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EXISTENCE RESULTS FOR IMPULSIVE EVOLUTION
DIFFERENTIAL EQUATIONS WITH STATE - DEPENDENT

DELAY
EDUARDO HERN ANDEZ, RATHINASAMY SAKTHIVEL , SUELI TANAKA AKI
ABSTRACT . We study the existence of mild solution for impulsive evolution

abstract differential equations with state - dependent delay . A concrete appli -
cation to partial delayed differential equations is considered .
1. INTRODUCTION
In this work we discuss the existence of mild solutions for impulsive functional
differential equations , with state - dependent delay , of the form

a'(t) = A(t)x(t) + f(t, xpter)), t€I=10,a], (1.1)
o = @ S B,
A.l?(ti) = Ii(a:ti), 1= 1,2, ey 1,

where A(t) : D C X — X,t € I, is a family of closed linear operators defined

on a common domain D which is dense in a Banach space (X,| - ||); the function

zs : (—00,0] — X, z40) =uxz(s+6), belongstosome abstract phase space

B

describedaxiomatically; f : IxB— X, p : IxB— (-oc0,a], I; : B— X,

i=1,2,...,n, are appropriate functions ;0 < t; < ....t,, < a are prefixed points and the
symbol AE(t) represents the j ump of the function & at ¢, which is defined

byAg(t) = (1) — &(t7).

Various evolutionary processes from fields as diverse as physics , population dy -
namics , aeronautics , economics and engineering are characterized by the fact that
they undergo abrupt changes of state at certain moments of time between intervals
of continuous evolution . Because the duration of these changes are often negligible
compared to the total duration of the process , such changes can be reasonably well -
approximated as being instantaneous changes of state , or in the form of impulses .
These process tend to more suitably modeled by impulsive differential equations , which
allow for discontinuities in the evolution of the st ate . For more details on this
theory and on its applications we refer to the monographs of Lakshmikantham et
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al. [17], and Samoilenko and Perestyuk [ 25 | for the case of ordinary impulsive sys -
temand [18,23,24,15,16] for partial differential and partial functional differential
equations with impulses .

On the other hand , functional differential equations with state - dependent delay
appear frequently in applications as model of equations and for this reason the study
of this type of equations has received great attention in the last years . There exists a
extensive literature for ordinary state - dependent delay equations , see among another

works , [2,1,3,4,6,7,8]. The study of partial differential equations with
state dependent delay have been initiated recently , and concerning this matter we cite
the pioneer works Rezounenko et al . [2 1], Hern ¢ ndez el al . [1 1] and the
papers

[10,12,13,14,22].

To the best of our knowledge , the study of the existence of solutions for systems
described in the abstract form (1. 1)— (1. 2) is a untreated problem , and this fact
, is the main motivation of this paper .

Throughout this paper , (X,|| - ||) is a Banach space ,{A(t) : t € R} is a family
of closed linear operators defined on a common domain D which is dense in X, and we
assume that the linear non - autonomous system

w(t) = AL, € XSt <a, (1.4)
has an associated evolution family of operators {U(¢,s) : a > ¢t > s >

0}. In the next definition , £(X) is the space of bounded linear operator from X into
X

endowed with the uniform convergence topology .

Definition 1 . 1. A family of linear operators {U(t,s) :a >t >s >0} C L(X)
is called an evolution family of operators for (1. 4 ) if the following conditions hold :

(a) U,s)U(s,r)=U(t,r) and U(r,r)z = z for every r < s < t and all z € X;
(b) Foreach x € X the function (¢,s) — U(¢, s)z is continuous and U(¢,s) € L(X)
for every t > s; and

(¢) For s <t<a, the function (s,t] = L(X),t = U(t, s) is differentiable with
0 U =A
En (t,s) = At)U(t, s).

In the sequel , M is a positive constant such that U, s) [|I< M for every t > s,
and we always assume that U(¢, s) is a compact operator for every ¢ > s. We refer the
reader to [ 20 | for additional details on evolution operator families .

To consider the impulsive condition (1. 3 ), it is convenient to introduce some
additional concepts and notations . ~ We say that a function v : [o,7] — X is
a normalized piecewise continuous function on [o, 7] if u is piecewise continuous and
left  continuous on  (o,7]. We denote by PC(|o,7]; X) the space formed by the

normalized piecewise continuous functions from [o,7] into X. In particular , we
introduce the space PC formed by all functions v : [0,a] — X such that u is
continuous at ¢ # t;, u(t; ) = u(t;) and u(t;") exists , for all i = 1,...,n.  In this paper
we always assume that PC is endowed with the norm || u || PC = sup,¢; || u(s) | .
It is clear that (PC,|| - || PC) is a Banach space .

To simplify the notations , we put tg = 0,t,+1 = a and for u € PC we denote by
t; € C([ti,tiy1]; X),4=0,1,...,n, the function given by

Ui(t) = {ZE?*’» for'™tt e_ (1" ti11], (1.5)
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Moreover , for B C PC we denote by B; i =0,1,...,n, the set B; = {4, : u € B}.
Lemmal. 2. Aset BCPCis relatively compact in PC if , and only if , the s
et Bi
is relatively compact in C([t;,tiy1]; X), for every i =0,1,...,n.

In this work we will employ an axiomatic definition for the phase space B which
is similar to those introduced in [ 9 ] . Specifically , B will be a linear space of functions
mapping (—oo, 0] into X endowed with a seminorm || - || B, and satisfies the following

conditions :

(A) Ifz:(—o0,0+b — X,b>0,is such that z |, o4 b] € PC([o,0+0]:X)
and z, € B, then for every t € [0, 0 + b] the following conditions hold :
(i) x¢isin B,

(i) =@ < H |z | B,

(iii) o B<K({t—o)sup {lla(s) || :0<s<th+Mt—0) || B,

where H > 0 is a constant ; K, M : [0,00) — [1,00), K is continuous , M is lo cally
bounded , and H, K, M are independent of z(-).

(B ) The space B is complete .

Example 1. 3. Phase spaces PCh(X),PCS(X). As usual , we say that 9
(—00,0] — X is normalized piecewise continuous , if 1 is left continuous and the
restriction of ¢ to any interval [—r, 0] is piecewise continuous .

Let g : (—00,0] — [1,00) be a continuous , nondecreasing function with ¢(0) = 1,
which satisfies the conditions (g-1), (g-2)of [9]. This means that limg_, o g(6) =

00
and that the function A(t) :=sup_,, o<, % is lo cally bounded for ¢ > 0. Next ,

we modify slightly the definition of the spaces Cy, C’g in [9]. We denote by PC,4(X)
the space formed by the normalized piecewise continuous functions 1 such that

% is bounded on (—o0, 0] and by PCS(X) the subspace of PC,4(X) formed by the
functions 1 such that % — 0 as  — —oc. It is easy to see that PC,(X) and
PCg (X) endowed with the norm [ ¢ || B :=supy<, ”Z((g))u are phase spaces in the

sense considered in this work . Moreover , in these cases K = 1.

Example 1. 4. Phase space PC, x L*(g,X). Let 1 <p <
oo, 0 < r < oo and g(-) be a Borel nonnegative measurable function on
(—o0o,r) which satisfies the conditions (g-5)- (g- 6 ) in the terminology of [ 9] .
Briefly , this means that g(-) is lo cally integrable on (—oco, —r) and that there exists a
nonnegative and lo cally bounded function A on (—oo, 0] such that g(§ +6) < A(€)g(8)
for all £ < 0 and 6 € (—oo0, —r) \ N¢, where Ng C (—o0,—7) is a set with Lebesgue
measure 0 .

Let B := PC, x LP(g; X),r > 0,p > 1, be the space formed of all classes of
functions ¢ : (—o00,0] — X such that ¢ ||_, 0] € PC([-r,0],X), (-)is Lebesgue -
measurable on (—oo, —r] and g | ¢ |P is Lebesgue integrable on (—oo, —r]. The semi -
norm in || - || B is defined by

4l B:= sup 0 [[e@) [ +(="59(0) [ ©(6) [I” d6)1/p.
Col—T,
Proceeding as in the proof of [9, Theorem 1. 3. 8] it follows that B is a phase
space which satisfies the axioms A and B . Moreover , for r = 0 and p = 2 this
space coincides with Cy x L?(g, X),H =1; M() = A(-t)"/? and K(t) =1+
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Remark 1 . 5. In retarded functional differential equations without impulses , the
axioms of the abstract phase space B include the continuity of the function ¢ — xy,
see for instance [ 9] .  Due to the impulsive effect , this property is not satisfied in

impulsive delay systems and , for this reason , has been eliminated in our abstract
description of B.

The terminology and notations are those generally used in functional analysis . In
particular , for Banach a space (Z,| - || Z), the notation B,(x,Z) stands for the
closed ball with center at x and radius » > 0 in Z.

To prove some of our results , we use a fixed point Theorem which is referred in the
Literature as Leray Schauder Alternative Theorem , see [ 5, Theorem 6 . 5. 4] .
Theorem 1. 6 . Let D be a convex subset of a Banach space X and assume that
0eD. Let G:D — D be a completely continuous map . Then the map G has
a fized point in D orthe set {x €D :x=M\G(x),0< <1} is unbounded .

In the next section we study the existence of mild solutions for the abstract system
(1.1)-(1.2). In the last section an application is discussed .

2. EXISTENCE RESULTS

To prove our results on the existence of mild solutions for the abstract Cauchy
problem (1. 1)-(1.2),wealways assume that p: [ X B — (—00, a] is continuous
. In addition , we introduce the following conditions .

(HO) Let BPC(¢) = {u: (—o0,a] = X;up = p,u | I € PC}. The function
t — @t is continuous from R(p~) = {p(s,xs) : p(s,xs) < 0,2 € BPC(p),s € [0,a]} into
B and there exists a continuous and bounded function J% : R(p~) —

(0,00) such that || @t || B<J?(t) || ¢ || B for every t € R(p™).
(H1) The function f: I x B — X satisfies the following properties .
(a) The function f(-,4): I — X is strongly measurable for every ¢ € B.
(b) The function f(¢,-) : B — X is continuous for each t € I.
(c¢) There exist an integrable function m : I — [0,00) and a continuous
nondecreasing function W :  [0,00) — (0,00) such that || f(¢t,¢) | <

mEOW(|| ¥ || B), forevery(t,¢) € I x B.

(H2) The maps I; are completely continuous and there are positive constants
C— j’ia
j = 1,2, such that || Li(w) | < il | v | B+i%i=1,2,..,n, for every ¢ € B.
(H3) The function I; : B — X is continuous and there are positive constants
L;,i=1,2,...,n,such that || L;(1) — L;(¥2) || < L; || ¥1—42| B, for every

;i €B,j=1,2i=12,..n

Remark 2. 1. The condition (H 0 ), is frequently verified by functions continuous
and bounded . If , for instance , the space B verifies axiom C5 in the nomenclature of
[ 9], then there exists a constant L > 0 such that || ¢ || B < L supy<q || ©(0) || for
every ¢ € B continuous and bounded , see [ 9 , Proposition 7 . 1. 1] for details .
Consequently ,

| ot ]| B< L2pesolle@l Il @ || B for every continuous and bounded function ¢ € B\ {0}

llellB
and every t < 0. We note that the spaces C,. x LP(g; X ), C5(X) verify axiom Cs,
see[9,p.10]and [9,p. 16] for details .
Remark 2. 2. Let pe Bandt < 0. The notation (pt represents the

function defined by ¢t(0) = ¢(t +6). Consequently , if the function z(-) in axiom A
is such that xg = ¢, then z; = pt.  We also note that , in general , ptelement —slashB5.
Consider for example the characteristic function Xj_, g, > 0, in the space C, x LP( g
;X ).
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concept of mild solution .

Definition 2. 3. A functionz : (—o0o0,a] — X is called a mild solution of
the

abstract Cauchy problem (1. 1)~ (1.2)if x0= 0,2, € Bforeverysel
and

o(0) = U0)0)+ [ V() (s.0p00)ds+ 30 UGt t)Im). 1l

<ot; <t
The next result is a consequence of the phase space axioms . Lemma 2. 4. If
z : (—o0,a] — X is  a function such that x9y = ¢ and z|I €

PC(I: X),then
|25 | B< (Mo+J?) || ¢ || B+ Kqsup{|| z(6) [|;6 € [0,max{0,s}]}, seR(p™)UI,
K, =sup K(t).
tel
whereJ? = sup,ep(,-) J?(t), Mo = sup;e; M (t)and

Remark 2 . 5. In the rest of this work ,y : (—00,a] — X is the function defined by

y0 = pandy(t) = U(t,0)¢(0)fort € I.

Now , we can prove our first existence result . Theorem 2 . 6 . Let conditions (
HO0) - (HB3) be satisfied and assume that

i=1
Mo e W(E) /a
1 > Kfzw lim inf m(s)ds + L;). 2.1
(im0 T [Tmoas + 30 (2.)
Then there exists a mild s o lution of (1.1) - (1.2). Proof. On the space
Y = {u € PC : u0) = ¢(0)}endowed with the uniform
convergence norm (|| - || o), we define the operator I' : Y — Y defined by

Tz(t) = U(t,0)p(0) +/0 Ul(t,s)f(5,Zps,rs))ds + Z Ut,t)I;(Z,), tel,

<ot;<t

where T : (—o00,a] — X is such that Zo = ¢ and Z = x on I. From our assumptions , it
is easy to see that T'z(-) € Y.

Let @ : (—00,a] — X be the extension of ¢ to (—oo, a] such that @(0) = ¢(0)
onland J¢ =sup{J¥(s) : seR(p)}. ByusingLemma2.4, forr >0
and
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" € By(@ | I,Y)weobtain
| T" = (0) ||

< (4 0)H || B+ / m(s)W (|| -7 s,

a7) | B)ds

n

MY (L || -y, || B+ [ Zi(0) )

=1

<M+DH | ¢ B+1\7/ m(s)W (Mo +J?) || ¢ || B+ K, sup [ a"(0) [))ds
0 €o(0,a

n

MY Lilll v — ¢ | B+ [ o || B+ || L(0) )
i=1

< (THDH || ¢ | B+ MW((M, + ) | ¢ || B+ Ka(r+ | (0) ) / “m(s)ds,

n

+ MY LBt | |l B+ 1(0) )
1=1

which from ( 2. 1) implies that || T'z" — ¢(0) ||co< 7 for r large enough .

Let 7 > 0 be such that I'(B,(¢ | I,Y)) C B.(¢ | I,Y). Next, we will prove that
I'(+) is completely continuous from B,.(¢ | I,Y) into B,.(¢ | I,Y). To this end , we
introduce the decomposition I' = T'; 4+ T’y where (I'12)0 = ¢, (T'22)0 = 0, and

t
I'az(t) = U(t,0)e(0) —|—/0 U(t,s)f(s,Zpes,25))ds, tel

Doa(t) = > Ut t)Li(z,), tel
0<t; <t

To begin , we prove that the set T'1(B,(¢ | I,Y))(t) = {Thz(t) : « € B.(¢ | I,Y)} is
relatively compact in X for every ¢ € I.
The case t =0 is obvious. Let0<e<t<a. IfzeB.(¢|l,Y),from Lemma

2 . 4 follows that || Z =y || B < r* = (M, + J) || ¢ || B+ Ku(r+ || ©(0) ||) which
implies

I /T U(T,8) f(5,Tp(s,ps))ds]| <1 = MW(T‘*) /a m(s)ds, T€l. (2.2)
0 ’ 0

From the above inequality , we find that
t—e
Poa(t) = U(t,0)0(0) + U(t,t — &) / Ut — 2,8) (5,2 (s.00))ds
0

t
+ / U(tv S)f(sa jp(s,is))ds
t

—€

e {U(t,0)0(0)} + U(t,t — )By=- (0, X) + C-,



where diam (C.) < 2MW(T*) fttfe m(s)ds — 0 as ¢ — 0, which allows us to conclude
that 1 (B, (¢ | I,Y))(t) is relatively compact in X.

Now , we prove that I'1 (B, (@ | I,Y)) is equicontinuous on I. Let 0 < ¢t < a and
e>0. Since the set I'y(B,-(¢ | I,Y))(t) is relatively compact compact in X, from the
properties of the evolution family U(t, s), there exists 0 < § < a — ¢ such that
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r el (Br(g|,Y))(t) and all 0 < h < . Under
these conditions , for z € B,(¢ | I,Y) and 0 < h < § we obtain

[ Taz(t+h) =Taz@) || < [|UE+10)p(0) = Ut 0)p(0) |
+ | (U({t+ h,t)— I)/O U(t,s)f(5,ZTps,zs))ds ||

__ [t+h
+M/t m(s)W(r*)ds

N t+h
<2e+ MW(r*) / m(s)ds,
¢

which proves that I'1(B,(@ | I,Y)) is right equicontinuous at t €  (0,a). A simi
- lar procedure shows that T'1(B,(@ | I,Y)) is right equicontinuous at zero and left
equicontinuous at ¢t € (0,a]. Thus , the set T'1(B.(¢ | I,Y)) is equicontinuos on 1.

Using the same arguments as in [ 1 1, Theorem 2 . 2], it follows that 'y is a con -
tinuous map , which complete the proof that I'; is completely continuous . On the
other hand , from the assumptions and the phase space axioms it follows that

n
| Tow —Tay [loo < K3y Lillz =y lleo
i=1

which proves that I'y is a contraction on B,.(¢ | I,Y) and that I' is a condensing map

onB,.(¢| 1,Y).

Finally , the existence of a mild solutions is a consequence of [ 1 9 , Theorem 4 . 3
2],
The proof is complete . [
In the next result , BPC(y) is the set introduced in assumption ( H 0 ) . Theorem 2 .
7. Let (HO)-(H2) be satisfied . If p(t,z:) <t forevery (t,x)€ X

BPC(p),u=1- K?ZCZ > Oand
i=1
— a oo
Kéw/ m(s)ds < ds
0

c Wi(s)

)

where

=1
STHLM, + MHK,) | ¢ || B+i2]

n

— MK,
C=(M,+J?+MHK,) || ¢ | B+

then there exists a mild s o lution of (1.1)—- (1.2). Proof. On the space
BPC = {u: (—00,a] = X;up =0,u | I € PC} provided with
the sup - norm ||+ ||co, we define the operator ' : BPC — BPC by (I'u)0 = 0 and

Ta(t) = /O Ut ) (5, Tperm)ds + S Uk t)L(@,), tel,

<ot;<t

where T = x +y on (—00,a] and y(-) is the function defined in Remark 2 . 5 . To



use Theorem 1. 6 , we establish a prior: estimates for the solutions of the integral
equation z = Az, A € (0,1). Let 2* be a solution of 2 = AI'z, A € (0,1). By using
Lemma 2 . 4, the notation a*(s) = SUpgepo,s | 22(0) ||, and the fact that p(s,-(2*)s) <
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we find that

| 2 () < M / m(s)W (M, + J¢ + MHK,) || ¢ || B+ Kqa(s))ds

n
+M > il[(M + MHK,) || ¢ || B+ Koo ()] + MY i2,
<ot; <t =1
and so ,
n

oMt) < MY MM, + MHK,) || o | B+i2]+ KM S ita’ ()
i=1 0<t; <t

o~ t o~
+M/ m(s)W((My +J? + MHK,) || ¢ || B+ K.’ (s))ds,
0

which implies

- i=1
M —
aMt) < n Sl (M, + MHK,) || ¢ || B+ ]

Mot .
i / m(s)W ((Ma +J% + MHEK,) || ¢ || B+ Kaa'(s))ds,
0

for every ¢t € [0,a]. By defining *(t) = (M, + J% + MHK,) || ¢ || B+ Kq0(t), we
find that

= =1
M) < (M, + % + MHK,) || ¢ | B+ 220 S (M, + MHE,) || ¢ || B+
+Mfa /Ot m(s)W(fA(s))ds.

Denoting by BA(t) the right hand side of the last inequality , if follows that

MK,

Bi(t) < m(t)W(BA(#))

and hence

/Bx\(t) £< Ka /am(s)d8< ooi
aaoy=c W(s) = u Jo c Wi(s),

which implies that the set of functions {SA(:) : A € (0,1)} is bounded in C(I,R).
This show that the set {z*(-) : A € (0,1)} is bounded in BPC.
To prove that the map I' is completely continuous , we consider the decomposition

I' =T 4+ Tawhere(T;2)0 = 0,i = 1,2, and
t

Da(t) = / U t,5)f(5, B po0))ds, teT,
0

Doa(t) = > Ut t)Li(x,), tel
0<t; <t



Proceeding as in the proof of Theorem 2 . 6 we can prove that I';  is completely
continuous .  The continuity of I's  can be proven using the phase space axioms .
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, we use Lemma 1. 2. Forr >0,
t € [ti,tiy1]N(0,a],i>1, and u € B, = B,.(0, BPC) we find that

Tou(t) € braceleftbt—braceex—braceex—braceleftmid—bmceex—braceew% Z U(tiy1,t;)1;(Br+ (0, X))gg?tjj)z

where r* := (M, +™ HK,) || ¢ || B+ K,r, which proves that [['5(B,)]i(t) is relatively
compact in X for every t € [t;,t;41], since the maps I; are completely continuous .
Moreover , using the compactness of the operators I; and properties of the evolution
family U(-), we can prove that [I5(B;)]i(t) is equicontinuous at t, for every ¢ €
[ti, ti+1] and each i = 1,2, ...,n, which complete the proof that I's is completely contin-
uous .

The existence of a mild solution is now a consequence of Theorem 1. 6 . The proof
is complete . [

3. APPLICATIONS

In this section we consider an application of our abstract results .  Consider the

partial differential equation

Qult,£) 0u(t, &) T o9 .
= A4 ’ ~a2(0 t,0) |© db),&)d
ot integraldisplay—minustggﬂu = uts —P1vp; a2(0) [ u(t,0) | df), £)ds
(3.1)
for t € I =10,al],£ € [0,7]. The above equation is subject to the conditions
u(t,0) =u(t,m) =0, t>0, (3.2)
u(r,§) = p(1,€), 7<0,0<E<
Au(t;, &) = ft{x;yj(s —tj)u(s,&)ds, j=1,2,..,n.

To study this system , we consider the space X = L2([0,7]) and the opera
torA : DA < X — X given by Az = 2" with
D) = {z € X : 2" €
X, x(0) = z(m) = 0}. It is well known that A is the infinitesimal generator of an
analytic semigroup (7'(¢))t > 0 on X.  Furthermore , A has discrete spectrum with
eigenvalues —n?, n € N, and corresponding normalized eigenfunctions given by
zo(§) = (3)Y2 sin (n€). In addition , {z, :n € N} is an orthonormal basis of

X and T(t)x => 00, ez, 2V 2, for x € X and t > 0. Tt follows from this rep -
resentation that 7'(¢) is compact for every ¢ > 0 and that || T'(t) || < e~ ! for every

t>0.

On the domain D(A), we define the operators A(t) : D(A) < X —
X by A()z(§) = Az (&) + ao(t,§)z(§). By assuming that ag(-) is continuous and that
ap(t,&) < —dp(dp > 0) for every t € R, & € [0, 7], it follows that the system

u'(t) = A(t)u(t) t>s,
u(s) =z € X,
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has an associated evolution family given by U(t, s)x(¢) = [T(t — s)eRlag(r, £)dr](€).
From this expression , it follows that U(¢, s) is a compact linear operator and that
| U(t,s) ||< e=(+90)(E=5) for every t,s € T with t > s.
Proposition 3 . 1. Let B = PCqy x L*(g,X) and ¢ € B. Assume that
condition (HO) holds ,pi : [0,00) = [0,00),i=1,2, are continuous and
that the following conditions are verified .

(a) The functions a;:R — R are continuous and Ly = (fi)oo Mds)l/2 is

g(s)
finite .
(b) The functions vi :R—-Ri= 1,2,..,n, are continuous ,

bounded and

0 )2

L;:= (/ Mds)lﬂ < ocoforeveryi =1,2,...,n.

oo 9(s)

Then there exists a mild so lution of (3. 1) - (3.3). Proof. From the

assumptions , we have that
f(t, ) (&) = integraldisplay — minus®_a; (s)y (s, €)ds,
o) = 5= pL()r2( | aa(0) |60, a0

L;()(€) = integraldisplay — minus’ yi(s)y(s, €)ds, i=1,2,...,n,

are well defined functions , which permit to transform system (3. 1) - (3. 3) into
the abstract system (1. 1) - (1. 2 ). Moreover , the functions f,I; are bounded
linear oper - ator , || f|| <Liand | ;| <L;foreveryi=12 ..n Now, the
existence of a mild solutions can be deduced from a direct application of Theorem 2 .
7 .  The proof is

complete . [
From Remark 2 . 1 we have the following result . .
Corollary 3 . 2. Let ¢ € B be continuous and bounded . Then there exists a
mild s olutionof (3.1)—(3.3)on I
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