Electronic Journal of Differential Equations $\,$, Vol . 2008 (2008) , No . 28 , pp . 1 – 1 1 . ISSN : 1 72 - 6691 . URL : http : / / ejde . math . txstate . edu or http : / / ej de . math . unt . edu

ftp ejde . math . txstate . edu (login : ftp)

EXISTENCE RESULTS FOR IMPULSIVE EVOLUTION DIFFERENTIAL EQUATIONS WITH STATE - DEPENDENT DELAY

EDUARDO HERN $\acute{A}_{\rm NDEZ}$, RATHINASAMY SAKTHIVEL , SUELI TANAKA AKI Abstract . We study the existence of mild solution for impulsive evolution abstract differential equations with state - dependent delay . A concrete appli - cation to partial delayed differential equations is considered .

1. Introduction

In this work we discuss the existence of mild solutions for impulsive functional differential equations , with state - dependent delay , of the form

$$x'(t) = A(t)x(t) + f(t, x_{\rho(t, x_t)}), \quad t \in I = [0, a], \tag{1.1}$$

$$x_0 = \varphi \in \mathcal{B},\tag{1.2}$$

$$\Delta x(t_i) = I_i(x_{t_i}), \quad i = 1, 2, ..., n,$$
(1.2)

where A(t) : $\mathcal{D} \subset X \to X, t \in I$, is a family of closed linear operators defined on a common domain \mathcal{D} which is dense in a Banach space $(X, \| \cdot \|)$; the function x_s : $(-\infty, 0] \to X$, $x_s(\theta) = x(s+\theta)$, belongs to some abstract phase space \mathcal{B}

described axiomatically; $f: I \times \mathcal{B} \to X$, $\rho: I \times \mathcal{B} \to (-\infty, a]$, $I_i: \mathcal{B} \to X$,

i = 1, 2, ..., n, are appropriate functions; $0 < t_1 <t_n < a$ are prefixed points and the symbol $\Delta \xi(t)$ represents the j ump of the function ξ at t, which is defined

$$\text{by}\Delta\xi(t) = \xi(t^{+}) - \xi(t^{-}).$$

Various evolutionary processes from fields as diverse as physics , population dynamics , aeronautics , economics and engineering are characterized by the fact that they undergo abrupt changes of state at certain moments of time between intervals of continuous evolution . Because the duration of these changes are often negligible compared to the total duration of the process , such changes can be reasonably well - approximated as being instantaneous changes of state , or in the form of impulses . These process tend to more suitably modeled by impulsive differential equations , which allow for discontinuities in the evolution of the state . For more details on this theory and on its applications we refer to the monographs of Lakshmikantham et

 $2000\ Mathematics\ Subject\ Classification$. $\ 35\ R\ 10$, $34\ K\ 5$.

 $\label{eq:Keywords} \textit{Mey words and phrases} \; . \; \; \text{State - dependent delay ; abstract Cauchy problem ; partial functional - differential equations ; evolution operators .}$

 $circle copyrt-c2008~{\rm Texas~State~University~-San~Marcos~.}$ Submitted November 26 , 2007 . Published February 28 , 2008 .

1

 $_2$ E . Hern $\acute{A}_{\rm NDEZ,}$ R . SAKTHIVEL , S . TANAKA , EJDE - 2 8 / 2 8 al . [1 7] , and Samoilenko and Perestyuk [25] for the case of ordinary impulsive system and [1 8 , 23 , 24 , 1 5 , 1 6] for partial differential and partial functional differential equations with impulses .

On the other hand , functional differential equations with state - dependent delay appear frequently in applications as model of equations and for this reason the study of this type of equations has received great attention in the last years . There exists a extensive literature for ordinary state - dependent delay equations , see among another works , [2 , 1 , 3 , 4 , 6 , 7 , 8] . The study of partial differential equations with state dependent delay have been initiated recently , and concerning this matter we cite the pioneer works Rezounenko et al . [2 1] , Hern \acute{a} ndez el al . [1 1] and the papers

[10, 12, 13, 14, 22].

To the best of our knowledge , the study of the existence of solutions for systems described in the abstract form (1 . 1) – (1 . 2) is a untreated problem , and this fact , is the main motivation of this paper .

Throughout this paper $(X, \| \cdot \|)$ is a Banach space $\{A(t) : t \in \mathbb{R}\}$ is a family of closed linear operators defined on a common domain \mathcal{D} which is dense in X, and we assume that the linear non - autonomous system

$$u'(t) = A_{u(s)}^{(t)u(t)} = sX_{,} \le t \le a, \tag{1.4}$$

has an associated evolution family of operators $\{U(t,s): a \geq t \geq s \geq 0\}$. In the next definition $\mathcal{L}(X)$ is the space of bounded linear operator from X into X

endowed with the uniform convergence topology.

Definition 1.1. A family of linear operators $\{U(t,s): a \geq t \geq s \geq 0\} \subset \mathcal{L}(X)$ is called an evolution family of operators for (1,4) if the following conditions hold:

- (a) U(t,s)U(s,r)=U(t,r) and U(r,r)x=x for every $r\leq s\leq t$ and all $x\in X$; (b) For each $x\in X$ the function $(t,s)\to U(t,s)x$ is continuous and $U(t,s)\in \mathcal{L}(X)$ for every $t\geq s$; and
 - (c) For $s \leq t \leq a$, the function $(s,t] \to \mathcal{L}(X), t \to U(t,s)$ is differentiable with

$$\frac{\partial}{\partial t}U(t,s) = A(t)U(t,s).$$

In the sequel \widetilde{M} is a positive constant such that $\parallel U(t,s) \parallel \leq \widetilde{M}$ for every $t \geq s$, and we always assume that U(t,s) is a compact operator for every t > s. We refer the reader to [20] for additional details on evolution operator families .

To consider the impulsive condition (1 . 3) , it is convenient to introduce some additional concepts and notations . We say that a function $u:[\sigma,\tau]\to X$ is a normalized piecewise continuous function on $[\sigma,\tau]$ if u is piecewise continuous and left continuous on $(\sigma,\tau]$. We denote by $\mathcal{PC}([\sigma,\tau];X)$ the space formed by the normalized piecewise continuous functions from $[\sigma,\tau]$ into X. In particular , we introduce the space \mathcal{PC} formed by all functions $u:[0,a]\to X$ such that u is continuous at $t\neq t_i, u(t_i^-)=u(t_i)$ and $u(t_i^+)$ exists , for all i=1,...,n. In this paper we always assume that \mathcal{PC} is endowed with the norm $\|u\|\mathcal{PC}=\sup_{s\in I}\|u(s)\|$. It is clear that $(\mathcal{PC},\|\cdot\|\mathcal{PC})$ is a Banach space .

To simplify the notations , we put $t_0=0, t_{n+1}=a$ and for $u\in\mathcal{PC}$ we denote by $\tilde{u}_i\in C([t_i,t_{i+1}];X), i=0,1,...,n$, the function given by

$$\widetilde{u}_i(t) = \{ u(t), \\ u(t^+_i), \text{ for } \text{for } t^t \in \{ t^-_i, t_{i+1} \},$$
 (1.5)

Moreover, for $B \subseteq \mathcal{PC}$ we denote by $\widetilde{B}_{i,i} = 0, 1, ..., n$, the set $\widetilde{B}_{i} = \{\widetilde{u}_{i} : u \in B\}$.

Lemma 1.2. As $e \ t \ B \subseteq \mathcal{PC}$ is relatively compact in \mathcal{PC} if, and only if, the s $e \ t \ \widetilde{B}_i$

is relatively compact in $C([t_i, t_{i+1}]; X)$, for every i = 0, 1, ..., n.

In this work we will employ an axiomatic definition for the phase space $\mathcal B$ which is similar to those introduced in $[\,9\,]$. Specifically $,\mathcal B$ will be a linear space of functions mapping $(-\infty,0]$ into X endowed with a seminorm $\|\cdot\|\,\mathcal B$, and satisfies the following

conditions:

(A) If $x: (-\infty, \sigma + b] \to X, b > 0$, is such that $x|_{[\sigma, \sigma + b]} \in \mathcal{PC}([\sigma, \sigma + b] : X)$ and $x_{\sigma} \in \mathcal{B}$, then for every $t \in [\sigma, \sigma + b]$ the following conditions hold:

(i) x_t is in \mathcal{B} ,

(ii)
$$||x(t)|| \le H ||x_t|| \mathcal{B}$$
,

(i ii) $\|x_t\| \mathcal{B} \leq K(t-\sigma) \sup \{\|x(s)\| : \sigma \leq s \leq t\} + M(t-\sigma) \|x_\sigma\| \mathcal{B}$, where H > 0 is a constant $; K, M : [0, \infty) \to [1, \infty), K$ is continuous , M is lo cally bounded , and H, K, M are independent of $x(\cdot)$.

(B) The space \mathcal{B} is complete.

Example 1.3. Phase spaces $\mathcal{P}C_h(X), \mathcal{P}C_g^0(X)$. As usual, we say that $\psi: (-\infty,0] \to X$ is normalized piecewise continuous, if ψ is left continuous and the restriction of ψ to any interval [-r,0] is piecewise continuous.

Let $g:(-\infty,0]\to[1,\infty)$ be a continuous , nondecreasing function with g(0)=1, which satisfies the conditions (g - 1) , (g - 2) of [9] . This means that $\lim_{\theta\to-\infty}g(\theta)=\infty$

and that the function $\Lambda(t) := \sup_{-\infty < \theta \le -t} \frac{g(t+\theta)}{g(\theta)}$ is lo cally bounded for $t \ge 0$. Next, we modify slightly the definition of the spaces C_g, C_g^0 in [9]. We denote by $\mathcal{PC}_g(X)$ the space formed by the normalized piecewise continuous functions ψ such that $\frac{\psi}{g}$ is bounded on $(-\infty, 0]$ and by $\mathcal{PC}_g^0(X)$ the subspace of $\mathcal{PC}_g(X)$ formed by the functions ψ such that $\frac{\psi(\theta)}{g(\theta)} \to 0$ as $\theta \to -\infty$. It is easy to see that $\mathcal{PC}_g(X)$ and

functions ψ such that $\frac{\psi(\theta)}{g(\theta)} \to 0$ as $\theta \to -\infty$. It is easy to see that $\mathcal{PC}_g(X)$ and $\mathcal{PC}_g^0(X)$ endowed with the norm $\|\psi\|\mathcal{B} := \sup_{\theta \le 0} \frac{\|\psi(\theta)\|}{g(\theta)}$, are phase spaces in the sense considered in this work. Moreover, in these cases $K \equiv 1$.

Example 1.4. Phase space $\mathcal{PC}_r \times L^2(g,X)$. Let $1 \leq p < \infty$, $0 \leq r < \infty$ and $g(\cdot)$ be a Borel nonnegative measurable function on $(-\infty,r)$ which satisfies the conditions (g - 5) - (g - 6) in the terminology of [9]. Briefly, this means that $g(\cdot)$ is locally integrable on $(-\infty,-r)$ and that there exists a nonnegative and locally bounded function Λ on $(-\infty,0]$ such that $g(\xi+\theta) \leq \Lambda(\xi)g(\theta)$ for all $\xi \leq 0$ and $\theta \in (-\infty,-r) \setminus N_{\xi}$, where $N_{\xi} \subseteq (-\infty,-r)$ is a set with Lebesgue measure 0.

Let $\mathcal{B}:=\mathcal{PC}_r\times L^p(g;X), r\geq 0, p>1$, be the space formed of all classes of functions $\psi:(-\infty,0]\to X$ such that $\psi\mid_{[-r,\ 0]}\in\mathcal{PC}([-r,0],X),\ \psi(\cdot)$ is Lebesgue -measurable on $(-\infty,-r]$ and $g\mid\psi\mid^p$ is Lebesgue integrable on $(-\infty,-r]$. The semi-norm in $\parallel\cdot\parallel\mathcal{B}$ is defined by

$$\parallel \psi \parallel \mathcal{B} := \sup_{\epsilon_{\theta}[-r,]} 0] \quad \parallel \psi(\theta) \parallel \quad + (-\frac{r}{\infty}g(\theta) \parallel \psi(\theta) \parallel^p d\theta) 1/p.$$

Proceeding as in the proof of [9, Theorem 1.3.8] it follows that $\mathcal B$ is a phase space which satisfies the axioms $\mathbf A$ and $\mathbf B$. Moreover, for r=0 and p=2 this space coincides with $C_0 \times L^2(g,X), H=1$; $M(t)=\Lambda(-t)^{1/2}$ and K(t)=1+

$$\left(\int_{-t}^{0} g(\tau)d\tau\right)^{1/2} \text{for } t \ge 0.$$

EJDE - 28 / 28

Remark 1.5. In retarded functional differential equations without impulses, the axioms of the abstract phase space \mathcal{B} include the continuity of the function $t \to x_t$, see for instance [9]. Due to the impulsive effect, this property is not satisfied in impulsive delay systems and, for this reason, has been eliminated in our abstract description of \mathcal{B} .

The terminology and notations are those generally used in functional analysis. In particular, for Banach a space $(Z, \| \cdot \| Z)$, the notation $B_r(x, Z)$ stands for the closed ball with center at x and radius r > 0 in Z.

To prove some of our results , we use a fixed point Theorem which is referred in the Literature as Leray Schauder Alternative Theorem , see [5, Theorem 6.5.4].

Theorem 1.6. Let D be a convex subset of a Banach space X and assume that $0 \in D$. Let $G: D \to D$ be a completely continuous map. Then the map G has a fixed point in D or the s et $\{x \in D: x = \lambda G(x), 0 < \lambda < 1\}$ is unbounded.

In the next section we study the existence of mild solutions for the abstract system (1.1) - (1.2). In the last section an application is discussed.

2. Existence Results

To prove our results on the existence of mild solutions for the abstract Cauchy problem (1.1) – (1.2), we always assume that $\rho: I \times \mathcal{B} \to (-\infty, a]$ is continuous. In addition, we introduce the following conditions.

- (H 0) Let $\mathcal{BPC}(\varphi) = \{u : (-\infty, a] \to X; u_0 = \varphi, u \mid I \in \mathcal{PC}\}$. The function $t \to \varphi t$ is continuous from $\mathcal{R}(\rho^-) = \{\rho(s, x_s) : \rho(s, x_s) \leq 0, x \in \mathcal{BPC}(\varphi), s \in [0, a]\}$ into \mathcal{B} and there exists a continuous and bounded function $J^{\varphi} : \mathcal{R}(\rho^-) \to \mathcal{R}(\rho^-)$
 - $(0,\infty)$ such that $\| \varphi t \| \mathcal{B} \leq J^{\varphi}(t) \| \varphi \| \mathcal{B}$ for every $t \in \mathcal{R}(\rho^{-})$.
 - (H 1) The function $f: I \times \mathcal{B} \to X$ satisfies the following properties .
 - (a) The function $f(\cdot, \psi): I \to X$ is strongly measurable for every $\psi \in \mathcal{B}$.
 - (b) The function $f(t,\cdot): \mathcal{B} \to X$ is continuous for each $t \in I$.
 - (c) There exist an integrable function $m: I \to [0, \infty)$ and a continuous nondecreasing function $W: [0, \infty) \to (0, \infty)$ such that $||f(t, \psi)|| \le$

$$m(t)W(\parallel \psi \parallel \mathcal{B})$$
, forevery $(t, \psi) \in I \times \mathcal{B}$.

(H 2) The maps I_i are completely continuous and there are positive constants $c-j_i,$

j=1,2, such that $||I_i(\psi)|| \leq i_c^1 ||\psi|| \mathcal{B} + i_c^2, i=1,2,...,n$, for every $\psi \in \mathcal{B}$. (H3) The function $I_i : \mathcal{B} \to X$ is continuous and there are positive constants $L_i, i=1,2,...,n$, such that $||I_i(\psi 1) - I_i(\psi 2)|| \leq L_i ||\psi 1 - \psi 2|| \mathcal{B}$, for every

$$\psi_i \in \mathcal{B}, j = 1, 2, i = 1, 2, ..., n.$$

Remark 2.1. The condition (H 0) , is frequently verified by functions continuous and bounded . If , for instance , the space $\mathcal B$ verifies axiom C_2 in the nomenclature of [9], then there exists a constant L > 0 such that $\parallel \varphi \parallel \mathcal B \leq \operatorname{L} \sup_{\theta \leq 0} \parallel \varphi(\theta) \parallel$ for every $\varphi \in \mathcal B$ continuous and bounded , see [9, Proposition 7.1.1] for details. Consequently,

Consequently, $\parallel \varphi t \parallel \mathcal{B} \leq L^{\sup_{\theta \leq 0} \parallel \varphi(\theta) \parallel}_{\parallel \varphi \parallel \mathcal{B}} \parallel \varphi \parallel \mathcal{B} \text{ for every continuous and bounded function } \varphi \in \mathcal{B} \setminus \{0\}$ and every $t \leq 0$. We note that the spaces $C_r \times L^p(g; X), C_g^0(X)$ verify axiom C_2 , see [9, p. 10] and [9, p. 16] for details.

Remark 2.2. Let $\varphi \in \mathcal{B}$ and $t \leq 0$. The notation φt represents the function defined by $\varphi t(\theta) = \varphi(t+\theta)$. Consequently, if the function $x(\cdot)$ in axiom \mathbf{A} is such that $x_0 = \varphi$, then $x_t = \varphi t$. We also note that, in general, $\varphi telement-slash\mathcal{B}$. Consider for example the characteristic function $\mathcal{X}_{[-r,0]}, r > 0$, in the space $\mathbf{C_r} \times \mathbf{L^p}(\mathbf{g}; \mathbf{X})$.

 ${\tt EJDE}$ - 2 0 8 / 2 8 $\,$ EXISTENCE RESULTS $\,$ 5 In this paper , we adopt the following concept of mild solution .

Definition 2.3. A function $x : (-\infty, a] \to X$ is called a mild solution of the

abstract Cauchy problem (1.1) – (1.2) if $x_0 = \varphi, x_{\rho(s,x_s)} \in \mathcal{B}$ for every $s \in I$ and

$$x(t) = U(t,0)\varphi(0) + \int_0^t U(t,s)f(s,x_{\rho(s,x_s)})ds + \sum_{s \in I} U(t,t_i)I_i(x_{t_i}), \quad t \in I.$$

The next result is a consequence of the phase space axioms . **Lemma 2.4.** If $x:(-\infty,a]\to X$ is a function such that $x_0=\varphi$ and $x\mid I\in$

 $\mathcal{P}C(I:X)$, then

$$\parallel x_s \parallel \mathcal{B} \leq (M_a + J^{\varphi}) \parallel \varphi \parallel \mathcal{B} + K_a \sup\{\parallel x(\theta) \parallel; \theta \in [0, \max\{0, s\}]\}, \quad s \in \mathcal{R}(\rho^-) \cup I,$$

$$K_a = \sup_{t \in I} K(t).$$

where
$$J^{\varphi} = \sup_{t \in \mathcal{R}(\rho^{-})} J^{\varphi}(t), M_{a} = \sup_{t \in I} M(t)$$
 and

Remark 2.5. In the rest of this work, $y:(-\infty,a]\to X$ is the function defined by

$$y0 = \varphi$$
and $y(t) = U(t, 0)\varphi(0)$ for $t \in I$.

Now , we can prove our first existence result . Theorem ${\bf 2}$. ${\bf 6}$. Let conditions (H 0) – (H 3) be satisfied and assume that

$$1 > K_a^{\widetilde{M}}(\lim_{\xi \to \infty^+} \inf \frac{W(\xi)}{\xi} \int_0^a m(s)ds + \sum_{i=1}^{i=1} L_i).$$
 (2.1)

Then there exists a mild s o lution of (1.1) - (1.2). Proof. On the space $Y = \{u \in \mathcal{PC} : u(0) = \varphi(0)\}$ endowed with the uniform convergence norm $(\|\cdot\|\infty)$, we define the operator $\Gamma: Y \to Y$ defined by

$$\Gamma x(t) = U(t,0)\varphi(0) + \int_0^t U(t,s)f(s,\bar{x}_{\rho(s,\bar{x}_s)})ds + \sum_{s \mid t_i \leq t} U(t,t_i)I_i(\bar{x}_{t_i}), \quad t \in I,$$

where $\bar{x}:(-\infty,a]\to X$ is such that $\bar{x}_0=\varphi$ and $\bar{x}=x$ on I. From our assumptions , it is easy to see that $\Gamma x(\cdot)\in Y.$

Let $\bar{\varphi}: (-\infty, a] \to X$ be the extension of φ to $(-\infty, a]$ such that $\bar{\varphi}(\theta) = \varphi(0)$ on I and $\tilde{J}^{\varphi} = \sup \{J^{\varphi}(s) : s \in \mathcal{R}(\rho^{-})\}$. By using Lemma 2 . 4 , for r > 0 and

$$x^{r} \in B_{r}(\bar{\varphi} \mid I, Y) \text{we obtain}$$

$$\parallel \Gamma x^{r} - \varphi(0) \parallel$$

$$\leq (\widetilde{M} + 1)H \parallel \varphi \parallel \mathcal{B} + \widetilde{M} \int_{0}^{a} m(s)W(\parallel \neg xr_{\rho(s, \dots, x_{s}^{r})} \parallel \mathcal{B}) ds$$

$$n$$

$$+ \widetilde{M} \sum_{i} (L_{i} \parallel \neg x_{t_{i}} \parallel \mathcal{B} + \parallel I_{i}(0) \parallel)$$

$$i = 1$$

$$\leq (\widetilde{M} + 1)H \parallel \varphi \parallel \mathcal{B} + \widetilde{M} \int_{0}^{a} m(s)W((M_{a} + \widetilde{J}^{\varphi}) \parallel \varphi \parallel \mathcal{B} + K_{a} \sup_{\epsilon_{\theta}[0, a]} \parallel \overline{\qquad} x^{r}(\theta) \parallel) ds$$

$$n$$

$$+ \widetilde{M} \sum_{i} L_{i}(\parallel \neg x_{t_{i}} - \varphi \parallel \mathcal{B} + \parallel \varphi \parallel \mathcal{B} + \parallel I_{i}(0) \parallel)$$

$$i = 1$$

$$\leq (\widetilde{M} + 1)H \parallel \varphi \parallel \mathcal{B} + \widetilde{M}W((M_{a} + \widetilde{J}^{\varphi}) \parallel \varphi \parallel \mathcal{B} + K_{a}(r + \parallel \varphi(0) \parallel)) \int_{0}^{a} m(s) ds,$$

$$n$$

$$+ \widetilde{M} \sum_{i} L_{i}(K_{a}r + \parallel \varphi \parallel \mathcal{B} + \parallel I_{i}(0) \parallel)$$

$$i = 1$$

which from (2 . 1) implies that $\quad \parallel \Gamma x^r - \varphi(0) \parallel_{\infty} \leq r \text{ for } r \text{ large enough }.$

Let r > 0 be such that $\Gamma(B_r(\bar{\varphi} \mid I, Y)) \subset B_r(\bar{\varphi} \mid I, Y)$. Next, we will prove that $\Gamma(\cdot)$ is completely continuous from $B_r(\bar{\varphi} \mid I, Y)$ into $B_r(\bar{\varphi} \mid I, Y)$. To this end, we introduce the decomposition $\Gamma = \Gamma_1 + \Gamma_2$ where $(\Gamma_1 x)0 = \varphi, (\Gamma_2 x)0 = 0$, and

$$\Gamma_1 x(t) = U(t,0)\varphi(0) + \int_0^t U(t,s)f(s,\bar{x}_{\rho(s,\bar{x}_s)})ds, \quad t \in I$$

$$\Gamma_2 x(t) = \sum_i U(t,t_i)I_i(\bar{x}_{t_i}), \quad t \in I.$$

$$0 < t_i < t$$

To begin , we prove that the set $\Gamma_1(B_r(\bar{\varphi} \mid I, Y))(t) = \{\Gamma_1 x(t) : x \in B_r(\bar{\varphi} \mid I, Y)\}$ is relatively compact in X for every $t \in I$.

The case t=0 is obvious . Let $0<\varepsilon< t\le a$. If $x\in B_r(\bar{\varphi}\mid I,Y)$, from Lemma 2 . 4 follows that $\parallel \bar{x}_{\rho(t,\bar{x}_t)} \parallel \mathcal{B} \le r^* := (M_a + \widetilde{J}^\varphi) \parallel \varphi \parallel \mathcal{B} + K_a(r+\parallel \varphi(0)\parallel)$ which implies

$$\| \int_0^{\tau} U(\tau, s) f(s, \bar{x}_{\rho(s, \bar{x}_s)}) ds \| \leq r^{**} := \widetilde{M} W(r^*) \int_0^a m(s) ds, \quad \tau \in I.$$
 (2.2)

From the above inequality , we find that

$$\Gamma_1 x(t) = U(t,0)\varphi(0) + U(t,t-\varepsilon) \int_0^{t-\varepsilon} U(t-\varepsilon,s) f(s,\bar{x}_{\rho(s,\bar{x}_s)}) ds$$

$$+ \int_{t-\varepsilon}^t U(t,s) f(s,\bar{x}_{\rho(s,\bar{x}_s)}) ds$$

$$\in \{U(t,0)\varphi(0)\} + U(t,t-\varepsilon) B_{r^{**}}(0,X) + C_{\varepsilon},$$

where diam $(C_{\varepsilon}) \leq 2\widetilde{M}W(r^*) \int_{t-\varepsilon}^t m(s)ds \to 0$ as $\varepsilon \to 0$, which allows us to conclude that $\Gamma_1(B_r(\bar{\varphi} \mid I, Y))(t)$ is relatively compact in X.

Now , we prove that $\Gamma_1(B_r(\bar{\varphi} \mid I, Y))$ is equicontinuous on I. Let 0 < t < a and $\varepsilon > 0$. Since the set $\Gamma_1(B_r(\bar{\varphi} \mid I, Y))(t)$ is relatively compact compact in X, from the properties of the evolution family U(t,s), there exists $0 < \delta \le a - t$ such that

EJDE - 2 0 8 / 2 8 EXISTENCE RESULTS 7 $\parallel U(t+h,t)x-x \parallel < \varepsilon$, for every $x \in \Gamma_1(B_r(\bar{\varphi} \mid I,Y))(t)$ and all $0 < h < \delta$. Under these conditions, for $x \in B_r(\bar{\varphi} \mid I,Y)$ and $0 < h < \delta$ we obtain

$$\| \Gamma_1 x(t+h) - \Gamma_1 x(t) \| \leq \| U(t+h,0)\varphi(0) - U(t,0)\varphi(0) \|$$

$$+ \| (U(t+h,t) - I) \int_0^t U(t,s) f(s, \bar{x}_{\rho(s,\bar{x}_s)}) ds \|$$

$$+ \widetilde{M} \int_t^{t+h} m(s) W(r^*) ds$$

$$\leq 2\varepsilon + \widetilde{M} W(r^*) \int_t^{t+h} m(s) ds,$$

which proves that $\Gamma_1(B_r(\bar{\varphi} \mid I, Y))$ is right equicontinuous at $t \in (0, a)$. A simi - lar procedure shows that $\Gamma_1(B_r(\bar{\varphi} \mid I, Y))$ is right equicontinuous at zero and left equicontinuous at $t \in (0, a]$. Thus, the set $\Gamma_1(B_r(\bar{\varphi} \mid I, Y))$ is equicontinuous on I.

Using the same arguments as in [1 1 , Theorem 2 . 2] , it follows that Γ_1 is a continuous map , which complete the proof that Γ_1 is completely continuous . On the other hand , from the assumptions and the phase space axioms it follows that

$$\parallel \Gamma_2 x - \Gamma_2 y \parallel \infty \le K_a^{\widetilde{M}} \sum L_i \parallel x - y \parallel_{\infty}$$

$$i = 1$$

which proves that Γ_2 is a contraction on $B_r(\bar{\varphi} \mid I, Y)$ and that Γ is a condensing map

$$\operatorname{on} B_r(\bar{\varphi} \mid I, Y).$$

Finally , the existence of a mild solutions is a consequence of [$1\ 9$, Theorem $4\ .\ 3$. 2] .

The proof is complete . \square

In the next result $\mathcal{BPC}(\varphi)$ is the set introduced in assumption (H 0) . **Theorem 2.** 7. Let (H 0) - (H 2) be satisfied. If $\rho(t, x_t) \leq t$ for every $(t, x) \in I \times$

$$\mathcal{BPC}(\varphi), \mu = 1 - K_a^{\widetilde{M}} \sum_{i=1}^n c_i > 0$$
 and
$$K_a^{\widetilde{M}} \int_0^a m(s) ds < \int_C^\infty \frac{ds}{W(s)},$$

where

$$C = (M_a + J^{\varphi} + \widetilde{M}HK_a) \parallel \varphi \parallel \mathcal{B} + \frac{\widetilde{M}K_a}{\mu} \sum_{c}^{i=1} [i_c^1(M_a + \widetilde{M}HK_a) \parallel \varphi \parallel \mathcal{B} + i_c^2]$$

then there exists a mild so lution of (1.1) – (1.2). Proof. On the space $\mathcal{BPC} = \{u : (-\infty, a] \to X; u_0 = 0, u \mid I \in \mathcal{PC}\}$ provided with the sup - norm $\|\cdot\|_{\infty}$, we define the operator $\Gamma : \mathcal{BPC} \to \mathcal{BPC}$ by $(\Gamma u)0 = 0$ and

$$\Gamma x(t) = \int_0^t U(t,s) f(s,\bar{x}_{\rho(s,\bar{x}_s)}) ds + \sum_{\leq_0 t_i < t} U(t,t_i) I_i(\bar{x}_{t_i}), \quad t \in I,$$

where $\bar{x} = x + y$ on $(-\infty, a]$ and $y(\cdot)$ is the function defined in Remark 2 . 5 .

use Theorem 1 . 6 , we establish a priori estimates for the solutions of the integral equation $z=\lambda\Gamma z, \lambda\in(0,1)$. Let x^λ be a solution of $z=\lambda\Gamma z, \lambda\in(0,1)$. By using Lemma 2 . 4 , the notation $\alpha^\lambda(s)=\sup_{\theta\in[0,s]}\parallel x^\lambda(\theta)\parallel$, and the fact that $\rho(s,-(x^\lambda)_s)\leq$

8 E . HERN $cute{A}_{\mathrm{NDEZ},}$ R . Sakthivel , S . Tanaka , EJDE - 2 8 / 2 8 s, for each $s \in I$, we find that

$$\| x^{\lambda}(t) \| \leq \widetilde{M} \int_{0}^{t} m(s)W((M_{a} + J^{\varphi} + \widetilde{M}HK_{a}) \| \varphi \| \mathcal{B} + K_{a}\alpha^{\lambda}(s))ds$$

$$+ \widetilde{M} \sum_{\leq 0 t_{i} \leq t} i_{c}^{1}[(M_{a} + \widetilde{M}HK_{a}) \| \varphi \| \mathcal{B} + K_{a}\alpha^{\lambda}(t)] + \widetilde{M} \sum_{i=1}^{t} i_{c}^{2},$$

and so,

 $\alpha^{\lambda}(t) \leq \widetilde{M} \sum_{i=1}^{\infty} [i_c^1(M_a + \widetilde{M}HK_a) \parallel \varphi \parallel \mathcal{B} + i_c^2] + K_a^{\widetilde{M}} \sum_{i=1}^{\infty} i_c^1 \alpha^{\lambda}(t)$ $i = 1 \quad 0 < t_i \leq t$ $+ \widetilde{M} \int_0^t m(s) W((M_a + J^{\varphi} + \widetilde{M}HK_a) \parallel \varphi \parallel \mathcal{B} + K_a \alpha^{\lambda}(s)) ds,$

which implies

$$\alpha^{\lambda}(t) \leq \frac{\widetilde{M}}{\mu} \sum_{n=1}^{i=1} \left[i_{c}^{1}(M_{a} + \widetilde{M}HK_{a}) \parallel \varphi \parallel \mathcal{B} + i_{c}^{2} \right] + \frac{\widetilde{M}}{\mu} \int_{0}^{t} m(s)W((M_{a} + J^{\varphi} + \widetilde{M}HK_{a}) \parallel \varphi \parallel \mathcal{B} + K_{a}\alpha^{\lambda}(s)) ds,$$

for every $t \in [0, a]$. By defining $\xi^{\lambda}(t) = (M_a + J^{\varphi} + \widetilde{M}HK_a) \parallel \varphi \parallel \mathcal{B} + K_a\alpha^{\lambda}(t)$, we find that

$$\xi^{\lambda}(t) \leq (M_a + J^{\varphi} + \widetilde{M}HK_a) \parallel \varphi \parallel \mathcal{B} + \frac{\widetilde{M}K_a}{\mu} \sum_{n=1}^{i=1} [i_c^1(M_a + \widetilde{M}HK_a) \parallel \varphi \parallel \mathcal{B} + i_c^2] + \frac{\widetilde{M}K_a}{\mu} \int_0^t m(s)W(\xi^{\lambda}(s))ds.$$

Denoting by $\beta\lambda(t)$ the right hand side of the last inequality, if follows that

$$\beta_{\lambda}'(t) \leq \frac{\widetilde{M}K_a}{\mu} m(t) W(\beta \lambda(t))$$

and hence

$$\int_{\beta\lambda(0)=C}^{\beta\lambda(t)} \frac{ds}{W(s)} \le \frac{\widetilde{M}K_a}{\mu} \int_0^a m(s)ds < \int_C^\infty \frac{ds}{W(s)}$$

which implies that the set of functions $\{\beta\lambda(\cdot):\lambda\in(0,1)\}$ is bounded in $C(I,\mathbb{R})$. This show that the set $\{x^{\lambda}(\cdot):\lambda\in(0,1)\}$ is bounded in \mathcal{BPC} .

To prove that the map Γ is completely continuous , we consider the decomposition

$$\Gamma = \Gamma_1 + \Gamma_2 \text{where}(\Gamma_i x) 0 = 0, i = 1, 2, \text{ and}$$

$$\Gamma_1 x(t) = \int_0^t U(t, s) f(s, \bar{x}_{\rho(s, \bar{x}_s)}) ds, \quad t \in I,$$

$$\Gamma_2 x(t) = \sum_i U(t, t_i) I_i(\bar{x}_{t_i}), \quad t \in I.$$

$$0 < t_i < t$$

Proceeding as in the proof of Theorem 2 . 6 we can prove that Γ_1 is completely continuous . The continuity of Γ_2 can be proven using the phase space axioms .

EJDE-208/28 EXISTENCE RESULTS 9 To prove that Γ_2 is also completely continuous, we use Lemma 1 . 2 . For r > 0, $t \in [t_i, t_{i+1}] \cap (0, a], i \geq 1$, and $u \in B_r = B_r(0, \mathcal{BPC})$ we find that

$$\widetilde{\Gamma}_{2^u}(t) \in braceleftbt-braceex-$$

where $r^* := (M_a + \widetilde{M} H K_a) \parallel \varphi \parallel \mathcal{B} + K_a r$, which proves that $[\Gamma_{\widetilde{2}}(B_r)]i(t)$ is relatively compact in X for every $t \in [t_i, t_{i+1}]$, since the maps I_j are completely continuous . Moreover , using the compactness of the operators I_i and properties of the evolution family $U(\cdot)$, we can prove that $[\Gamma_{\widetilde{2}}(B_r)]i(t)$ is equicontinuous at t, for every $t \in [t_i, t_{i+1}]$ and each i = 1, 2, ..., n, which complete the proof that Γ_2 is completely continuous .

The existence of a mild solution is now a consequence of Theorem 1 . 6 . The proof is complete . $\ \square$

3. Applications

In this section we consider an application of our abstract results . Consider the partial differential equation

$$\frac{\partial u(t,\xi)}{\partial t} = + \frac{\partial^2 u(t,\xi)}{integral display - minus_{\partial \xi^2}^{t\infty} a} + sa_{-t)u(s}^{0} a_{-\rho_1(t)\rho_2(\int_0^{\pi}} a_2(\theta) \mid u(t,\theta) \mid^2 d\theta), \xi) ds$$

$$(3.1)$$

for $t \in I = [0, a], \xi \in [0, \pi]$. The above equation is subject to the conditions

$$u(t,0) = u(t,\pi) = 0, \quad t \ge 0,$$
 (3.2)

$$u(\tau, \xi) = \varphi(\tau, \xi), \quad \tau \le 0, 0 \le \xi \le \pi. \tag{3.3}$$

$$\Delta u(t_i, \xi) = -\frac{t_j}{\infty} \gamma_i(s - t_i) u(s, \xi) ds, \quad j = 1, 2, ..., n.$$
 (3.4)

To study this system, we consider the space $X = L^2([0,\pi])$ and the opera

tor $A:D(A)\subset X\to X$ given by Ax=x'' with $D(A):=\{x\in X:x''\in$

 $X, \quad x(0)=x(\pi)=0\}.$ It is well known that A is the infinitesimal generator of an analytic semigroup $(T(t))t\geq 0$ on X. Furthermore, A has discrete spectrum with eigenvalues $-n^2, \quad n\in \mathbb{N}$, and corresponding normalized eigenfunctions given by $z_n(\xi)=(\frac{2}{\pi})^{1/2}\sin{(n\xi)}.$ In addition, $\{z_n:n\in\mathbb{N}\}$ is an orthonormal basis of X and $T(t)x=\sum_{n=1}^{\infty}e^{-n^2t}\langle x,z_n\rangle z_n$ for $x\in X$ and $t\geq 0$. It follows from this representation that T(t) is compact for every t>0 and that $\|T(t)\| \leq e^{-t}$ for every

$$t \ge 0$$
.

On the domain D(A), we define the operators $A(t):D(A)\subset X\to X$ by $A(t)x(\xi)=Ax(\xi)+a_0(t,\xi)x(\xi)$. By assuming that $a_0(\cdot)$ is continuous and that $a_0(t,\xi)\leq -\delta_0(\delta_0>0)$ for every $t\in\mathbb{R},\xi\in[0,\pi]$, it follows that the system

$$u'(t) = A(t)u(t)$$
 $t \ge s$,
 $u(s) = x \in X$,

10 E. HERN $\acute{A}_{\rm NDEZ}$, R. SAKTHIVEL, S. TANAKA, EJDE - 2 8 / 2 8 has an associated evolution family given by $U(t,s)x(\xi) = [T(t-s)e^{Rt}{}_sa_0(\tau,\xi)d\tau_x](\xi)$. From this expression , it follows that U(t,s) is a compact linear operator and that $\parallel U(t,s) \parallel \leq e^{-(1+\delta_0)(t-s)}$ for every $t,s\in I$ with t>s.

Proposition 3. 1. Let $\mathcal{B} = \mathcal{PC}_0 \times L^2(g,X)$ and $\varphi \in \mathcal{B}$. Assume that condition (H 0) holds $,\rho i : [0,\infty) \to [0,\infty), i=1,2,$ are continuous and that the following conditions are verified.

- (a) The functions $a_i : \mathbb{R} \to \mathbb{R}$ are continuous and $L_f = (\int_{-\infty}^0 \frac{(a_1(s))^2}{g(s)} ds)^{1/2}$ is finite.
- (b) The functions γi : $\mathbb{R} \to \mathbb{R}, i=1,2,...,n,$ are continuous , bounded and

$$L_i := (\int_{-\infty}^{0} \frac{(\gamma i(s))^2}{g(s)} ds) 1/2 < \infty for every i = 1, 2, ..., n.$$

Then there exists a mild so lution of (3.1) - (3.3). Proof. From the assumptions, we have that

$$f(t,\psi)(\xi) = integral display - minus_{\infty}^{0} a_{1}(s)\psi(s,\xi)ds,$$
$$\rho(s,\psi) = s - \rho 1(s)\rho 2(\int_{0}^{\pi} a_{2}(\theta) \mid \psi(0,\xi) \mid^{2} d\theta),$$

$$I_i(\psi)(\xi) = integral display - minus_{\infty}^0 \gamma_i(s) \psi(s, \xi) ds, \quad i = 1, 2, ..., n,$$

are well defined functions , which permit to transform system (3.1) – (3.3) into the abstract system (1.1) – (1.2). Moreover , the functions f, I_i are bounded linear oper - ator , $\parallel f \parallel \leq L_1$ and $\parallel I_i \parallel \leq L_i$ for every i=1,2,...n. Now , the existence of a mild solutions can be deduced from a direct application of Theorem 2.7. The proof is

complete . $\ \square$

From Remark 2 . 1 we have the following result . .

Corollary 3.2. Let $\varphi \in \mathcal{B}$ be continuous and bounded. Then there exists a mild so lutio n of (3.1) - (3.3) on I.

 ${f Acknowledgements}$. The authors are grateful to the anonymous referees for their comments and suggestions .

References

- [1] Aiello , Walter G . ; Freedman , H . I . ; Wu , J . ; Analysis of a model representing stage structured population growth with state dependent t ime delay . $SIAM\ J$. Appl . Math . 52 (3) (1 992) , 855 869 .
- [2] Arino , Ovide ; Boushaba , Khalid ; Boussouar , Ahmed A mathematical model of the dynamics of the phytoplankton nutrient system . Spatial heterogeneity in ecological models (Alcal de Henares , 1 998) . Nonlinear Analysis RWA . 1 (1) (2000) , 69 87 .
- [3] Cao , Yulin ; Fan , Jiangping ; Gard , Thomas C . ; The effects of state dependent t ime delay on a stage structured population growth model . Nonlinear Analysis TMA . , 1 9 (2) (1 992) , 95 105 . [4] Alexander Domoshnitsky , Michael Drakhlin and Elena Litsyn ; On equations with delay de pending on solution . Nonlinear Analysis TMA . , 49 (5) (2002) , 689 70 1 .
 - [5] Granas , A . ; Dugundji , J . ; Fixed Point Theory . Springer Verlag , New York , 2003 .
- [6] Hartung , Ferenc , Linearized stability in periodic functional differential equations with state dependent delays . J . Comput . Appl . Math . , 1 74 (2) (2005) , 20 1 2 1 1 .
- [7] Hartung , Ferenc ; Herdman , Terry L . ; Turi , Janos ; Parameter identification in classes of neutral differential equations with state dependent delays . Nonlinear Analysis TMA . Ser . A : Theory Methods , 39 (3) (2000) , 305-325 .

EJDE - 2 0 8 / 2 8 EXISTENCE RESULTS 1 1

[8] Hartung , Ferenc ; Turi , Janos ; Identification of parameters in delay equations with state -dependent delays . Nonlinear Analysis TMA . , 29 ($1\,1$) ($1\,997$) , $1\,303$ - $1\,3\,18$.

[9] Hino , Yoshiyuki ; Murakami , Satoru ; Naito , Toshiki ; Functional - differential equations with infinite delay . Lecture Notes in Mathematics , 1473 . Springer - Verlag , Berlin , 1 991 . [10] Hern \acute{a} ndez , E ; Mark A . Mckibben . ; On state - dependent delay partial neutral functional differential equations . Appl . math . Comput . 186 (1) (2006) , 294 - 30 1 . [1 1] Hern \acute{a} ndez , E ; Prokopczyk , A ; Ladeira , Luiz ; A note on partial functional differential equa - t ions with state - dependent delay . Nonlinear Analysis : Real World Applications , 7 (2006) , 5 10 - 5 1 9 . [1 2] Hern \acute{a} ndez , E ; Mallika Arjunan , A . Anguraj ; Existence Results for an Impulsive Neutral Functional Differential Equation with State - Dependent Delay . Appl . Anal . , 86 (7) (2007) , 86 1 - 872

[1 3] Hern '\(\delta\) ndez , E ; Existence of Solutions for a Second order Abstract Functional Differential Equation with State - Dependent Delay . Electronic Journal of Differential Equations , (2007) , No . 2 l pp . 1 - 10 . $\,$ [14] Hern $\,$ $\,$ $\,$ dez , E ; M . Pierri and G . Goncalves . ; Existence results for an impulsive abstract partial differential equation with state - dependent delay . Comput . Appl . Math . , 52 (2006) , 41 1 - 420 . [1 5] Hern \acute{a} ndez , Eduardo ; Henriquez , Hernan R ; Impulsive partial neutral differential equations , Appl . Math . Lett . , 19 (3) (2006) , 2 1 5 - 222 . [1 6] Hern \acute{a} ndez , Eduardo ; Henriquez , Hernan R ; Marco Rabello ; Existence of solutions for a class of impulsive partial neutral functional differential equations , J. Math. Anal. Appl. , 33 1 (2) 2007), $1\ 1\ 35 - 1\ 1\ 58$. [17] V. Lakshmi k — a ntham, D. D. Bainov, and P. S. Simeonov Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. [18] Liu, James H.; Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Systems 6 (1) (1999), 77 - 85. [19] Martin, R. H., Nonlinear Operators and Differential Equations in Banach Spaces, Robert E. Krieger Publ. Co., Florida, 1987. [20] Pazy, A.; Semigroups of $linear\ operators\ and\ applications\ to\ partial\ differential\ equations\ . \qquad Applied\ Mathematical\ Sciences\ ,$ 44 . Springer - Verlag , New York - Berlin , 1 983 . [21] Rezounenko , Alexander V . ; Wu , Jianhong ; A non - local PDE model for population dynamics with state - selective delay: Local theory and global attractors , J . Comput . Appl . Math . $\,$, 1 90 $\,$ (1 - 2) (2006) , 99 - 1 1 3 . $\,$ [22] Alexander V . Rezounenko ; Partial differential equations with discrete and distributed state - dependent delays , J . Math . Anal . Appl . , 326 (2) (2007) , 103 1 - 1045 . [23] Rogovchenko , Yuri V . ; Impulsive evolution systems: main results and new trends, Dynam. Contin . Discrete Impuls . Systems , 3 (1) (1 997) , 57 - 88 . [24] Rogovchenko , Yuri V . ; Nonlinear impulse evolution systems and applications to population models , J. Math. Anal. Appl. , 207 (2) (1997) , 300 - 3 1 5 . [25] A. M. Samoilenko and N. A. Perestyuk; Impulsive Differential Equations, World Scientific, Singapore, 1995.

Eduardo Hern \acute{a}_{ndez} , Sueli Tanaka Aki Departamento de Matem \acute{a} tica , I . C . M . C . Universidade de S $\~{a}_o$ Paulo , Caixa Postal 6 68 , 1 3 560 - 970 , S $\~{a}_o$ Carlos SP , Brazil

Department of Mechanical Engineering , Pohang University of Science and Technology , Pohang - 79~0 - 784 , South Korea

E - $mail\ address$: krsakthivel $@y^{a-h}$ oo . com Sueli Tanaka Aki

Departamento de Matem \acute{a} tica , I . C . M . C . Universidade de S $\~a_o$ Paulo , Caixa Postal 668 , 1 3 560 - 970 , S $\~a_o$ Carlos SP , Brazil

E - $mail\ address$: ${\tt smtanaka}$ @ i cmc . ${\tt sc}$. ${\tt usp}$. ${\tt br}$