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A FIBE R-ING MAP APPROACHTO A SEMILINEAR
ELLIPTIC BOUNDARY VALUE PROBLEM

KENNETH J . BROWN | TSUNG - FANG WU
ABSTRACT . ‘We prove the existence of at least two positive solutions for the

semilinear elliptic boundary - value problem

—Au(z) = da(x)u! + b(x)uP forr € Q; wu(z) =0 forz € 9N

on a bounded region ¢) by using the Nehari manifold and the fibering maps
associated with the Euler functional for the problem . We show how knowledge
of the fibering maps for the problem leads to very easy existence proofs .
1. INTRODUCTION
We shall discuss the existence of positive solutions of the semilinear elliptic boundary
- value problem

—Au(z) = Aa(x)u? + b(x)uP forz € (1.1)
u(x) =0 forx € 09, (1.2)
where € is a bounded region with smooth boundary in RV,0 < ¢<1<p < %

A>0and a,b: Q — R are smooth functions which are somewhere positive but which
may change sign on Q. Equation (1. 1), (1. 2) has been recently studied in [ 3 | by
using the Mountain Pass Lemma and in [ 5 ] and [ 7 ] using the Nehari manifold .

In[4]and [ 2] it was shown that the Nehari manifold for an equation such as (1.
1) is closely related to the fibering maps for the problem . In this paper we show how
a fairly complete knowledge of all possible forms of the fibering maps provides a very sim-
ple and comparatively elementary means of establishing results similar to those proved
in [ 5] and [ 7] on the existence of multiple solutions of (1. 1), (1. 2) . In section
2 we recall the properties which we shall require of fibering maps and of the
Nehari manifold .  In section 3 we give a fairly complete description of the fibering
maps associated with ( 1. 1) and in section 4 we use this information to give a very
simple variational proof of the existence of at least two positive solutions of (1. 1),
(1. 2) for sufficiently small A.

We shall throughout use the function space W,*(Q) with norm

= </Q | Vu [ di)1/2
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2 K.J.BROWN,T.-F.WU EJDE-27/69 and the st andard L?({2) spaces whose
norms we denote by || u ||, .
2. FIBERING MAPS AND THE NEHARI MANIFOLD
The Euler functional associated with (1.1),(1.2)is

/|Vu|2dx—7/ |u|q+1dm—p—/ )| w [P da

forallu € W, (Q2).

As Jy is not bounded below on W, %(Q), it is useful to consider the functional on
the Nehari manifold

Mx(9) = {u € Wy () : (J5(u),u) = 0}
where (,) denotes the usual duality . Thus v € M,(Q) if and only if

/|Vu|2dx—)\/ ) | w7 da — /b )| w [P de =0 (2.1)

Clearly My (Q) is a much smaller set than W,'*(€2) and , as we shall show , J is much
better behaved on M) (Q). In particular , on My () we have that

)

_ (== L= “ 1
Ia(u) == (57 e / N * vz T— (A=
+1) Qf, | 1q( +1,

p L) oy
T1ph 1y Jaalolue

(2.2)

Theorem 2.1. Jy is coercive and bounded below on My (). Proo f — period It
follows from ( 2 . 2 ) and the Sobolev embedding theorems that there exist
positive constants c¢1, co and cg such that

In(u) > e IIUIIQ—"?/ [u|™de > e lul2—csfluf™
Q

and so J) is coercive and bounded below on M, (). O

The Nehari manifold is closely linked to the behaviour of the functions of the form
¢y 1t — Ja(tu) (t>0). Such maps are known as fibering maps and were introduced
by Drabek and Pohozaev in [ 4 | and are also discussed in Brown and
Zhang [ 2] . If u € W, (), we have

Lo Vu |? AtQH at1 " b|wPt! 2.3
t) ==t “A— — :
) 5 /QI u | ) Qa\UI p+1 ; | u| (2.3)

én, (1) :t/Q | Vu |? —AtQ/Qam |att —tp/Qb|u |ptt (2.4)

o) = [ 19uP dart [aluprt et [bpapt (25
Q Q Q

It is easy to see that u € M, () if and only if ¢/,(1) = 0 and , more generally , that
¢l (t) = 0if and only if tu € M»(2),1i. e. , elements in M, () correspond to stationary
points of fibering maps . Thus it is natural to subdivide M () into sets
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local maxima and points of inflection and so we
define

) ={u € Mx(Q) : ¢,(1) > 0},
My () = {u € Mx(Q) : ¢,(1) <0},

) = {u € MA(Q) : ¢,(1) = 0},
and note that if u € M(Q),1i. e ., ¢, (1) =0, then

Vul? — o) |ulP T dz
| | VuPd-rdx - (i(qq)_;{)b(a)l(x‘ §l|u|q+1d;c- (2'6)

o1(1) =— (4 —_pq>>/ﬂ

|
Q
Also , as proved in Binding , Drabek and Huang [ 1 ] or in Brown and Zhang [ 2 ] , we
have the following lemma, .

Lemma 2. 2. Suppose that wg is a local mazimum o v minimum for Jy on
My (2).
Then , if g & MY(Q),uq is a critical point of J.
3. ANALYSIS OF THE FIBERING MAPS
In this section we give a fairly complete description of the fibering maps as - so ciated
with the problem .  As we shall see the essential nature of the maps is

determined by the signs of [a(z) | u |7 dx and [, b(z) | u [PT! dz.  We will find it
useful to consider the function

my(t) = tl_q/ | Vu |? da —t”_q/ b(x) | u [P da.
Q Q

Clearly , for t > 0,tu € M»(f2) if and only if ¢ is a solution of

my(t) = )\/Q a(z) | u |7 dx. (3.1)

Morever ,

m () = (1— q)t—q/ﬂ |Vu 2 do — (p— q)tp_q_l/Qb(a:) P de (3.2)

It is easy to see that m, is a strictly increasing function for ¢ > 0 whenever
Job(z) [ w [P dz < 0 and m,, is initially increasing and eventually decreasing with
a single turning point as in Figure 1 (b ) when [, b(z) | u [P*! dz > 0.

FIGURE 1 . Possible forms of m(u)
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Suppose tu € My(2). It follows from (2. 6 ) and ( 3. 2) that ¢}, (1) = t972m! (t)
and so tu € My (Q)(M, (Q2)) provided m/,(t) > 0(< 0).
We shall now describe the nature of the ﬁbering maps for all possible signs of [, b(x) |
u [P de and [ a(z) | w9 de. I [ b(z) | w [P de <0 and [, a(z) | w 7T de <0
, clearly ¢, is an increasing function of ¢ and so has graph as shown in Figure 2 ((a ) ;
thus in this case no multiple of u lies in My (). I [, b(z) | u [PT! dz <0 and
Joa(z) | w |7t da > 0, then m, has graph as in Figure 1 (a ) , and it is clear that
there
is exactly one solution of (3. 1) . Thus there is a unique value t(u) > 0 such that
t(u)u € Mx(2). Clearly m/,(t(u)) > 0 and so t(u)u € M (). Thus the fibering
map ¢, has a unique critical point at ¢ = ¢(u) which is a lo cal minimum . Since
limy 00 ¢ (t) = 00, it follows that ¢, has graph as Shown in Figure 2 (¢ ) .
Suppose now [, b(z) | u [P*! dz > 0 and [, a(z) | u | do < 0. Then m, has
graph
as shown in Figure 1 ( b ) and it is clear that there is exactly one positive solution of (
3. 1) . Thus there is again a unique value t(u) > 0 such that t(u)u € My () and since
my,(t(u)) < 0 in this case t(u)u € M, (2). Hence the fibering map ¢, has

a unique critical point which is a lo cal maximum . Since limy_y o0 ¢y (t) = —o00, it
follows that ¢, has graph as shown in Figure 2(b).

Finally we consider the case [, b(x) | u [PT! dz > 0 and [, a(z) | u [ dz >0
where

the situation is more complicated . As in the previous case m,, has a graph as shown in
Figure 1 (b ). If A > 0 is sufficiently large, (3. 1) has no solution and so ¢, has
no critical points - in this case ¢, is a decreasing function .  Hence no multiple of u
lies in M, (2). If , on the other hand , A > 0 is sufficiently small , there are exactly
two solutions #1 (u) < ta(u) of (3. 1) with m/,(¢1(u)) > 0 and m/,(t2(u)) < 0.

Thus there are exactly two multiplesof u €  M,(2), namely t;(u)u € M (Q)
and ta(u)u € M, (2). It follows that ¢, has exactly two critical points - a lo cal
minimum at ¢ = #;(u) and a lo cal maximum at ¢t = ¢2(u); moreover ¢,, is decreasing in
(0,%1), increasing in (t1,t2) and decreasing in (t,00) as in Figure 2 (d ) .

The following result ensures that when A is sufficiently small the graph of ¢, must be
as shown in Figure 2 ( d ) for all non - zero u.

Lemma 3. 1. There exists Ay > 0 such that , when A < A, ¢, takes on
positive

values for al I non - zero w € Wy>(Q).

Proof . If [b(z) ulPtde < 0, then ¢,(t) > 0 for ¢ sufficiently large .
Suppose

u € WE*(@)and / b(x) | [P dz > 0.Let
t2
S ivurar =" [ v fulr as

Then elementary calculus shows that h, takes on a maximum value of

p-1 fmwﬁdx)p“} et — 1 fmwﬁdx 1
2p+ 1)y bla) [upr do p—1 o = e = O o T o p— 1

However

(o | VP oyt 1

(o Tu P do)? = 203D




where S,,1 denotes the Sobolev constant of the embedding of W, *(R2) into LPT1(Q).
Hence

p—1 ( 1 b1
2 1 1
(p+1)7 ) ot |2, S27D p—1

4]

hu (tmax) Z 2
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FIGURE 2 . Possible forms of fibering maps where ¢ is independent of .
We shall now show that there exists Ay > 0 such that ¢, (tmax) > 0,1. €.,

A(tl‘ﬂ )q+1 /
hu tmax - = o+l d >0
(o) = =220 | a(a) |u | do

for all u € Wy*(€2) — {0} provided A < A;. We have
tmax q+l
Q/ a() | u [ da
Q

qg+1
<L||a|| Sq+1( fQ|Vu|2dx q+1/‘v 2 dx Q+1
St e S T e
2 1
e || || q+11{ fQ | Vu | dm)p+ line—parenle ft—minus2qp+11
- +
¢+l T (b() | | da)?
1 L2p+1D)g+1 qg+1 qg+1
= 31 o llee ST =7 T hultna) 75— = chu(fn) 5=

where ¢ is independent of u. Hence

1—gq
(hu (tmax) T

q+1

¢u (tmax) Z hu (tmax) - )\Chu (tmax) T

1
= hu (tmax) &

5 — o)

and 5o , since hy (fmax) > 6 for all u € W, %(Q) — {0}, it follows that ¢y (tmax) > 0

for all non - zero w provided \ < 51—;" J2e = A1. This completes the proof . [
It follows from the above lemma that when A < A1, [, a(x) | u |97 dz > 0 and
fQ x) | u |PT! do > 0 then ¢, must have exactly two critical pomts as discussed in the

remarks preceding the lemma .
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Thus when A < A; we have obtained a complete knowledge of the number of critical
points of ¢,, of the intervals on which ¢, is increasing and decreasing
and of the multiples of u Which lie in M, (§2) for every possible choice of signs of
Job(z) [u [Pt dz and [, a(x) | u 77! dz. In particular we have the following result .

MY(Q) = Gwhend < A < \;. Corollary3.2.
Corollary 3. 3. If A<\, th en the re exists 01 > 0 such that Jy(u) > 61 for
all
ue M, (Q).

Proof . Consider v € M, (€2). Then ¢, has a positive global maximum at ¢ = 1 and

/b(m) | u [P de > 0.Thus
J)\(U) = ¢u(1) Z ¢u(tnlax)

q+1 l—q
Z hu(tmax) 2 (hu (tmax) 2 - )\C)
qg+1
>§—(0——= —
) 5 (6 2 Ac)

and the left hand side is uniformly bounded away from 0 provided that A < A;. O
4. EXISTENCE OF POSITIVE SOLUTIONS
In this section using the properties of fibering maps we shall give simple proofs
of the existence of two positive solutions , one in My (©2) and one in M, (©2). Theorem
4. 1. If X < A1, there exists a minimizer of Jy on My (). Proof . Since J)y
is bounded below on M, () and so on M, (), there exists a
minimizing sequence {u,} C M, (Q) such that

lim Jy(un) =w € inf Jy(u).
n—o00 JV]+(Q)

Since Jy is coercive ,{uy} is bounded i in Wy?(€).  Thus we may assume , without
loss of generality , that u, — wug in Wy () and u, — uo in L"(Q) for 1 < r < =

If we choose u € W, "?(2) such that [, a(z) | u [1*! dz > 0, then the graph of the
fibering map ¢, must be of one of the forms shown in Figure 2 (¢ ) or (d)
and so there exists ¢1(u) such that ¢1(u)u € My () and Jy(t1(u)u) < 0. Hence ,

11}\5A —|—(Q)J,\(u) < 0.By(2.2),

1
) = (5= 1) / | Van | do - (——p—>/a<w>|un o+ g
+1 Q
and so
A 1>/<>| o+ dr = (X /|v 2 da — Ja ().
— —p— Unp, r=(z—p— Up, x — Jx(up
g+1 ¥ ), 2 P A

Letting n — oo, we see that [, a(z) | ug [T dz > 0.



Suppose u,negationslash — arrowrightug in WO1 -2 (©2). We shall obtain a contradic-
tion by discussing the fibering map ¢,,. Since [, a(z) | ug |9+l dx > 0, the graph

of ¢y, must be either of the form shown in Figure 2 (¢ ) or (d). Hence
there exists tg > 0 such that tqug € M;‘(Q) and ¢, is decreasing on (0,ty) with
' (to) = 0.
U

Since u,negationslash — arrowrightug in Wol’Q(Q), fQ | Vug |2 do < lim inf,, o fQ | Vu, |2 dz. Thus , as

o (t) = t/ | Vuy, [ do — w/ a(z) | up |7 dx—tp/ b@) | un [P da
Q Q Q
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br, (1) = t/Q | Vg |? da — /\tq/Qa(m) | ug |77 dx ftp/Qb(x) | ug [P de,

it follows that ¢, (to) > Ofor nsufficiently large. Since {u,} C M (Q),
by considering the possible fibering maps it is easy to see that ¢/, () <0 for 0 <t <1
and ¢/, (1) = 0 for all n. Hence we must have to > 1. But tgup € M, () and so

In(toug) < Jx(up) < lim Jy(up) = inf  Jy(u)
n—oo M;A(Q)

and this is a contradiction . Hence u, — ug in Wy*(€2) and so

Ia(ug) = Um Jy(up) = inf  Jy(w).
n—00 JV[;R\(Q)

Thus ug is a minimizer for J, on M;f (. O

Theorem 4 . 2. If X < A1, there exists a minimizer of Jy on M, (). Proof .
By Corollary 3 . 3 we have Jy(u) > 0; > Oforallu € M;(Q) andso
infueM;(Q) Ix(u) > 01. Hence there exists a minimizing sequence {u, } C M; (£2)
such that

lim Jy(up) = inf Jy(u) > 0.

n—oo ME_u N (Q)

As in the previous proof , since Jy is coercive , {u, } is bounded in Wol’z(ﬂ) and we may
assume , without loss of generality , that u,, — ug in Wg’z(Q) and u,, — ug in

L"(Q)forl < r < N 2‘By(2.2)
— 1_ 1 2 1 _ i p+1
Tn) = G = =) [V ot (g =) [ b0 [ 7 o

and , since lim,, o, Jx(uy) > 0 and

lim [ b(z) | u, [P do = / b(zx) | up(x) [P da,
Q

n— oo Q

we must have that [, b(z) | uo(z) [P™' dz > 0. Hence the fibering map ¢,

must have graph as shown in Figure 2 (b ) or ( d ) and so there exists f > 0 such
that

tuy € My ().

Suppose unarrowright — negationslashug in W(}’Z(Q). Using the facts that

/|Vu0 \2dx<1immf/ | Vu, |? dz
Q n —oo Q



8 K.J.BROWN,T.-F.WU EJDE-27/69 and that , since u, € M, (Q),J(u,) >
J(suy) for all s > 0, we have

M+t
g+1

tpt

: 1.
T(fug) = 5152/9 | Vo 2 do —

/ a(x) | up |97 dx —p—/ b(x) | up |PT da
Q +1 Jo
AtatL
qg+1

/ a(x) | uy, |77 dx
Q
{p+1

=y /Q b(x) | un [P da]

1
< lim [ffz/ | Vuy, |? dz —
2 Ja

n—oo

— 1 i
= g, /)
< lim J(up) = inf Jx(u)
n— o0 MguA(Q)

which is a contradiction . Hence u,, = u¢ in WO1 2(Q) and the proof can be completed
as in the previous theorem . [ Corollary 4 . 3 . Fquation (1.1), (1.2)
has at least two positive s o lutions whenever

0< A< A

Proo f —period By Theorems 4.1 and 4.2 thereexist u* € My(Q) and
v e M, (Q)

suchJ(ui)thati(}ﬁ)

— ueM
(lut]) = inef andf\fi|+>\ 65\5}3 Jj(tu(;)andand J &,C;ay inf —)\Si) J(Zu())"MoreoverByLemma

2.2u are critical points of J on W,"*(Q) and hence are weak solutions ( and so
by standard regularity results classical solutions ) of (1. 1), (1.2). Finally, by
the
Harnack inequality due to Trudinger [ 6 ] , we obtain that u* are positive solutions of
(1.1),(L2). O
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