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A SEMILINEAR ELLIPTIC PROBLEM INVOLVING NONLINEAR
BOUNDARY CONDITION AND SIGN - CHANGING POTENTIAL
TSUNG - FANG WU
ABSTRACT . In this paper , we study the multiplicity of nontrivial nonnegative
solutions for a semilinear elliptic equation involving nonlinear boundary con -
dition and sign - changing potential . With the help of the Nehari manifold , we
prove that the semilinear elliptic equation :

~Au+u=A(z)|ul|"?u inQ,
ou
— p—2
— =g(x) |u u ondf)
5, = 9@) [u] 7
has at least two nontrivial nonnegative solutions for A is sufficiently small .
1. INTRODUCTION

In this paper , we consider the multiplicity of nontrivial nonnegative solutions for
the following semilinear elliptic equation

—Au+u=M(z)|u|T?u inQ,
Ou

o g(x) |u P72 u ondQ, (1.1)
where 1 < ¢ < 2 < p < % A > 0,Q is a bounded domain in RY with smooth
boundary , % is the outer normal derivative and f,g : -0 — R are contin-

uous functions which change sign in -2, Associated with (1. 1) , we consider the
energy

functional JxinH* (),

1 A
B =g luliy =5 [ rlufrde—— [ glupas

where ds is the measure on the boundary and || u || 2Hy = [, | Vu [* +u?dz. It is well
known that Jy is of C! in H'() and the solutions of equation (1. 1) are the critical
points of the energy functional Jy.

The fact that the number of solutions of equation ( 1. 1) is affected by the non -
linear boundary conditions has been the fo cus of a great deal of research in recent years
. Garcia - Azorero , Peral and Rossi [ 1 0 | have investigated (1. 1) when f=g=1.
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They found that there exist positive numbers Aq, Ao with A; < A, such that equa -
tion (1. 1) admits at least two positive solutions for A € (0, A1) and no positive solu -
tion exists for A > Ag. Also see Chipot - Chlebik - Fila - Shafrir [ 4 ] , Chipot - Shafrir
- Fila
[5], Flores - del Pino [ 8 ] , Hu [ 1 1], Pierrotti - Terracini [ 1 4 | and Terraccini | 1
6 | where problems similar to equation ( 1 . 1) have been studied .

The purpose of this paper is to consider the multiplicity of nontrivial nonnegative

solutions of equation ( 1. 1) with sign - changing potential . We prove that equation
(1. 1) has at least two nontrivial nonnegative solutions for X is sufficiently small .
Theorem 1 . 1. There exists Ao > 0 such that for X\ € (0,)\g), equation (1.1

) has at least two nontrivial nonnegative s o lutions .

Among the other interesting problems which are similar of equation (1. 1),
Ambro -
setti - Brezis - Cerami [ 3 ] have investigated the equation

“Au =Xy u L P don | u P 8522“ inQ, (1.2)

where 1 < g<2<p< % They proved that there exists Ag > 0 such that (1. 2)
admits at least two positive solutions for \ € (0, Ao), has a positive solution for
A = Ap, and no positive solution for A > A\g.  Actually , Adimurthi - Pacella - Yadava
[ 1], Damascelli - Grossi - Pacella [ 6 | , Ouyang - Shi [ 1 3] and Tang [ 1 7 ] proved
that there

exists A\g > 0 such that equation ( 1. 2 ) in the unit ball BV (0;1) has exactly two
positive solutions for A € (0, Ag), has exactly one positive solution for A = A and no
positive solution exists for A > Ag.  Generalizations of the result of equation ( 1. 2)
were done by Ambrosetti - Azorero - Peral [ 2 ], de Figueiredo - Gossez - Ubilla [ 9 |
and Wu [18].

This paper is organized as follows . In section 2 , we give some notation and pre -
liminaries . In section 3 , we prove that ( 1. 1) has at least two nontrivial nonnegative
solutions for A is sufficiently small .

2. NOTATION AND PRELIMINARIES
Throughout this section , we denote by S, C} the best Sobolev embedding and
trace constant for the operators H1(Q2) — LP(Q), H(Q) — LP(99), respectively . Now
, we consider the Nehari minimization problem : For A > 0,

ay =1inf{Jy(u) : u € My},
whereMy, = {u € H*(Q)\ {0} : (J§(u),u) = 0}.Define
vA) = 3w =l = [ Flultde= [ glupds,
Q o0
Thenforu € My,
Whtau) =2 ulfy = Aa [ flulde—p [ glulds
Q 89
Similarly to the method used in Tarantello [ 1 5], we split M into three parts :

MY = {u € M, : (¢} (u),u) > 0},
MS = {u € My : (¥} (u),u) = 0},
M; = {u € M, : (¢} (u),u) < 0}.

Then , we have the following results .
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Lemma 2 . 1. There exists A1 > 0 such that for ea ch X € (0,\1) we have
MS = ¢. Proof . We consider the following two cases .

Case (I):ue My and [,,g|ul?ds <0. We have

)\/f\u|qda:: Hu||2H1—/ g |ulP ds.
Q aQ
Thus ,

Whtaw) = 2wl =g [ flultde—p [ glulds
Q o0

=(2-q) HUII2Hl+(q—p)/8 glulPds>0
Q
andsouEMir.

Case (I1) :w € My and [y, 9| u [P ds > 0. Suppose that M} # ¢ for all A > 0. If
u € M()J\, then we have

0=<¢&(U),U>=2IIuH?Il—Aq/fIU\qu—p/ gl ulPds
Q o
:<2—q>uu||2H1—<p—q>/ gl ulPds.
o0

Thus ,

—q
||u||%“:p—/ glul?ds (2.1)
2—4q Joq

and

—2
A/f|u|wx=|\u||%,1—/ g|u|pds=p—/ glulds.  (22)
Q a0 2—4q Joa

Moreover ,
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Then I)(u) =0 for all u € M. Indeed ,
from (2. 1)and (2. 2) it follows that for u € M$ we have

pP—q

2(p—1) )
| 5

Iv(u) = K(p, q)(m
Q

u@—u—AKQWuwm

linefminusftﬂ)(pfl)/(p72) (minusflinefp% )
—q)-
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)i Joq 9 | u P ds <0. We have

/\/f|u|qu: Hu||2H1—/ glulds>o.
Q o9
Case (IT): [59 | u [P ds > 0. We have

||uH2H1—)\/f|u|qu—/ glulPds=0
Q o9

and

2 —q p
>p— ds.
(K57 p2—q/an|u| o

Thus ,

-2
)\/f|u\qu= ||u||2H1—/ g|u\Pds>L/ gl ulPds>o0.
Q 99 2—4q Jaoa
(ii ) Since

@-q)lul 2H1—<p—q>/mg|u|pds=<w;<u>7u> <o.

It follows that fBQ g | w|P ds > 0. This completes the proof . [ For each u € My, we
write

2—q) | u]2H ’
(P =) foo g |ulrds
Then we have the following lemma .

tmax = ( 1/(p— 2) < 1.

Lemma 2 . 4. Let p* = line — pp—q and
(2—q)
s —Line—p2s line—minus—a2s 2—g 2222 1
Ao = (Z?Zus mesp )(plfz minus—q )fpfgcp2 TSy f HLP* . Then for

each uw € M, and X € (0,\2), we have
(1) if [Joflul|fdx <0, then Jx(u)=sup,sqJa(tu) > 0;
(ii) if [oflul|?dx>0, then th ere is a unique 0 < t™ =t¥(u) < tyax such
that
tTu € M and

In(tTu)=0<t S{fm Ia(tu), Iy(u) = >sup I (tu).
_ttmax

Proof . Fix v € My . Let

h(t) =71 ||u||%,1—tp_‘1/8 g|ulPds fort>0.
Q

We have h(0) =0, h(f) — —ooast— oo,h(t) achieves its maximum at tpax,
increasing for ¢ € [0, tmax) and decreasing for t € (tmax, 00). Moreover |

h(tmax)

)

2—q)|ul2H, '2—¢q 2—q) [ ul? p—q

_ (2O Nul2H 27y oy (L ot [ gl as
(P—a) [oq9lulPds p—2 (P—q) [oqo|ulPds p—2 Joq

)
2-g2-q¢ 2-g P—q, lulfn ’"2-—¢
_ H _—q - 1 (T aq H
|l ¢H1[(» —q)p_2 (v —q)p_g] faﬂg‘u|pd5 p—2



6 T.-F.WU EIDE-206/131 (i): [, f|u|9de<0. Thereisa unique
t7 > tmax such that h(t™) = A [, f | u |7 dzx
andh/(t7) < 0.Now,

@—q) | tul 2H1—<pfq>/m|m|pds

= ()@ — ) () | || 2y — (p— g) ()P /

Io)
= () (t7) <0,

g lul”ds]
9]

and
(4t u), )
=Pl =) [ flurae—y [ glupas
= (f_)q[h(t_)—)\/gf L |? dz] = 0.

Thus ,t~u € My or t~ = 1. Since for ¢ > t,ax, we have

20 IIWH?H—(p—Q)/mgItu\”ds<0,

d2
@J)\(tu) <0,
%J,\(tu) — it 2H1—)\tq‘1/ﬂf lu \qu—tp—l/mgm Pds—=0 fort =t
Thus, Jx(u) = sup J (tu).Moreover,

t>0

2 P
In(u) > Ia(tu) > = || u |31 — —/ g|ulPds forallt > 0.
2 P Joo

By routine computations , g(t) = % | w| 2H, — % Jo0 9 | w [P ds achieves its maximum
at

to = (| u || 2Hy/ / g | |P ds)/ =2 Thus,
o0

—2 H ) 2
J,\(u)> Hqu 1

>po > 0.
2 fopglulPds p—2

(ii): [oflul9dz>0.By(2.6)and

W) =0 <A [ Flulde <3| £ LS
Q
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My, and Jy(t7w) > Ja(tu) > Ji(tTw) for each
tett,t7] and Jy(tTu) < Jy(tu) for each ¢ € [0,¢T]. Thus ,t~ =1 and

Jx(u) = sup Jy(tw), Jy(tTu) = 0 < ¢ S?:m I (tu).
>0

This completes the proof . [ Next , we establish the existence of nontrivial nonnegative
solutions for the equa -
tion

AU+ g == Ao f(2on) | |7 05" ing, (2.7)
Associated with equation ( 2. 7 ) , we consider the energy functional

1 A
Kotw) =g lulfra== [ flufrde

and the minimization problem

BA =inf{K)(u) : u € Ny},

where N = {u € H}(Q) \ {0} : (K{(u),u) = 0}. Then we have the following result .
Theorem 2 . 5 . Suppose that X\ > 0.  Then equation (2.7 ) has a nontrivial
nonneg -

ative s o lution vy with Ky(vy) = B < 0.

Proof . First , we need to show that K is bounded below on N and S\ < 0. Then

foru € Ny,

IIUII2H1:A/Qf\UquxSAIIfIILq*SF lu %,

where p* = p_lq This implies

lull HY < VL F I Ep™Sp *) 5 —

(2.8)

Hence ,

1 A
Kotw) = g lull 8 =2 [ f o

1 1)
=(§—a||u\|?{1
1 1) a1
<(=—>(\ Lp*S, 2)——
_(2 q( Il £l Lp™Sp )2_q

for all u € N, and SA < 0. Let {v,,} be a minimizing sequence for K on Ny. Then by
(2. 8) and the compact imbedding theorem , there exist a subsequence {v,} and
vy in H}(Q) such that

vp — vy weaklyinH} (Q)

and

vp, — vy stronglyinL9(2). (2.9)



First , we claim that [, f | vy |7 dz > 0. If not ,

1 A 1
Ka(on) 2 5 [l on 1201 = 2 [ floal?dao(1) 2 3 o [y 1 +o1),
Q
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this contradicts Ky (vn,) — BA(2) < 0asn— oo. Thus
. Joflox|®dz > 0. In
particular ,vy equivalence — negationslash0. Now , we prove that v, — v

strongly in H}(2). Suppose otherwise , then || vy || H < lim inf, oo || v, || H*
and so

Il v H%Il—)\/fha |7 de < lim inf(|| v, ||§{17)\/f|vn | dx) = 0.
Q n—oo Q
Since fQ f1oxl9dx >0, there is a unique to # 1 such that tgvy € Ny. Thus ,

tovn, — tovy  weaklyinHg (Q).

Moreover ,
K)\(tov)\) < K)\(?))\) < lim K)\(’Un) = ﬁ)\,
n— o0
which is a contradiction . Hence v,, — v) strongly in H&(Q) This implies vy € N and

Ky(vn) = Kx(vy) = A asn — oc.

Since Kx(vy) = Kx(||va]]) and |Jvx|| € Ny, without loss of generality , we
may

assume that vy is a nontrivial nonnegative solution of equation (2.7). [ Then we have
the following results .

(i) ax <AL <BA<O; Lemma2.6.

(ii) Jx is coe rcive and bounded below on My for all A € (O,p%]. Proof . (i
) Let vy be a positive solution of equation ( 2 . 7 ) such that K(vy) = BA.
Since vy € C%( Q). Then we have [, g | vx [P ds =0 and vy € M. This implies

1 A

JA(UA):§HUAI|2H175/flvxlqd$:l3>\<0
Q

andsoary S)\I < BA<O.

(ii ) For u € My, we have || u || 2H, =X [, f |u | dz+ [, 9 | u [’ ds. Then by the
H 6 lder and Young inequalities ,

—_92 —q)
@ =2 =202 [ flulrds
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3. PROOF OF THEOREM 1 . 1
First , we will use the idea of Ni - Takagi [ 1 2 ] to get the following results .
Lemma 3. 1. Foreach ué& My, there exist € >0 and a differentiable function
£:B(0;¢) C HY(Q) — RT such that £(0) =1, th e function £(v)(u —v) € My and

2 [oVuVudr —Aq [, f | u|97% wvdz —p [0 | u P72 uvds
2—q) lull2H1 = (p—q) [yo9 | ulrds

forall ve HYQ). Proof .  For u € My, define a function F : R x H!(Q) — R by

(€'(0),v) (3.1)

Fu(&w) = (J3(E(u — w)), &(u — w))
=¢? u—w)|? 4+(u—w)de — &9 u—w |?dr
=€ [ V=) P wpde = [ flu—wrd

ffp/ glu—wl?ds.
1)

ThenF,(1,0) = (J}(u),u) = Oand
d

TR0 =2l =g [ Flultds-p [ glupds
dg 00 00

—(2-q) ||u||2H1—<p—q>/mg|u|pds¢o.

According to the implicit function theorem , there exist ¢ > 0 and a differentiable
function £ : B(0;¢) C HY(Q)) — R such that £(0) = 1,

2 [oVuVudz — Aq [, f | u |97 wvde —p [0 | u [P72 uvds

(€'(0),v) 2—q) [ ull2Hy —(p—q) [yo9]ulrds

and

F,(¢{(v),v) =0 forallv € B(0;¢)
which is equivalent to
(JA(&(v)(u = v)),£(v)(u—v)) =0 forallv € B(0;¢),
thatis¢(v)(v —v) € My. O

Lemma 3 . 2. Foreach uc My, the re exist € >0 and a differentiable function
& : B(0;e) C HY(Q) — R such that £ (0) = 1, the function & (v)(u —v) € My
and

2 [ VuVudr — g [, f | u | wdr —p [5,9 | u P72 uvds
2—q) lull2H1 = (p—q) [po9 | ulrds

((€7)'(0),0) (3.2)
forall ve HY Q).

Proof . Similar to the argument in Lemma 3 . 1, there exist ¢ > 0 and a differentiable
function £~ : B(0;¢) C H'(2) — R such that £ (0) = 1 and £~ (v)(u — v) € M, for all
v € B(0;¢). Since

(W (u),u) = (2 - q) ||uHi,lf(pfq)/mgm\pdﬁo.
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have

(WA (0)(u =), & (v)(u—v))
=2-g ¢ @u-0)|2H - (p*Q)/mg [ & () (u—v) P ds <0

if € sufficiently small , this implies that £~ (v)(u —v) € M. 0O Proposition 3 . 3.

Let Ao = min {\1, Ao, line —p — minus;};m Then for A € (0,Ao) :

(i) There exists a minimizing s equence {u,} C My such that
Ia(un) = ax + o(1),
Ji(un) = o(1) inH*(Q);

(ii) there exists a minimizing s equence {un} C My such that
Ia(un) = ay +o(1),
J\(up) = o(1) inH*(Q).

Proof . (i)ByLemma 2. 6 (ii) and the Ekeland variational principle [ 7] , there
exists a minimizing sequence {u,} C M) such that

1
In(un) < ax+ I (3.3)

)

1
In(up) < Ix(w) + - | w—uy || H* foreachw € M. (3.4)

By taking n large , from Lemma 2 . 6 (i) , we have

1 1
) = <log, =T e =G DA [ Flu e (39

— < 2
»})

This implies

Lp*S¢ nq1>/ o 9de> —21 _px>o. 3.6
1SN 2> [ f Tun | de > 2o = (36)

Consequently ,u, # 0 and putting together (3. 5 ), (3. 6 ) and the H ¢ lder
inequality , we obtain

1 —pq S—q 71
| un | H* > [7%(])_ 7 BN F I =Lya]1/q (3.7)
1 2(]7 - q) * Qq
[ un || H* < [7@72)(] | f 1l Lp*Sp]1/(2 = q) (3.8)

Now , we show that

| J\(un) || H—1—0 asn— .

Applying Lemma 3 . 1 with u,, to obtain the functions &, : B(0;¢,) — RT for some
€, > 0, such that &, (w)(u, —w) € My. Choose 0 < p <e¢,. Letuc HY(Q) with
uequivalence—negationslash0 and let w, = linefrhOHZHHl‘ We set 0, = &, (w,) (un—
w,). Since 1, € My, we deduce from ( 3. 4 ) that

1
Iap) = Ia(un) 2 == |l mp = un || H'
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theorem , we have

1
(A ) 1y = wn) + o mp = || HY) = =~ | 1y = || H'.
Thus ,

<J§\(un), _wp> + (gn(wp) - 1)<J§\(un), (Un — wp)>
> L = N ol 1= | ) (39

Since &, (w,)(un —w,) € My and (3. 9) it follows that

u

—p{ I\ (un), ) + (En(wp) — DI\ (un) = JA(1p), (un — wp))
| wll H
1 1 1
2=l —un | H + ol np — un || H).
Thus ,
u D gy M (un) =I5 (1)
J(un), ) < p A n—w,)).  (3.10
AL B = Pt iy (2~ 0 10

Since ||, —un | H' < p || €a(wp) |+ || &nlwp) = 1[|]| un || H'and

p—0
if welet p—0in (3. 10 ) for a fixed n, then by ( 3. 8 ) we can find a constant
C > 0, independent of p, such that

U c
I\ (), ——=) < —(1 7 (0) 1)-
() T ) < 0+ €)1
The proof will be complete once we show that || £/,(0) || is uniformly bounded in n. By
(3.1),(3.8) and the H 6 lder inequality , we have

bl H
2=a) lun | H* = (p—a) [y09 | un [P ds |

We only need to show that

forsomeb > 0.

(€0(0),0) < |

|<2—q>||un||H1—<p—q>/mg|un|pds|>c (3.11)

for some ¢ > 0 and n large enough . We argue by contradiction . Assume that there
exists a subsequence {u, }, we have

Q=0 lu | H = (=) | glu, " ds=o(1). (3.12)
Combining (3. 12 ) with (3. 7 ), we can find a suitable constant d > 0 such that

Joq 9 | un [P ds >d  for n sufficiently large . (3. 13 ) In addition (3.12),
and the fact that u,, € M, also give

-2
)\/f\un\qu:HUnH?{l*/ g|un|”ds:p—/ g lun P ds +o(1)
Q 90 2—4q Jon
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1 A

) =g =2 [ Fluntde——% [ glu,pas
1
— G0 [ glun P ds+o()
o

1

~GG-—D [ glofpds an
oN

this contradicts Jy(un) = ay < 0 as n — oo. Moreover ,

o(1) = (J5(un), @) = (J5(uo), ) +o(1) forallp € H'(Q).

Thus ,0F € M, is a nonzero solution of equation (1. 1) and J,(0}) > «a). Now
we prove that u, — 0 strongly in H'(Q).  Suppose otherwise , then || 0 || H! <
lim inf,, o0 || un || H! and so

105 3= A [ F100 o= [ glog | ds
Q o0

< Tim inf(]| un | 2H1—)\/f|un |‘1d:v—/ g | un P ds) = 0,
this contradicts 0 € M. Hence u,, — 0 strongly in H*(Q) and

In(un) = Jn(0F) = ay  asn — occ.

Moreover , we have 0} € M{. If not , then 0} € M and by Lemma 2 . 4 , there are
unique tJ and ¢, such that ¢tJ0; € M} and t;0; € M. In particular , we have

td <ty = 1.Since
d? +0+
EJ)\(tO 0,) >0,

d
%J,\(tarO:) =0 and

there exists t§ <t < t; such that Jy(tJ0}) < Jy(*0}). By Lemma 2 . 4,

I(tF05) < N(F0F) < Ia(tg 0F) = Ja(0F),

which is a contradiction .  Since Jy(0) = J\(| 0% |) and |0F | € MY, by Lemma
2 . 2 we may assume that 0] is a nontrivial nonnegative solution of equation (1. 1) .
From Lemma 2 . 6 it follows that

(p—a)2-q)

0> Ja(0F) > —A( o

2
*Qq
(£ 1 L") 5=

and so Jy(0f) = 0as A — 0. O

Next , we establish the existence of a lo cal minimum for Jy on My . Theorem 3 . 5
Let Ao > 0 as in Proposition 3. 3 . Then for X € (0, o) the functional

Jx has a minimizer ug in M, and satisfies

(i) Ia(ug) = ay;
(ii) wq is a nontrivial nonnegative s o lutio n of equation (1. 1) . Proof. By

Proposition 3 . 3 (11 ), there exists a minimizing sequence {u,} for Jy on
M, such that

Ia(un) =ay +o(1) and Jy(u,) =o(1) inH*(Q).



14 T.-F.WU EJDE-206 /131 By Lemma 2 . 6 and the compact imbedding
theorem , there exist a subsequence {uy, }
and uy € H'(Q) such that

u, — uy  weaklyinH (),
Up — Uy stronglyinLP(052),
Up —> Uy stronglyinL?(2).

Since (2 —q) || un |31 —(0 — @) [50,9 | un [P ds < 0, by the Sobolev trace inequality
there exists C' > 0 such that [, g | u, [P ds > C. Moreover ,

o(1) = (J5(un), @) = (J3(uo),¢) + o(1) forallp € H'(Q)

and
(Q*Q)HUoH}qu*(P*Q)/ gl uo P ds
oN

< Tim inf((2— q) || un ||%{1—<pfq>/ g |t P ds) < 0.

Thus , u, € M] is a nonzero solution of equation (1. 1) . Now we prove that w, — ug
strongly in H'(2). Suppose otherwise , then || uy || H! < lim inf, o || u, || H and
S0

lug Iy =A [ £lug [1do= [ glug P ds
Q a0

< lim inf(]] wy, || 2H17)\/f|un |qdzf/ g |un [P ds)=0,
this contradicts u, € M} . Hence u,, — uy strongly in HY(€). This implies

Ia(un) = JIa(uy ) = o) asn — oo.

Since Jx(ugy ) = Ja(| ug |) and | vy |€ My, by Lemma 2 . 2 we may assume that u,
is a nontrivial nonnegative solution of equation (1.1). O
Now , we complete the proof of Theorem 1. 1. By Theorems 3.4 ,3 .5, we
obtain
equation ( 1. 1) has two nontrivial nonnegative solutions 0; and wu; such that 0} €
M and u; € M. Since M{ N M, = ¢, this implies that 0 and u, are different .
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