.5.** Suppose that $\lambda > 0$. Then equation (2.7) has a nontrivial nonneq-

ative s o lution v_{λ} with $K_{\lambda}(v_{\lambda}) = \beta \lambda < 0$.

Proof. First, we need to show that K_{λ} is bounded below on \mathbf{N}_{λ} and $\beta \lambda < 0$. Then

for
$$u \in \mathbf{N}_{\lambda}$$

$$||u|| 2H_1 = \lambda \int_{\Omega} f |u|^q dx \le \lambda ||f|| Lq^* S_p^{-\frac{q}{2}} ||u||_{H^1}^q.$$

where $p^* = p \frac{p}{-q}$ This implies

$$||u|| H^1 \le (\lambda ||f|| Lp^* S_p^{-\frac{q}{2}}) \frac{1}{2-q}.$$
 (2.8)

Hence,

$$K_{\lambda}(u) = \frac{1}{2} \| u \| H^{1} - \frac{\lambda}{q} \int_{\Omega} f | u |^{q} dx$$
$$= \left(\frac{1}{2} - \frac{1}{q}\right) \| u \|_{H^{1}}^{2}$$
$$\leq \left(\frac{1}{2} - \frac{1}{q}\right) (\lambda \| f \| Lp^{*}S_{p}^{-\frac{q}{2}}) \frac{1}{2 - q}$$

for all $u \in \mathbf{N}_{\lambda}$ and $\beta \lambda < 0$. Let $\{v_n\}$ be a minimizing sequence for K_{λ} on \mathbf{N}_{λ} . Then by (2.8) and the compact imbedding theorem, there exist a subsequence $\{v_n\}$ and v_{λ} in $H_0^1(\Omega)$ such that

$$v_n \rightharpoonup v_\lambda \quad \text{weaklyin} H_0^1(\Omega)$$

and

$$v_n \to v_\lambda \quad \text{stronglyin} L^q(\Omega).$$
 (2.9)

First , we claim that $\int_\Omega f\mid v_\lambda\mid^q dx>0.$ If not ,

$$K_{\lambda}(v_n) \ge \frac{1}{2} \| v_{\lambda} \| 2H_1 - \frac{\lambda}{q} \int_{\Omega} f | v_{\lambda} |^q dx + o(1) \ge \frac{1}{2} \| v_{\lambda} \|_{H^{-1}}^2 + o(1),$$

 $\begin{array}{ll} \mathbf{8} & \qquad \qquad \mathbf{T} \cdot \mathbf{-F} \cdot \mathbf{WU} \\ \text{this contradicts } K_{\lambda}(v_n) & \rightarrow \beta \lambda(\Omega) & < \quad 0 \text{ as } n \rightarrow \infty. \end{array}$ EJDE - 2 0 6 / 1 3 1

 $, \quad \int_{\Omega} f \mid v_{\lambda} \mid^{q} dx \quad > \quad 0.$

particular, v_{λ} equivalence – negationslash0. Now, we prove that $v_n \to v_{\lambda}$ strongly in $H_0^1(\Omega)$. Suppose otherwise, then $\|v_{\lambda}\| H^1 < \liminf_{n \to \infty} \|v_n\| H^1$

$$\parallel v_{\lambda} \parallel_{H}^{2} 1 - \lambda \int_{\Omega} f \mid v_{\lambda} \mid^{q} dx < \lim_{n \to \infty} \inf(\parallel v_{n} \parallel_{H}^{2} 1 - \lambda \int_{\Omega} f \mid v_{n} \mid^{q} dx) = 0.$$

Since $\int_{\Omega} f |v_{\lambda}|^q dx > 0$, there is a unique $t_0 \neq 1$ such that $t_0 v_{\lambda} \in \mathbf{N}_{\lambda}$. Thus,

$$t_0 v_n \rightharpoonup t_0 v_\lambda$$
 weaklyin $H_0^1(\Omega)$.

Moreover,

$$K_{\lambda}(t_0 v_{\lambda}) < K_{\lambda}(v_{\lambda}) < \lim_{n \to \infty} K_{\lambda}(v_n) = \beta \lambda,$$

which is a contradiction. Hence $v_n \to v_\lambda$ strongly in $H_0^1(\Omega)$. This implies $v_\lambda \in \mathbf{N}_\lambda$ and

$$K_{\lambda}(v_n) \to K_{\lambda}(v_{\lambda}) = \beta \lambda \quad \text{as } n \to \infty.$$

Since $K_{\lambda}(v_{\lambda}) = K_{\lambda}(||v_{\lambda}||)$ and $||v_{\lambda}|| \in \mathbf{N}_{\lambda}$, without loss of generality, we

assume that v_{λ} is a nontrivial nonnegative solution of equation (2.7). \square Then we have the following results.

(i)
$$\alpha_{\lambda} \leq \lambda_{\alpha}^{+} \leq \beta \lambda < 0$$
; Lemma2.6.

(ii) J_{λ} is coercive and bounded below on \mathbf{M}_{λ} for all $\lambda \in (0, p^{\frac{p-2}{q}}]$. Proof.) Let v_{λ} be a positive solution of equation (2.7) such that $K(v_{\lambda}) = \beta \lambda$. Since $v_{\lambda} \in C^2(\underline{\hspace{1cm}}\Omega)$. Then we have $\int_{\partial\Omega} g \mid v_{\lambda} \mid^p ds = 0$ and $v_{\lambda} \in \mathbf{M}_{\lambda}^+$. This implies

$$J_{\lambda}(v_{\lambda}) = \frac{1}{2} \parallel v_{\lambda} \parallel 2H_{1} - \frac{\lambda}{q} \int_{\Omega} f \mid v_{\lambda} \mid^{q} dx = \beta \lambda < 0$$

and so $\alpha_{\lambda} \leq \lambda_{\alpha}^{+} \leq \beta \lambda < 0$.

(ii) For $u \in \mathbf{M}_{\lambda}$, we have $\parallel u \parallel 2H_1 = \lambda \int_{\Omega} f \mid u \mid^q dx + \int_{\partial \Omega} g \mid u \mid^p ds$. Then by the H \ddot{o} lder and Young inequalities,

$$J_{\lambda}(u) = \frac{p-2}{2p} \| u \|_{H^{-1}}^2 - \lambda (p - q) \int_{\Omega} f | u |^q dx$$

3. Proof of Theorem 1.1

First, we will use the idea of Ni - Takagi [1 2] to get the following results. **Lemma 3.1.** For each $u \in \mathbf{M}_{\lambda}$, there exist $\epsilon > 0$ and a differentiable function $\xi : B(0; \epsilon) \subset H^1(\Omega) \to \mathbb{R}^+$ such that $\xi(0) = 1$, the function $\xi(v)(u - v) \in \mathbf{M}_{\lambda}$ and

$$\langle \xi'(0), v \rangle = \frac{2 \int_{\Omega} \nabla u \nabla v dx - \lambda q \int_{\Omega} f \mid u \mid^{q-2} uv dx - p \int_{\partial \Omega} g \mid u \mid^{p-2} uv ds}{(2-q) \parallel u \parallel 2H_1 - (p-q) \int_{\partial \Omega} g \mid u \mid^{p} ds}$$
(3.1)

for all $v \in H^1(\Omega)$. Proof. For $u \in \mathbf{M}_{\lambda}$, define a function $F : \mathbb{R} \times H^1(\Omega) \to \mathbb{R}$ by

$$F_{u}(\xi, w) = \langle J'_{\lambda}(\xi(u - w)), \xi(u - w) \rangle$$

$$= \xi^{2} \int_{\Omega} |\nabla(u - w)|^{2} + (u - w)^{2} dx - \xi^{q} \lambda \int_{\Omega} f |u - w|^{q} dx$$

$$-\xi^{p} \int_{\partial \Omega} g |u - w|^{p} ds.$$

$$Then F_{u}(1, 0) = \langle J'_{\lambda}(u), u \rangle = 0 \text{ and }$$

$$\frac{d}{d\xi} F_{u}(1, 0) = 2 \|u\|_{H^{-1}}^{2} - \lambda q \int_{\partial \Omega} f |u|^{q} dx - p \int_{\partial \Omega} g |u|^{p} ds$$

$$= (2 - q) \|u\| 2H_{1} - (p - q) \int_{\partial \Omega} g |u|^{p} ds \neq 0.$$

According to the implicit function theorem , there exist $\epsilon > 0$ and a differentiable function $\xi : B(0; \epsilon) \subset H^1(\Omega) \to \mathbb{R}$ such that $\xi(0) = 1$,

$$\langle \xi'(0), v \rangle = \frac{2 \int_{\Omega} \nabla u \nabla v dx - \lambda q \int_{\Omega} f \mid u \mid^{q-2} uv dx - p \int_{\partial \Omega} g \mid u \mid^{p-2} uv ds}{(2-q) \parallel u \parallel 2H_1 - (p-q) \int_{\partial \Omega} g \mid u \mid^p ds}$$

and

$$F_u(\xi(v), v) = 0 \quad \text{forall } v \in B(0; \epsilon)$$

which is equivalent to

$$\langle J'_{\lambda}(\xi(v)(u-v)), \xi(v)(u-v) \rangle = 0 \quad \text{forall } v \in B(0; \epsilon),$$

$$\text{that } is\xi(v)(u-v) \in \mathbf{M}_{\lambda}. \quad \Box$$

Lemma 3.2. For ea ch $u \in \mathbf{M}_{\lambda}^-$, the re exist $\epsilon > 0$ and a differentiable function $\xi^- : B(0; \epsilon) \subset H^1(\Omega) \to \mathbb{R}^+$ such that $\xi^-(0) = 1$, the function $\xi^-(v)(u-v) \in \mathbf{M}_{\lambda}^-$ and

$$\langle (\xi^{-})'(0), v \rangle = \frac{2 \int_{\Omega} \nabla u \nabla v dx - \lambda q \int_{\Omega} f \mid u \mid^{q-2} uv dx - p \int_{\partial \Omega} g \mid u \mid^{p-2} uv ds}{(2-q) \parallel u \parallel 2H_{1} - (p-q) \int_{\partial \Omega} q \mid u \mid^{p} ds}$$
(3.2)

for all $v \in H^1(\Omega)$.

Proof. Similar to the argument in Lemma 3 . 1 , there exist $\epsilon > 0$ and a differentiable function $\xi^- : B(0; \epsilon) \subset H^1(\Omega) \to \mathbb{R}$ such that $\xi^-(0) = 1$ and $\xi^-(v)(u-v) \in \mathbf{M}_{\lambda}$ for all $v \in B(0; \epsilon)$. Since

$$\langle \psi_{\lambda}'(u), u \rangle = (2 - q) \| u \|_{H^{-1}}^2 - (p - q) \int_{\partial \Omega} g | u |^p ds < 0.$$

EJDE - 2 0 6 / 1 3 1 Thus, by the continuity of the function ξ^- , we have

$$\langle \psi_{\lambda}'(\xi^{-}(v)(u-v)), \xi^{-}(v)(u-v) \rangle$$

$$= (2-q) \| \xi^{-}(v)(u-v) \| 2H_{1} - (p-q) \int_{\partial\Omega} g | \xi^{-}(v)(u-v) |^{p} ds < 0$$

if ϵ sufficiently small , this implies that $\xi^-(v)(u-v)\in \mathbf{M}_\lambda^-$. \square **Proposition 3 . 3 .** Let $\lambda_0 = \min \{\lambda_1, \lambda_2, line - p - minus_{p-q}^1\}$. Then for $\lambda \in (0, \lambda_0)$:

(i) There exists a minimizing s equence $\{u_n\} \subset \mathbf{M}_{\lambda}$ such that

$$J_{\lambda}(u_n) = \alpha_{\lambda} + o(1),$$

$$J'_{\lambda}(u_n) = o(1) \quad inH^*(\Omega);$$

there exists a minimizing s equence $\{u_n\} \subset \mathbf{M}_{\lambda}^-$ such that

$$J_{\lambda}(u_n) = \alpha_{\lambda}^- + o(1),$$

$$J_{\lambda}'(u_n) = o(1) \quad inH^*(\Omega).$$

(i) By Lemma 2.6 (ii) and the Ekeland variational principle [7], there exists a minimizing sequence $\{u_n\} \subset \mathbf{M}_{\lambda}$ such that

$$J_{\lambda}(u_n) < \alpha_{\lambda} + \frac{1}{n} \tag{3.3}$$

$$J_{\lambda}(u_n) < J_{\lambda}(w) + \frac{1}{n} \parallel w - u_n \parallel H^1 \quad \text{foreach} w \in \mathbf{M}_{\lambda}.$$
 (3.4)

By taking n large, from Lemma 2.6 (i), we have

$$J_{\lambda}(u_n) = \langle (\alpha \frac{1}{2}_{\lambda} - H^1 - \frac{1}{p_{\frac{1}{2}}^{-1}} | (\frac{1}{q} - \frac{p}{1}) \lambda \int_{\Omega} f |u_n|^q dx$$
 (3.5)

This implies

$$|| f || Lp^* S_p^q || u_n ||_{H^1}^q \ge \int_{\Omega} f |u_n|^q dx > \frac{-pq}{2\lambda(p-q)} \beta \lambda > 0.$$
 (3.6)

Consequently, $u_n \neq 0$ and putting together (3.5), (3.6) and the H \ddot{o} lder inequality, we obtain

$$||u_n||H^1 > [\frac{-pq}{2\lambda(p-q)}\beta\lambda^{S-q}||f|| - L_{p*}^1]1/q$$
 (3.7)

$$||u_n||H^1 < \left[\frac{2(p-q)}{(p-2)q}||f||Lp^*S_p^q\right]1/(2-q)$$
 (3.8)

Now, we show that

$$\parallel J_{\lambda}'(u_n) \parallel H - 1 \to 0 \quad \text{as } n \to \infty.$$

Applying Lemma 3. 1 with u_n to obtain the functions $\xi_n: B(0;\epsilon_n) \to \mathbb{R}^+$ for some $\epsilon_n > 0$, such that $\xi_n(w)(u_n - w) \in \mathbf{M}_{\lambda}$. Choose $0 < \rho < \epsilon_n$. Let $u \in H^1(\Omega)$ with uequivalence-negations lash 0 and let $w_{\rho} = line-rho|_{u|H^1}^u$. We set $\eta_{\rho} = \xi_n(w_{\rho})(u_n - w_{\rho})$ w_{ρ}). Since $\eta_{\rho} \in \mathbf{M}_{\lambda}$, we deduce from (3 . 4) that

$$J_{\lambda}(\eta_{\rho}) - J_{\lambda}(u_n) \ge -\frac{1}{n} \parallel \eta_{\rho} - u_n \parallel H^1$$

 $EJDE - 2\ 0\ 6\ /\ 1\ 3\ 1$ $\,$ A SEMILINEAR ELLIPTIC PROBLEM $\,$ 1 1 $\,$ and by the mean value theorem , we have

$$\langle J_{\lambda}'(u_n), \eta_{\rho} - u_n \rangle + o(\| \eta_{\rho} - u_n \| H^1) \ge -\frac{1}{n} \| \eta_{\rho} - u_n \| H^1.$$

Thus

$$\langle J_{\lambda}'(u_{n}), -w_{\rho} \rangle + (\xi_{n}(w_{\rho}) - 1) \langle J_{\lambda}'(u_{n}), (u_{n} - w_{\rho}) \rangle$$

$$\geq -\frac{1}{n} \| \eta_{\rho} - u_{n} \| H^{1} + o(\| \eta_{\rho} - u_{n} \| H^{1}).$$
(3.9)

Since $\xi_n(w_\rho)(u_n-w_\rho)\in \mathbf{M}_\lambda$ and (3.9) it follows that

$$-\rho \langle J_{\lambda}'(u_n), \frac{u}{\parallel u \parallel H^1} \rangle + (\xi_n(w_\rho) - 1) \langle J_{\lambda}'(u_n) - J_{\lambda}'(\eta_\rho), (u_n - w_\rho) \rangle$$

$$\geq -\frac{1}{n} \parallel \eta_\rho - u_n \parallel H^1 + o(\parallel \eta_\rho - u_n \parallel H^1).$$

Thus,

$$\langle J_{\lambda}'(u_{n}), \frac{u}{\parallel u \parallel H^{1}} \rangle \leq \rho_{-\langle J_{\lambda}'(u_{n}) - J_{\lambda}'(\eta_{\rho})}^{1/\langle J_{\lambda}'(u_{n}) - J_{\lambda}'(\eta_{\rho})} + \rho_{-\langle u_{n} \parallel H^{1}\rangle}^{-\langle u_{n} \parallel H^{1}\rangle}, (u_{n} - w_{\rho}) \rangle. \quad (3.10)$$
Since $\parallel \eta_{\rho} - u_{n} \parallel H^{1} \leq \rho \parallel \xi_{n}(w_{\rho}) \parallel + \parallel \xi_{n}(w_{\rho}) - 1 \parallel \parallel u_{n} \parallel H^{1}$ and
$$\lim_{\rho \to 0} \frac{\parallel \xi_{n}(w_{\rho}) - 1 \parallel}{\rho} \leq \parallel \xi_{n}'(0) \parallel,$$

if we let $\rho \to 0$ in (3 . 1 0) for a fixed n, then by (3 . 8) we can find a constant C > 0, independent of ρ , such that

$$\langle J'_{\lambda}(u_n), \frac{u}{\parallel u \parallel H^1} \rangle \leq \frac{C}{n} (1 + \parallel \xi'_n(0) \parallel).$$

The proof will be complete once we show that $\parallel \xi_n'(0) \parallel$ is uniformly bounded in n. By (3 , 1) , (3 , 8) and the H \ddot{o} lder inequality , we have

$$\langle \xi_n'(0), v \rangle \leq \frac{b \parallel v \parallel H^1}{\mid (2-q) \parallel u_n \parallel H^1 - (p-q) \int_{\partial \Omega} g \mid u_n \mid^p ds \mid} \quad \text{for some } b > 0.$$

We only need to show that

$$|(2-q)| u_n ||H^1 - (p-q) \int_{\partial\Omega} g |u_n|^p ds |> c$$
 (3.11)

for some c > 0 and n large enough . We argue by contradiction . Assume that there exists a subsequence $\{u_n\}$, we have

$$(2-q) \parallel u_n \parallel H^1 - (p-q) \int_{\partial \Omega} g \mid u_n \mid^p ds = o(1). \tag{3.12}$$

Combining (3 . 1 2) with (3 . 7) , we can find a suitable constant d>0 such that $\int_{\partial\Omega}g\mid u_n\mid^p ds\geq d$ for n sufficiently large . (3 . 1 3) In addition (3 . 1 2) , and the fact that $u_n\in\mathbf{M}_\lambda$ also give

$$\lambda \int_{\Omega} f \mid u_n \mid^q dx = \parallel u_n \parallel_{H \ 1}^2 - \int_{\partial \Omega} g \mid u_n \mid^p ds = p \frac{-2}{2-q} \int_{\partial \Omega} g \mid u_n \mid^p ds + o(1)$$

EJDE - 2 0 6 / 1 3 1 A SEMILINEAR ELLIPTIC PROBLEM 1 3 Thus

$$J_{\lambda}(u_{n}) = \frac{1}{2} \| u_{n} \|_{H^{-1}}^{2} - \frac{\lambda}{q} \int_{\Omega} f | u_{n} |^{q} dx - \underbrace{\qquad \qquad p}_{1} \int_{\partial \Omega} g | u_{n} |^{p} ds$$

$$= (\frac{1}{2} - \underbrace{\qquad \qquad p}_{1}) \int_{\partial \Omega} g | u_{n} |^{p} ds + o(1)$$

$$= (\frac{1}{2} - \underbrace{\qquad \qquad p}_{1}) \int_{\partial \Omega} g | 0_{u}^{+} |^{p} ds \quad \text{as} n \to \infty,$$

this contradicts $J_{\lambda}(u_n) \to \alpha_{\lambda} < 0$ as $n \to \infty$. Moreover,

$$o(1) = \langle J'_{\lambda}(u_n), \phi \rangle = \langle J'_{\lambda}(u_0), \phi \rangle + o(1) \quad \text{forall} \phi \in H^1(\Omega).$$

Thus, $0_u^+ \in \mathbf{M}_{\lambda}$ is a nonzero solution of equation (1.1) and $J_{\lambda}(0_u^+) \geq \alpha_{\lambda}$. Now we prove that $u_n \to 0_u^+$ strongly in $H^1(\Omega)$. Suppose otherwise, then $\parallel 0_u^+ \parallel H^1 = 0$ lim $\inf_{n \to \infty} \parallel u_n \parallel H^1$ and so

$$\| 0_{u}^{+} \|_{H^{1}}^{2} - \lambda \int_{\Omega} f | 0_{u}^{+} |^{q} dx - \int_{\partial \Omega} g | 0_{u}^{+} |^{p} ds$$

$$< \lim_{n \to \infty} \inf(\| u_{n} \| 2H_{1} - \lambda \int_{\Omega} f | u_{n} |^{q} dx - \int_{\partial \Omega} g | u_{n} |^{p} ds) = 0,$$

this contradicts $0_u^+ \in \mathbf{M}_{\lambda}$. Hence $u_n \to 0_u^+$ strongly in $H^1(\Omega)$ and

$$J_{\lambda}(u_n) \to J_{\lambda}(0_u^+) = \alpha_{\lambda} \quad \text{as } n \to \infty.$$

Moreover , we have $0_u^+ \in \mathbf{M}_\lambda^+$. If not , then $0_u^+ \in \mathbf{M}_\lambda^-$ and by Lemma 2 . 4 , there are unique t_0^+ and t_0^- such that $t_0^+0_u^+ \in \mathbf{M}_\lambda^+$ and $t_0^-0_u^+ \in \mathbf{M}_\lambda^-$. In particular , we have

$$t_0^+ < t_0^- = 1. \text{Since}$$

$$\frac{d}{dt} J_{\lambda}(t_0^+ 0_u^+) = 0 \quad \text{and} \quad \frac{d^2}{dt^2} J_{\lambda}(t_0^+ 0_u^+) > 0,$$

there exists $t_0^+ < \bar t \le t_0^-$ such that $J_\lambda(t_0^+0_u^+) < J_\lambda(\bar t 0_u^+)$. By Lemma 2 . 4 ,

$$J_{\lambda}(t_0^+ 0_u^+) < J_{\lambda}(\bar{t}0_u^+) \le J_{\lambda}(t_0^- 0_u^+) = J_{\lambda}(0_u^+),$$

which is a contradiction. Since $J_{\lambda}(0_u^+) = J_{\lambda}(|0_u^+|)$ and $|0_u^+| \in \mathbf{M}_{\lambda}^+$, by Lemma 2. 2 we may assume that 0_u^+ is a nontrivial nonnegative solution of equation (1.1). From Lemma 2.6 it follows that

$$0 > J_{\lambda}(0_u^+) \ge -\lambda \left(\frac{(p-q)(2-q)}{2pq}\right) (\parallel f \parallel Lp^*S_p^q) \frac{2}{2-q}$$

and so $J_{\lambda}(0^+_{\mu}) \to 0$ as $\lambda \to 0$.

Next, we establish the existence of a lo cal minimum for J_{λ} on \mathbf{M}_{λ}^- . Theorem 3.5. Let $\lambda_0 > 0$ as in Proposition 3.3. Then for $\lambda \in (0, \lambda_0)$ the functional J_{λ} has a minimizer u_0^- in \mathbf{M}_{λ}^- and satisfies

(i)
$$J_{\lambda}(u_0^-) = \alpha_{\lambda}^-$$
;

(ii) u_0^- is a nontrivial nonnegative s o lutio n of equation (1.1). Proof. By Proposition 3.3 (ii), there exists a minimizing sequence $\{u_n\}$ for J_{λ} on \mathbf{M}_{λ}^- such that

$$J_{\lambda}(u_n) = \alpha_{\lambda}^- + o(1)$$
 and $J'_{\lambda}(u_n) = o(1)$ in $H^*(\Omega)$.

14 T.-F.WU EJDE - 2 0 6 / 1 3 1 By Lemma 2 . 6 and the compact imbedding theorem , there exist a subsequence $\{u_n\}$ and $u_0^- \in H^1(\Omega)$ such that

$$u_n \to u_0^-$$
 weaklyin $H^1(\Omega)$,
 $u_n \to u_0^-$ stronglyin $L^p(\partial\Omega)$,
 $u_n \to u_0^-$ stronglyin $L^q(\Omega)$.

Since $(2-q) \parallel u_n \parallel_{H^1}^2 - (p-q) \int_{\partial\Omega} g \mid u_n \mid^p ds < 0$, by the Sobolev trace inequality there exists C>0 such that $\int_{\partial\Omega} g \mid u_n \mid^p ds > C$. Moreover,

$$o(1) = \langle J'_{\lambda}(u_n), \phi \rangle = \langle J'_{\lambda}(u_0), \phi \rangle + o(1) \quad \text{forall} \phi \in H^1(\Omega)$$

and

$$(2-q) \| u_0 \|_{H^{-1}}^2 - (p-q) \int_{\partial \Omega} g | u_0 |^p ds$$

$$\leq \lim_{n \to \infty} \inf((2-q) \| u_n \|_{H^{-1}}^2 - (p-q) \int_{\partial \Omega} g | u_n |^p ds) \leq 0.$$

Thus, $u_0^- \in \mathbf{M}_{\lambda}^-$ is a nonzero solution of equation (1.1). Now we prove that $u_n \to u_0^-$ strongly in $H^1(\Omega)$. Suppose otherwise, then $\parallel u_0^- \parallel H^1 < \liminf_{n \to \infty} \parallel u_n \parallel H^1$ and so

$$\| u_0^- \|_{H^{-1}}^2 - \lambda \int_{\Omega} f | u_0^- |^q dx - \int_{\partial \Omega} g | u_0^- |^p ds$$

$$< \lim_{n \to \infty} \inf(\| u_n \| 2H_1 - \lambda \int_{\Omega} f | u_n |^q dx - \int_{\partial \Omega} g | u_n |^p ds) = 0,$$

this contradicts $u_0^- \in \mathbf{M}_{\lambda}^-$. Hence $u_n \to u_0^-$ strongly in $H^1(\Omega)$. This implies

$$J_{\lambda}(u_n) \to J_{\lambda}(u_0^-) = \alpha_{\lambda}^- \quad \text{as} n \to \infty.$$

Since $J_{\lambda}(u_0^-) = J_{\lambda}(|u_0^-|)$ and $|u_0^-| \in \mathbf{M}_{\lambda}^-$, by Lemma 2 . 2 we may assume that u_0^- is a nontrivial nonnegative solution of equation (1.1). \square

Now , we complete the proof of Theorem 1 . 1 . $\;$ By Theorems 3 . 4 , 3 . 5 , we obtain

equation (1.1) has two nontrivial nonnegative solutions 0_u^+ and u_0^- such that $0_u^+ \in \mathbf{M}_{\lambda}^+$ and $u_0^- \in \mathbf{M}_{\lambda}^-$. Since $\mathbf{M}_{\lambda}^+ \cap \mathbf{M}_{\lambda}^- = \phi$, this implies that 0_u^+ and u_0^- are different. REFERENCES

- [1] Adimurthi , F . Pacella , and L . Yadava ; On the number of positive s olutions of s ome s emilinear Dirichlet problems in a bal l , Diff . Int . Equations 10 (6) (1 997) 1 1 57 1 1 70 .
- [2] A . Ambrosetti , J . Garcia Azorero and I . Peral ; Multiplicity results for s ome nonlinear el liptic equations , J . Funct . Anal . 1 37 (1996) 2 19 242 .
- [3] A . Ambrosetti , H . Brezis and G . Cerami ; Combined effects of concave and convex nonlinear ities in s ome el liptic pro b lems , J . Funct . Anal . 1 22 (1994) 519-543 .
- [4] M . Chipot , M . Chlebik , M . Fila and I . Shafrir ; Existence of positive so lutions of a semilinear

el liptic equation in \mathbb{R}^N_+ with a nonlinear boundary condition $\,$, J . Math . Anal . Appl . , 223 (1998)

$$429 - 471$$
 .

- [5] M . Chipot , I . Shafrir and M . Fila ; On the solutions to some el liptic equations with nonlinear boundary conditions , Adv . Diff . Eqns 1 (1) (1 996) 9 1 100 .
- [6] L . Damascelli , M . Grossi and F . Pacella ; Qualitative properties of positive s olutions of s emi linear el liptic equations in symmetric domains via the maximum principle , Annls Inst . H . Poincar é Analyse Non lin é aire 1 6 (1999) 631 652 .

 $\left[\begin{array}{c} 7 \end{array}\right] I \text{ . Ekeland ; } \textit{On the variational principle} \quad , \text{ J . Math . Anal . Appl . 17 (1 974) } 324-353 \text{ .} \\ \left[\begin{array}{c} 8 \end{array}\right] \text{ C . Flores , M . del Pino ; } \textit{Asymptotic behavior of best constants and extremals for trace embed dings in expanding domains} \quad , \text{Comm . Partial Diff . Eqns . 26 (1 1-1 2) (200 1) 2 189-22 10} \\ \end{array}$

[9] D. G. de Figueiredo, J. P. Gossez and P. Ubilla; Local superlinearity and sublinearity for $indefinite\ semilinear\ el\ liptic\ problems\ \ ,\ J\ .\ Funct\ .\ Anal\ .\ 1\ 99\ (\ 2003\)\ 452-467\ .\ \ [\ 10\]\ J\ .\ Garcia$ - Azorero , I . Peral and J . D . Rossi ; A convex - concave problem with a nonlinear boundary condition , J . Diff . Eqns . 1 98 (2004) 9 1 – 1 28 . $\,$ [1 1 $\,$] B . Hu ; Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary $\,$ condition $\,$, Diff . Integral Eqns . 7 (2) (1~994) , 30~1-3~1~3 . $\ [1~2~]$ W . M . Ni and I . Takagi ; On the shape of least energy so lution to a Neumann problem , Comm . Pure Appl . Math .44(1991)819endash — eight51. [1 3] T . Ouyang and J. Shi; Exact multiplicity of positive s olutions for a class of s emilinear problem II, J. Diff. Eqns. 158 (1999) 94-151. [14] D. Pierrotti and S. Terracini; problem with critical exponent and critical nonlinearity on the boundary , Comm . Partial Diff . Eqns. 20 (7-8) (1.995) 1.1.55-1.187 . [1.5] G . Tarantello ; On nonhomogeneous el liptic $involving\ critical\ Sobolev\ exponent\$, Ann . Inst . H . Poincar $\ \acute{e}\ Anal$. Non Lin $\ \acute{e}\ aire\ 9$ ($1\ 992$) 281-304. [16] S. Terraccini; Symmetry properties of positive s olutions to some el liptic equations with non - linear boundary conditions , Diff . Integral Eqns . 8 (1.995) 1.911-1.922 . [17] M . Tang; Exact multiplicity for semilinear el liptic Dirichlet problems involving concave and convex nonlinearities , Proc . Roy . Soc . Edinburgh Sect . A 1 33 (2003) 705 – 71 7 . [18] T . F . Wu; On s emilinear el liptic equations involving concave - convex nonlinearities and sign - changing $weight\ function$, J . Math . Anal . Appl . 3 18 (2006) 253-270 .

Tsung - Fang Wu

Department of Applied Mathematics , National University of Kaohsiung , Kaohsiung 8 1 1 $\,$

Taiwan