Electronic Journal of Differential Equations , Vol. 2007 ( 2007 ) , No. 69 , pp. 1-9 . ISSN: 172 - 6691 . URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde . math . txstate . edu ( login : ftp )

# A FIBE R – I NG MAP APPROACH TO A SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

KENNETH J . BROWN , TSUNG - FANG WU

ABSTRACT . We prove the existence of at least two positive solutions for the semilinear elliptic boundary - value problem

$$-\Delta u(x) = \lambda a(x)u^q + b(x)u^p \quad \text{for } x \in \Omega; \quad u(x) = 0 \quad \text{for } x \in \partial \Omega$$

on a bounded region  $\Omega$  by using the Nehari manifold and the fibering maps associated with the Euler functional for the problem . We show how knowledge of the fibering maps for the problem leads to very easy existence proofs .

#### 1. Introduction

We shall discuss the existence of positive solutions of the semilinear elliptic boundary - value problem

$$-\Delta u(x) = \lambda a(x)u^q + b(x)u^p \quad \text{for } x \in \Omega;$$
(1.1)

$$u(x) = 0 \quad \text{for } x \in \partial\Omega,$$
 (1.2)

where  $\Omega$  is a bounded region with smooth boundary in  $\mathbb{R}^N$ ,  $0 < q < 1 < p < \frac{N+2}{N-2}$ ,  $\lambda > 0$  and  $a,b:\Omega \to \mathbb{R}$  are smooth functions which are somewhere positive but which may change sign on  $\Omega$ . Equation (1 . 1), (1 . 2) has been recently studied in [3] by using the Mountain Pass Lemma and in [5] and [7] using the Nehari manifold.

In [4] and [2] it was shown that the Nehari manifold for an equation such as (1.1) is closely related to the fibering maps for the problem. In this paper we show how a fairly complete knowledge of all possible forms of the fibering maps provides a very simple and comparatively elementary means of establishing results similar to those proved in [5] and [7] on the existence of multiple solutions of (1.1), (1.2). In section 2 we recall the properties which we shall require of fibering maps and of the Nehari manifold. In section 3 we give a fairly complete description of the fibering maps associated with (1.1) and in section 4 we use this information to give a very simple variational proof of the existence of at least two positive solutions of (1.1), (1.2) for sufficiently small  $\lambda$ .

We shall throughout use the function space  $W_0^{1,2}(\Omega)$  with norm

$$\parallel u \parallel = (\int_{\Omega} \mid \nabla u \mid^{2} dx) 1/2$$

 $2000\ Mathematics\ Subject\ Classification$  .  $\ 35\ J\ 20$  ,  $36\ J\ 65$  .

Key words and phrases . Semilinear elliptic boundary value problem ; variational methods ; Nehari manifold ; fibering map .

 $circle copyrt-c2007 \ \mbox{Texas State University - San Marcos} \ .$  Submitted February 27 , 2007 . Published May 10 , 2007 .

2 K . J . Brown , T . - F . WU EJDE - 2 7 / 6 9 and the st andard  $L^p(\Omega)$  spaces whose norms we denote by  $\parallel u \parallel_p$  .

2 . Fibering Maps and the Nehari manifold The Euler functional associated with ( 1 . 1 ) , ( 1 . 2 ) is

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^{2} dx - \frac{\lambda}{q+1} \int_{\Omega} a(x) |u|^{q+1} dx - p \frac{1}{+1} \int_{\Omega} b(x) |u|^{p+1} dx$$
forall  $u \in W_{0}^{1,2}(\Omega)$ .

As  $J_{\lambda}$  is not bounded below on  $W_0^{1,2}(\Omega)$ , it is useful to consider the functional on the Nehari manifold

$$M_{\lambda}(\Omega) = \{ u \in W_0^{1,2}(\Omega) : \langle J_{\lambda}'(u), u \rangle = 0 \}$$

where  $\langle , \rangle$  denotes the usual duality. Thus  $u \in M_{\lambda}(\Omega)$  if and only if

$$\int_{\Omega} |\nabla u|^2 dx - \lambda \int_{\Omega} a(x) |u|^{q+1} dx - \int_{\Omega} b(x) |u|^{p+1} dx = 0$$
 (2.1)

Clearly  $M_\lambda(\Omega)$  is a much smaller set than  $W^{1,2}_0(\Omega)$  and , as we shall show  $J_\lambda$  is much better behaved on  $M_\lambda(\Omega)$ . In particular , on  $M_\lambda(\Omega)$  we have that

$$J_{\lambda}(u) = \left(2^{\frac{1}{12}} - p^{\frac{1}{q+11}}\right) \int_{\Omega \int_{\Omega}} |\nabla u|^{2} \nabla u|^{2} + \left(\lambda \frac{1}{1_{q(q+1)}^{+}} - \frac{1}{1_{q+1}^{+}} \frac{1}{1}\right) \int_{\Omega} b(x)|u|^{p+1} \int_{\Omega} a(x)|u|^{q+1}$$

$$(2.2)$$

**Theorem** 2.1.  $J_{\lambda}$  is coercive and bounded below on  $M_{\lambda}(\Omega)$ . Proo f – period It follows from (2.2) and the Sobolev embedding theorems that there exist positive constants  $c_1, c_2$  and  $c_3$  such that

$$J_{\lambda}(u) \ge c_1 \parallel u \parallel 2 - c_2 \int_{\Omega} |u|^{q+1} dx \ge c_1 \parallel u \parallel 2 - c_3 \parallel u \parallel^{q+1}$$

and so  $J_{\lambda}$  is coercive and bounded below on  $M_{\lambda}(\Omega)$ .  $\square$ 

The Nehari manifold is closely linked to the behaviour of the functions of the form  $\phi_u: t \to J_\lambda(tu) \quad (t>0)$ . Such maps are known as fibering maps and were introduced by Drabek and Pohozaev in [4] and are also discussed in Brown and Zhang [2]. If  $u \in W_0^{1,2}(\Omega)$ , we have

$$\phi_u(t) = \frac{1}{2}t^2 \int_{\Omega} |\nabla u|^2 - \lambda \frac{t^{q+1}}{q+1} \int_{\Omega} a |u|^{q+1} - p \frac{t^{p+1}}{+1} \int_{\Omega} b |u|^{p+1}$$
 (2.3)

$$\phi'_{u}(t) = t \int_{\Omega} |\nabla u|^{2} - \lambda t^{q} \int_{\Omega} a |u|^{q+1} - t^{p} \int_{\Omega} b |u|^{p+1}$$
 (2.4)

$$\phi_u''(t) = \int_{\Omega} |\nabla u|^2 - \lambda q t^{q-1} \int_{\Omega} a |u|^{q+1} - p t^{p-1} \int_{\Omega} b |u|^{p+1}$$
 (2.5)

It is easy to see that  $u \in M_{\lambda}(\Omega)$  if and only if  $\phi'_u(1) = 0$  and , more generally , that  $\phi'_u(t) = 0$  if and only if  $tu \in M_{\lambda}(\Omega)$ , i. e. , elements in  $M_{\lambda}(\Omega)$  correspond to stationary points of fibering maps . Thus it is natural to subdivide  $M_{\lambda}(\Omega)$  into sets

EJDE - 2 0 7 / 6 9  $\,$  A FIBERING MAP APPROACH  $\,$  3  $\,$  corresponding to lo cal minima , local maxima and points of inflection and so we define

$$\begin{split} M_{\lambda}^{+}(\Omega) &= \{ u \in M_{\lambda}(\Omega) : \phi_{u}''(1) > 0 \}, \\ M_{\lambda}^{-}(\Omega) &= \{ u \in M_{\lambda}(\Omega) : \phi_{u}''(1) < 0 \}, \\ M_{\lambda}^{0}(\Omega) &= \{ u \in M_{\lambda}(\Omega) : \phi_{u}''(1) = 0 \}, \end{split}$$

and note that if  $u \in M_{\lambda}(\Omega)$ , i. e.,  $\phi'_u(1) = 0$ , then

Also , as proved in Binding , Drabek and Huang [ 1 ] or in Brown and Zhang [ 2 ] , we have the following lemma .

**Lemma 2.2.** Suppose that  $u_0$  is a local maximum or minimum for  $J_{\lambda}$  on  $M_{\lambda}(\Omega)$ .

Then, if  $u_0 \notin M_{\lambda}^0(\Omega)$ ,  $u_0$  is a critical point of  $J_{\lambda}$ .

### 3. Analysis of the Fibering Maps

In this section we give a fairly complete description of the fibering maps as - so ciated with the problem . As we shall see the essential nature of the maps is determined by the signs of  $\int a(x) \mid u \mid^{q+1} dx$  and  $\int_{\Omega} b(x) \mid u \mid^{p+1} dx$ . We will find it useful to consider the function

$$m_u(t) = t^{1-q} \int_{\Omega} |\nabla u|^2 dx - t^{p-q} \int_{\Omega} b(x) |u|^{p+1} dx.$$

Clearly, for  $t > 0, tu \in M_{\lambda}(\Omega)$  if and only if t is a solution of

$$m_u(t) = \lambda \int_{\Omega} a(x) \mid u \mid^{q+1} dx.$$
 (3.1)

Morever,

$$m'_{u}(t) = (1 - q)t^{-q} \int_{\Omega} |\nabla u|^{2} dx - (p - q)t^{p - q - 1} \int_{\Omega} b(x) |u|^{p + 1} dx.$$
 (3.2)

It is easy to see that  $m_u$  is a strictly increasing function for  $t \geq 0$  whenever  $\int_{\Omega} b(x) |u|^{p+1} dx \leq 0$  and  $m_u$  is initially increasing and eventually decreasing with a single turning point as in Figure 1 (b) when  $\int_{\Omega} b(x) |u|^{p+1} dx > 0$ .

Figure 1. Possible forms of m(u)

K.J.BROWN, T.-F.WU EJDE - 27 / 69

Suppose  $tu \in M_{\lambda}(\Omega)$ . It follows from (2.6) and (3.2) that  $\phi''_{tu}(1) = t^{q+2}m'_{u}(t)$ and so  $tu \in M_{\lambda}^{+}(\Omega)(M_{\lambda}^{-}(\Omega))$  provided  $m'_{u}(t) > 0 < 0$ .

We shall now describe the nature of the fibering maps for all possible signs of  $\int_{\Omega} b(x) \mid u \mid^{p+1} dx$  and  $\int_{\Omega} a(x) \mid u \mid^{q+1} dx$ . If  $\int_{\Omega} b(x) \mid u \mid^{p+1} dx \leq 0$  and  $\int_{\Omega} a(x) \mid u \mid^{q+1} dx \leq 0$ , clearly  $\phi_u$  is an increasing function of t and so has graph as shown in Figure 2 ( a ); thus in this case no multiple of u lies in  $M_{\lambda}(\Omega)$ . If  $\int_{\Omega} b(x) |u|^{p+1} dx \leq 0$  and  $\int_{\Omega} a(x) |u|^{q+1} dx > 0$ , then  $m_u$  has graph as in Figure 1 (a), and it is clear that

is exactly one solution of (3 . 1). Thus there is a unique value t(u) > 0 such that Clearly  $m'_u(t(u)) > 0$  and so  $t(u)u \in M^+_{\lambda}(\Omega)$ .  $t(u)u \in M_{\lambda}(\Omega)$ . Thus the fibering map  $\phi_u$  has a unique critical point at t = t(u) which is a lo cal minimum.

 $\lim_{t\to\infty}\phi_u(t)=\infty$ , it follows that  $\phi_u$  has graph as shown in Figure 2 ( c ) . Suppose now  $\int_\Omega b(x)\mid u\mid^{p+1}dx>0$  and  $\int_\Omega a(x)\mid u\mid^{q+1}dx\leq 0$ . Then  $m_u$  has graph

as shown in Figure 1 (b) and it is clear that there is exactly one positive solution of ( 3.1). Thus there is again a unique value t(u) > 0 such that  $t(u)u \in M_{\lambda}(\Omega)$  and since  $m'_{u}(t(u)) < 0$  in this case  $t(u)u \in M_{\lambda}^{-}(\Omega)$ . Hence the fibering map  $\phi_{u}$  has a unique critical point which is a lo cal maximum . Since  $\lim_{t\to\infty} \phi_u(t) = -\infty$ , it

follows that  $\phi_u$  has graph as shown in Figure 2 ( b ) . Finally we consider the case  $\int_{\Omega} b(x) \mid u \mid^{p+1} dx > 0$  and  $\int_{\Omega} a(x) \mid u \mid^{q+1} dx > 0$ where

the situation is more complicated . As in the previous case  $m_u$  has a graph as shown in Figure 1 (b). If  $\lambda > 0$  is sufficiently large, (3.1) has no solution and so  $\phi_u$  has no critical points - in this case  $\phi_u$  is a decreasing function . Hence no multiple of ulies in  $M_{\lambda}(\Omega)$ . If, on the other hand,  $\lambda > 0$  is sufficiently small, there are exactly two solutions  $t_1(u) < t_2(u)$  of ( 3 . 1 ) with  $m_u'(t_1(u)) > 0$  and  $m_u'(t_2(u)) < 0$ . Thus there are exactly two multiples of  $u \in M_{\lambda}(\Omega)$ , namely  $t_1(u)u \in M_{\lambda}^+(\Omega)$  and  $t_2(u)u \in M_{\lambda}^-(\Omega)$ . It follows that  $\phi_u$  has exactly two critical points - a lo cal minimum at  $t = t_1(u)$  and a lo cal maximum at  $t = t_2(u)$ ; moreover  $\phi_u$  is decreasing in  $(0,t_1)$ , increasing in  $(t_1,t_2)$  and decreasing in  $(t_2,\infty)$  as in Figure 2 (d). The following result ensures that when  $\lambda$  is sufficiently small the graph of  $\phi_u$  must be as shown in Figure 2 (d) for all non-zero u.

There exists  $\lambda_1 > 0$  such that, when  $\lambda < \lambda_1, \phi_u$ Lemma 3 . 1 .

values for al l non - zero  $u \in W_0^{1,2}(\Omega)$ . Proof . If  $\int_{\Omega} b(x) \mid u \mid^{p+1} dx \leq 0$ , then  $\phi_u(t) > 0$  for t sufficiently large . Suppose

$$u \in W_0^{1,2}(\Omega) \text{ and } \int_{\Omega} b(x) \mid u \mid^{p+1} dx > 0. \text{Let}$$
$$h_u(t) = \frac{t^2}{2} \int_{\Omega} \mid \nabla u \mid^2 dx - p \frac{t^{p+1}}{+1} \int_{\Omega} b(x) \mid u \mid^{p+1} dx.$$

Then elementary calculus shows that  $h_u$  takes on a maximum value of

$$\frac{p-1}{2(p+1)} \left\{ \frac{(\int_{\Omega} |\nabla u|^2 dx)^{p+1}}{(\int_{\Omega} b(x) |u|^{p+1} dx)^2} \right\} \frac{1}{p-1} \quad \text{when} t = t_{\max} = \left( \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} b(x) |u|^{p+1} dx} \right)^{p-1} \frac{1}{p-1}.$$

However

$$\frac{(\int_{\Omega} |\nabla u|^2 dx)^{p+1}}{(\int_{\Omega} |u|^{p+1} dx)^2} \ge \frac{1}{S_{p+1}^{2(p+1)}}$$

where  $S_{p+1}$  denotes the Sobolev constant of the embedding of  $W_0^{1,2}(\Omega)$  into  $L^{p+1}(\Omega)$ . Hence

$$h_u(t_{\text{max}}) \ge \frac{p-1}{2(p+1)} \left(\frac{1}{\parallel b^+ \parallel_{\infty}^2 S_{p+1}^{2(p+1)}}\right) \frac{1}{p-1} = \delta$$

Possible forms of fibering maps where  $\delta$  is independent of u. We shall now show that there exists  $\lambda_1 > 0$  such that  $\phi_u(t_{\text{max}}) > 0$ , i. e.,

$$h_u(t_{\text{max}}) - \frac{\lambda(t_{\text{max}})^{q+1}}{q+1} \int_{\Omega} a(x) |u|^{q+1} dx > 0$$

for all  $u \in W_0^{1,2}(\Omega) - \{0\}$  provided  $\lambda < \lambda_1$ . We have

$$\frac{(t_{\max})^{q+1}}{q+1} \int_{\Omega} a(x) \mid u \mid^{q+1} dx$$

$$\leq \frac{1}{q+1} \parallel a \parallel_{\infty} S_{q+1}^{q+1} \left( \frac{\int_{\Omega} \mid \nabla u \mid^{2} dx}{\int_{\Omega} b(x) \mid u \mid^{p+1} dx} \right) \frac{q+1}{p-1} \left( \int_{\Omega} \mid \nabla u \mid^{2} dx \right) \frac{q+1}{2}$$

$$= \frac{1}{q+1} \parallel a \parallel_{\infty} S_{q+1}^{q+1} \left\{ \frac{\left( \int_{\Omega} \mid \nabla u \mid^{2} dx \right)^{p+1}}{\left( \int_{\Omega} b(x) \mid u \mid^{p+1} dx \right)^{2}} \right\}^{line-parenleft-minus2q_{p}+1_{1}}$$

$$= \frac{1}{q+1} \parallel a \parallel_{\infty} S_{q+1}^{q+1} \left[ \frac{2(p+1)}{p-1} \right] \frac{q+1}{2} h_{u}(t_{\max}) \frac{q+1}{2} = ch_{u}(t_{\max}) \frac{q+1}{2}$$

where c is independent of u. Hence

$$\phi_u(t_{\text{max}}) \ge h_u(t_{\text{max}}) - \lambda c h_u(t_{\text{max}}) \frac{q+1}{2} = h_u(t_{\text{max}}) \frac{q+1}{2} (h_u(t_{\text{max}}) \frac{1-q}{2} - \lambda c)$$

and so , since  $h_u(t_{\max}) \geq \delta$  for all  $u \in W_0^{1,2}(\Omega) - \{0\}$ , it follows that  $\phi_u(t_{\max}) > 0$  for all non - zero u provided  $\lambda < \delta \frac{1-q}{2}|_{2c} = \lambda_1$ . This completes the proof .  $\square$  It follows from the above lemma that when  $\lambda < \lambda_1, \int_\Omega a(x) \mid u \mid^{q+1} dx > 0$  and  $\int_\Omega b(x) \mid u \mid^{p+1} dx > 0$  then  $\phi_u$  must have exactly two critical points as discussed in the remarks preceding the lemma.

Thus when  $\lambda < \lambda_1$  we have obtained a complete knowledge of the number of critical points of  $\phi_u$ , of the intervals on which  $\phi_u$  is increasing and decreasing and of the multiples of u which lie in  $M_\lambda(\Omega)$  for every possible choice of signs of  $\int_\Omega b(x) \mid u \mid^{p+1} dx$  and  $\int_\Omega a(x) \mid u \mid^{q+1} dx$ . In particular we have the following result .

$$M_{\lambda}^{0}(\Omega) = \varnothing when 0 < \lambda < \lambda_{1}.$$
 Corollary 3.2.

Corollary 3.3. If  $\lambda < \lambda_1$ , then the reexists  $\delta_1 > 0$  such that  $J_{\lambda}(u) \geq \delta_1$  for all

$$u \in M_{\lambda}^{-}(\Omega).$$

*Proof*. Consider  $u \in M_{\lambda}^{-}(\Omega)$ . Then  $\phi_u$  has a positive global maximum at t=1 and

$$\int b(x) \mid u \mid^{p+1} dx > 0. \text{Thus}$$

$$J_{\lambda}(u) = \phi_{u}(1) \ge \phi_{u}(t_{\text{max}})$$

$$\ge h_{u}(t_{\text{max}}) \frac{q+1}{2} (h_{u}(t_{\text{max}}) \frac{1-q}{2} - \lambda c)$$

$$\ge \delta \frac{q+1}{2} (\delta \frac{1-q}{2} - \lambda c)$$

and the left hand side is uniformly bounded away from 0 provided that  $\lambda < \lambda_1$ .  $\square$  4. Existence of Positive Solutions

In this section using the properties of fibering maps we shall give simple proofs of the existence of two positive solutions , one in  $M_{\lambda}^{+}(\Omega)$  and one in  $M_{\lambda}^{-}(\Omega)$ . **Theorem 4.1.** If  $\lambda < \lambda_{1}$ , there exists a minimizer of  $J_{\lambda}$  on  $M_{\lambda}^{+}(\Omega)$ . Proof . Since  $J_{\lambda}$  is bounded below on  $M_{\lambda}(\Omega)$  and so on  $M_{\lambda}^{+}(\Omega)$ , there exists a minimizing sequence  $\{u_{n}\}\subseteq M_{\lambda}^{+}(\Omega)$  such that

$$\lim_{n \to \infty} J_{\lambda}(u_n) = u \in \inf_{M_{\lambda}^+(\Omega)} J_{\lambda}(u).$$

Since  $J_{\lambda}$  is coercive,  $\{u_n\}$  is bounded in  $W_0^{1,2}(\Omega)$ . Thus we may assume, without loss of generality, that  $u_n \rightharpoonup u_0$  in  $W_0^{1,2}(\Omega)$  and  $u_n \to u_0$  in  $L^r(\Omega)$  for  $1 < r < \frac{2N}{N-2}$ . If we choose  $u \in W_0^{1,2}(\Omega)$  such that  $\int_{\Omega} a(x) \mid u \mid^{q+1} dx > 0$ , then the graph of the fibering map  $\phi_u$  must be of one of the forms shown in Figure 2 ( c ) or ( d ) and so there exists  $t_1(u)$  such that  $t_1(u)u \in M_{\lambda}^+(\Omega)$  and  $J_{\lambda}(t_1(u)u) < 0$ . Hence,

$$\inf_{u \in M_{\lambda}} +_{(\Omega)} J_{\lambda}(u) < 0. \operatorname{By}(2.2),$$
 
$$J_{\lambda}(u_n) = (\frac{1}{2} - p \frac{1}{+1}) \int_{\Omega} |\nabla u_n|^2 dx - \lambda (\frac{1}{q+1} - p \frac{1}{+1}) \int_{\Omega} a(x) |u_n|^{q+1} dx$$

and so

$$\lambda \left(\frac{1}{q+1} - p\frac{1}{+1}\right) \int_{\Omega} a(x) \mid u_n \mid^{q+1} dx = \left(\frac{1}{2} - p\frac{1}{+1}\right) \int_{\Omega} \mid \nabla u_n \mid^2 dx - J_{\lambda}(u_n).$$

Letting  $n \to \infty$ , we see that  $\int_{\Omega} a(x) |u_0|^{q+1} dx > 0$ .

Suppose  $u_n negations lash-arrow right u_0$  in  $W_0^{1,2}(\Omega)$ . We shall obtain a contradiction by discussing the fibering map  $\phi_{u_0}$ . Since  $\int_{\Omega} a(x) \mid u_0 \mid^{q+1} dx > 0$ , the graph of  $\phi_{u_0}$  must be either of the form shown in Figure 2 ( c ) or ( d ) . Hence there exists  $t_0 > 0$  such that  $t_0 u_0 \in M_{\lambda}^+(\Omega)$  and  $\phi_{u_0}$  is decreasing on  $(0,t_0)$  with  $\phi'_{u_0}(t_0) = 0$ .

Since  $u_n negations lash - arrow right u_0$  in  $W_0^{1,2}(\Omega)$ ,  $\int_{\Omega} |\nabla u_0|^2 dx < \liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|^2 dx$ . Thus, as

$$\phi_{u_n}'(t) = t \int_{\Omega} |\nabla u_n|^2 dx - \lambda t^q \int_{\Omega} a(x) |u_n|^{q+1} dx - t^p \int_{\Omega} b(x) |u_n|^{p+1} dx$$

$$\phi'_{u_0}(t) = t \int_{\Omega} |\nabla u_0|^2 dx - \lambda t^q \int_{\Omega} a(x) |u_0|^{q+1} dx - t^p \int_{\Omega} b(x) |u_0|^{p+1} dx,$$

it follows that  $\phi'_{u_n}(t_0) > 0$  for n sufficiently large. Since  $\{u_n\} \subseteq M_\lambda^+(\Omega)$ , by considering the possible fibering maps it is easy to see that  $\phi'_{u_n}(t) < 0$  for 0 < t < 1 and  $\phi'_{u_n}(1) = 0$  for all n. Hence we must have  $t_0 > 1$ . But  $t_0 u_0 \in M_\lambda^+(\Omega)$  and so

$$J_{\lambda}(t_0 u_0) < J_{\lambda}(u_0) < \lim_{n \to \infty} J_{\lambda}(u_n) = \inf_{M_{\epsilon_n \lambda}^+(\Omega)} J_{\lambda}(u)$$

and this is a contradiction . Hence  $u_n \to u_0$  in  $W_0^{1,2}(\Omega)$  and so

$$J_{\lambda}(u_0) = \lim_{n \to \infty} J_{\lambda}(u_n) = \inf_{M_{\epsilon_n,\lambda}^+(\Omega)} J_{\lambda}(u).$$

Thus  $u_0$  is a minimizer for  $J_{\lambda}$  on  $M_{\lambda}^+(\Omega)$ .  $\square$ 

**Theorem 4.2.** If  $\lambda < \lambda_1$ , there exists a minimizer of  $J_{\lambda}$  on  $M_{\lambda}^-(\Omega)$ . Proof. By Corollary 3.3 we have  $J_{\lambda}(u) \geq \delta_1 > 0$  for all  $u \in M_{\lambda}^-(\Omega)$  and so  $\inf_{u \in M_{\lambda}^-(\Omega)} J_{\lambda}(u) \geq \delta_1$ . Hence there exists a minimizing sequence  $\{u_n\} \subseteq M_{\lambda}^-(\Omega)$  such that

$$\lim_{n \to \infty} J_{\lambda}(u_n) = \inf_{M_{\in_u,\lambda}(\Omega)} J_{\lambda}(u) > 0.$$

As in the previous proof , since  $J_{\lambda}$  is coercive ,  $\{u_n\}$  is bounded in  $W_0^{1,2}(\Omega)$  and we may assume , without loss of generality , that  $u_n \rightharpoonup u_0$  in  $W_0^{1,2}(\Omega)$  and  $u_n \to u_0$  in

$$L^{r}(\Omega) \text{for } 1 < r < \frac{2N}{N-2} \text{ By } (2.2)$$

$$J_{\lambda}(u_{n}) = \left(\frac{1}{2} - \frac{1}{q+1}\right) \int_{\Omega} |\nabla u_{n}|^{2} dx + \left(\frac{1}{q+1} - p\frac{1}{+1}\right) \int_{\Omega} b(x) |u_{n}|^{p+1} dx$$

and, since  $\lim_{n\to\infty} J_{\lambda}(u_n) > 0$  and

$$\lim_{n \to \infty} \int_{\Omega} b(x) \mid u_n \mid^{p+1} dx = \int_{\Omega} b(x) \mid u_0(x) \mid^{p+1} dx,$$

we must have that  $\int_{\Omega} b(x) \mid u_0(x) \mid^{p+1} dx > 0$ . Hence the fibering map  $\phi_{u_0}$  must have graph as shown in Figure 2 ( b ) or ( d ) and so there exists  $\hat{t} > 0$  such that

$$\hat{t}_{u_0} \in M_{\lambda}^-(\Omega).$$

Suppose  $u_n arrow right - negations lash u_0$  in  $W_0^{1,2}(\Omega)$ . Using the facts that

$$\int_{\Omega} |\nabla u_0|^2 dx < \lim_{n \to \infty} \inf_{\Omega} |\nabla u_n|^2 dx$$

8 K. J. BROWN, T. - F. WU EJDE - 27/69 and that, since  $u_n \in M_{\lambda}^-(\Omega), J(u_n) \ge J(su_n)$  for all  $s \ge 0$ , we have

$$J(\hat{t}u_0) = \frac{1}{2}\hat{t}^2 \int_{\Omega} |\nabla u_0|^2 dx - \frac{\lambda \hat{t}^{q+1}}{q+1} \int_{\Omega} a(x) |u_0|^{q+1} dx - p \frac{\hat{t}^{p+1}}{+1} \int_{\Omega} b(x) |u_0|^{p+1} dx$$

$$< \lim_{n \to \infty} \left[ \frac{1}{2} \hat{t}^2 \int_{\Omega} |\nabla u_n|^2 dx - \frac{\lambda \hat{t}^{q+1}}{q+1} \int_{\Omega} a(x) |u_n|^{q+1} dx$$

$$- p \frac{\hat{t}^{p+1}}{+1} \int_{\Omega} b(x) |u_n|^{p+1} dx \right]$$

$$= \lim_{n \to \infty} J(\hat{t}u_n)$$

$$\leq \lim_{n \to \infty} J(u_n) = \inf_{M_{\epsilon_n, \lambda}^-(\Omega)} J_{\lambda}(u)$$

which is a contradiction . Hence  $u_n \to u_0$  in  $W_0^{1,2}(\Omega)$  and the proof can be completed as in the previous theorem .  $\square$  Corollary 4 . 3 . Equation (1.1), (1.2) has at least two positive s o lutions whenever

$$0 < \lambda < \lambda_1$$
.

*Proo* f-period By Theorems 4 . 1 and 4 . 2 there exist  $u^+\in M_\lambda(\Omega)$  and  $u^-\in M_\lambda^-(\Omega)$ 

$$\operatorname{such}_{J(u^\pm)}\operatorname{that}_{=J}^{J(u^+)}(|u^\pm|) = \inf_{u \in \mathbb{Z}}\operatorname{and}_{|u^\pm|}^M + \lambda \in_{M_\lambda}^{(\Omega)}J_{\pm_{(\Omega)}}^{(u)} \operatorname{and}^{\operatorname{and}}J_{\operatorname{so}}^{(u^-)} = \inf_{\operatorname{assume}} -\lambda_{u^\pm}^{(\Omega)}J_{\geq\ 0}^{(u)}. \text{MoreoverByLemma}$$

 $2.2u^{\pm}$  are critical points of J on  $W_0^{1,2}(\Omega)$  and hence are weak solutions ( and so by standard regularity results classical solutions ) of ( 1 . 1 ) , ( 1 . 2 ) . Finally , by the

Harnack inequality due to Trudinger [6], we obtain that  $u^{\pm}$  are positive solutions of (1.1), (1.2).  $\square$ 

**Acknowledgement**. We would like to thank the referee for bringing [5] to our attention and for making the important observation that the fact that  $M^0_{\lambda}(\Omega)=\varnothing$  follows from sufficient knowledge of the fibering maps .

## References

- [ 1 ] P . A . Binding , P . Drabek and Y . X . Huang ; On Neumann boundary value problems for some—quasilinear el liptic equations , Electron . J . Differential Equations ,  $\bf 1~997$  ,  $\bf 1~997$  , no . 5 ,  $\bf 1~1~1~1$  .
- [2] K. J. Brown and Y. Zhang; The Nehari manifold for a s emilinear el liptic problem with a sign changing weight function, J. Differential Equations, 193, 2003, 481-499.
- [3] D. G. de Figueiredo, J. P. Gossez and P. Ubilla; Local superlinearity and sublinearity for indefinite semilinear el liptic problems, J. Funct. Anal., 199, 2003, 452 467.
- $[\ 4\ ]\ P\ .\ Drabek\ and\ S\ .\ I\ .\ Pohozaev\ ; \qquad \textit{Positive\ s\ olutions\ for\ the\ p\ -\ Laplacian\ :} \qquad \textit{application\ of\ the\ fibering\ method\ }\ ,\ Proc\ .\ Royal\ Soc\ .\ Edinburgh\ Sect\ A\ ,\ \textbf{1\ 27\ }\ ,\ (\ 1\ 997\ )\ ,\ 703\ -\ 726\ .$
- [ 5 ] Y . I l ' yasov ; On non l ocal existence results for el liptic operators with convex concave nonlin earities , Nonlinear Analysis ,  $\bf 6~1~$  , 2005~2~1~1~-236~.
- $[\ 6\ ]$  N . S . Trudinger , On Harnack type inequalities and their application to quasilinear el liptic equations , Comm . Pure Applied Math . 20 (  $1\ 967$  ) 721 747 .
- $[\ 7\ ]\ T\ .\ -\ F\ .\ Wu\ ,\ \textit{Multiplicity results for a semilinear el liptic equation involving sign-changing weight-function}\ ,\ to\ appear\ in\ Rocky\ Mountain\ J\ .\ Math\ .$

School of Mathematical and Computer S ciences and the Maxwell Institute , Heriot - Watt University , Riccarton , Edinburgh EH  $14\ 4\ AS$  , UK

$$E$$
 -  $mail\ address$  : K . J . Bro  $extbf{w} - extbf{n} @$  hw . ac . uk

EJDE - 207/69

### A FIBERING MAP APPROACH

O

Tsung - Fang Wu  $\,$  Department of Applied Mathematics , National University of Kaohsiung , Kaohsiung 8 1 1 ,

Taiwan

 $\it E$  -  $\it mail~address~:$  t f  $\,$  W - U  $^{\hbox{\scriptsize @}}$  nuk . edu . tw