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Let T'=T(A, D) be a self - affine ti le in R™ defined by an inte g — 7 al expanding ma r —t¢ ix A and a
digit set D. In connection wi t — h canonical number systems , we s « — t dy connectedness of T when D
co r — 1 esponds to h — t. set of consecutive integers

{0,1,...,| det (A) | —1}. It i s shown that in R3 and R*, for any integral expanding matrix A,T(A, D) is
connected .

We also s t — u dy the connectedness of Pi sot dual tilings which play an important rolein h —t. s t — u dy
of [— expansion ,

substi t — u tion and symbolic dynamical system . It i s shown h —tq each ti le generated by a Pi sot unit of
de g—Teedis

a — 7 cwise connected . This i s na w — ¢ rally expected s ince the digit set consists of consecutive integers as
above . However su 7 — p ri singly , we found families of di sconnected Pisot dual tiles of degree 4 . Also we
give a simple necessary and su f — fi cient condition for h —t. connectedness of the Pi sot dual tiles of degree
4. Asab y — product , a complete clas sification of t — he3— expansion of 1 for qu"~® tic Pisot units i s
given .

Keywords : Tiling , Connectedness , Pi sot Number , Fractal

1 I nt roductio n
A non empty set in R™ is called a ti le (i) if it coincides with the closure of its interior .  If a finite
set of tiles and the 7 — r translations covers the space R™ without overlapping , then we say it fo m — r
satiling . By
¢ without overlapping > we mean that the translated tiles are mutually disjoint up to an n— dimensional
set of Lebesgue measure zero .

In this paper , we will discuss the connectedness of tiles which a — r ise from two different kinds of
number
systems . Although the systems a — r e pretty different in nature and could be separately discussed , we
decided to put them together in a s ingle paper since the underlying ideas a — r e close and the reader
can find the sh p — r — a contrast between them .
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1.1 Tiles associated to expanding in tegral matrices .

Let M, (Z) denotes the set of n x n matrices with entries in Z. Let A be an expanding integral matrix
in M, (Z). The word * expanding ’ means that all its eigenvalues have modulus g — r eater than 1 . We
also say that a monic polynomial in Z[z] is expanding if all roots have modulus greater than one . By
definition , the ch a — r acteristic polynomial of the expanding matrix is expanding and vice versa . Let
| detA |= q and let

D = {dy,...d;} CR"™ be a set of ¢ distinct vectors , called a g— digit set . If we let S;(x) = A —1(544q,),
1 < j < g, then they are contractive maps under a suitable norm in R™[28] and it is well k — nyp, that
there is a unique compact set T satisfying T' = U§:1 S;(T)[15, 22], which is explicitly given by

00
T := T(A, D) = Z Aiidji : dji eD
i=1
. a . ;
Tli‘z%“)”“i is anattractorpositive. Indeed®’ thisthe system{S;positivenes,’, e:qlq;imlem“”d”istothew”edafactselft;Z{T_f’gfldtile:

a tiling . Basic questions and detailed studies on the tiling generated by T are found for example in J .
C .Lag® " ias-Y . Wang [28],R.Kenyon [25],C.Bandt [10],Y . Wang [43], A . Vince [ 42 ]
and their references .

One of the important aspects of self - affine tiles is connectedness . Hata [ 2 1 | has shown that if
{fj}ljglessequalfm
is a finite set of contractive maps (ii) of X, then the attractor K = K(f1,---, fi,) is a locally connected
continuum if and only if , for any 1 < i < j < m, there exists a sequence {ro,r1, -+, 7n, 41} C
{1,2,---,m} with rq =4 and r,41 = j such that f. (K)N f., (K)# @ for k € {0,1,---,n}. Note
that if a tile is connected then it must be arcwise connected . This is seen in the same proof by Hata [ 2
1] . Thus after all

Arcwise connectedness and connectedness are equivalent
in our framework . We will confirm this point also in the Pisot case in the proof of Theorem 4 . 1 on
page 287 in a slightly different context , the graph d i — r ected sets case (¢ . f. | Luo - Akiyama
- Thuswaldner [ 29 | ) . Hacon - Salda™" a - Veerman [ 20 | have shown that , if | det A |= 2 and
D = {0,v} C Z™ is a complete set of coset representatives of the quotient g — r oup Z"/AZ™, then
T(A, D) is a connected tile .  Gr 6 chenig - Haas [ 1 9 ] have proved the existence of connected self -
similar lattice tilings for parabolic and elliptic dilations in dimension two . Kirat - Lau [ 26 | , using a
graph a — r gument on D, have rediscovered Hata ’ s above criterion of connectedness . Also they have
shown the following su f — fi cient criterion , which we will use in the proof of Theorem 3 . 1 on page
279 and Theorem 3 . 2 on page 28 1 . Afterwards we will call it a Kirat - Lau Crite” % on .
Let A€ M, (Z) be an expanding matriz with | det A |=q and p(z) be i ts characteristic

polynomial .
Let D ={0,v,--+,(¢—1)v} with v € R™\ {0}. Suppose that there exists a polynomial g(z) € Z[zx] (
which will be called multiplyingfactor ) such that

hz) = g(x)p(z) = 2 + ap_12" " +ap_22" P+ +aiztg

with |a; |<q—1, for 1<i<k—1. Then T(A,D) is connected .

The idea of this ¢ r — i terion is to find a common point on consecutive two tiles T+ kv and
T+ (k+1)v
and to apply Hata ’ s type criterion mentioned above . As it is easy to desc r — i be in this way all
expanding



(ii) Hata [21]studied “we a — k ’>con 7 —t actions , a slightly general concept .
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polynomials of de g — r ee 2 , K r — i@ and Lau succeeded in proving the connectedness of a tile for a
suitable digit set in dimension 2 .

In the first p®~" t of this paper , we are interested in generalizing their results to higher dimensional
cases

using the digit sets co r — r esponding to consecutive integers {0,1,...,| det (A) | —=1}. We will show
the following theorem , using the Schur - Cohn criterion reviewed in Section 2 on page 275 .

Theorem 1.1 Let d = 3,4dand A € M4(Z) be an expanding matriz with | detA| = ¢ and
D =

{0,v,- -, (¢ — Dv} with v € R4\ {0}. Then T(A, D) is connected .

The proofs are settled separately in Theorem 3 . 1 on page 279 and Theorem 3 . 2 on page 28 1 .
They are almost done by b r — u te force and are quite complicated having lots of subcases . However
this result gives an evidence of a widely believed speculation that all such ¢ consecutive integer digit tiles
" may be connected . This is in good contrast to the later part of this paper .

We do not intend to consider general digit sets but only use digits which co r —r espond to consecutive
integers .  One reason of this restriction is that this case is essential and widely s t — u died in relation
to canonical number systems . For canonical number systems and attached tilings , see K ¢ tai - K
hungarumlaut — o rnyei [ 24 ] , Kov 4 cs - Peth hungarumlaut — 0[27], Gilbe r — t[18]. Recent progress
on topological s u — ¢ dies on this tiling are seen in Akiyama - Thuswaldner [ 6, 7] .

Another reason is as follows . As it is easy to find a disconnected tile when we choose ¢ scattered ’
digit sets , an interesting d ¢ — r ection is to find a connected tile for a given expanding matrix A. Thus
it may be just awkward to consider general digit sets in higher dimensional cases , since we are already
able to show the connectedness only by using consecutive integers .

1.2 Tiles associated to Pisot units .
Now we will explain the later p®~" t of this paper . Let 8 > 1 be a real number which is not an integer
A

greedy expansion of a positive real z in base J is an expansion of the form :

_ poo —i __
T = PiszOafiﬂ = aNpy; ANg—1, *"A0-G-1G_2...

with a_; € Ag =1[0,8) NZ and a greedy condition

0<z— PiVNOa_iﬁfi <B™N VYN>-N.

Thej, integerpart ofx is nan0
la—rly. Thisexpansion fO?”

is defined simi -

Ug:z — fr— | Sz

keeping track its c a —r —ries [Bx| € Ag. Basic properties of this expansion are summ r — a ized in
[30 ] . To fix our notations we briefly review them . Denote by A%( resp ..A%) the set of finite words on
Ag( resp . the

set of right infinite words on Ag). Let 1 = d_1871 +d_2872 + - - - be an expansion of 1 defined by the
algorithm

c_i=pfc_it1— [Beiz1], d_i=[Bc_iy1]

with ¢y = 1, where |2 | denotes the maximal integer not exceeding x. In other words , this expansion is

1)

infinite

achieved(?,, v e Atﬁhe“ trajectoy,? . 0fUgright

(n — 1, word2, ...).dggeneratedl();) = .d_1,repetitiond

fa

-1, iY=—N — .
TN aNOO,l)ispToduced"'a'O' = Zby iterating0a—i B~ "thegandthe fractionaltrans for

---istha



shown that the f— expansion of 1 can be ch a — r acterized by the conditions of lexicographic order , as
follows :
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different from 1,0%, such that Y ,o,d_;87" =1,
with d_; > 1 and for ¢ > 2,d_; < d_1, then d is the 3— expansion of 1 if and only if :

Vp > 1,0%(d) <jez d, (1.1)
where o is the shift defined by o((x;)i < M) = (x;-1)i < M. He also has shown that a sequence
r = x1,T9,- - of nonnegative integers is realized as a S— expansion of some positive real number if

and only if it satisfies the following lexicographical condition :

Vp >0, oP(x) <ier d*(1) (1.2)
dg(1), ifdg(l)isinfinite;
(d_1,d_g, - d_pt1,(d—p — 1)“, ifdg(l) =d_q, -, d_p.

In this case this sequence x = x1,xo, - - - is called admissible .

Hereafter let 5 be a Pisot number which is an algebraic integer greater than 1 whose Galois conjugates
other than itself have modulus smaller than 1. Let Q(/5) > 0 be nonnegative elements of the minimum
field containing the rational numbers Q and /. Bertrand [ 1 2 | and Schmidt [ 36 | showed that any
greedy
expansion of x € Q(8) > 0 is even ally periodic , which means that there exists a positive integer L
such that a_ny = a_n_j, for su f — fi ciently large N.  We call a Pisot unit a Pisot number which is
also a unit of the integer ring of Q(5). The symbolic dynamical system Xz attached to S— expansion is
the subshift
of the full shift .Alg whose language consists of all admissible words in A} Xp is sofic if and only
if the expansion of 1 is eventually periodic (see [13]). Especially when § is a Pisot number it gives
a sofic system . Thurston [ 4 1 ] introduced an idea to const r — u ct a self - affine tiling generated by a
Pisot unit 8 which is a geometric realization of this sofic system Xg. Akiyama [ 2 ] and P — r aggastis
[ 34 ] studied in detail such self - affine tilings . G . Rauzy [ 35 ] already const r — u cted this i — k nd
of tiling in a different approach closely related to substitutions . This tiling has a strong connection to
the explicit const r — u ction of Markov partitions of dynamical systems , hopefully toral automo r — p
hisms . See also P . Arnoux - Sh. Tto [9] .

Let us recall this tiling by Pisot units , which is called dual tiling , following the notation of [ 2 ] . Let

withd*(1) = {

t—u

ﬂ - ﬂ(l),ﬂ(Q)’ ty 5(T1)andﬂ(”+1), ﬂ(r]_JFl), . ..7ﬂ(rl+7"2)’ 6(7’1+r2)

. , . ) b j .
bethethecor—responding r€al and the complez conjugatescony ugates;’}fe(@ (8). respectwelygzjecineamap @alsoffé?é’fc jwl JS—Fng)Q _(j

by 2, - -1+ 2rs)

®(z) = “x(2)’. . ~,x(”1), grg(w(rﬁrl))’ g(x(rﬁl))’. - §R(x(ﬁ+rz))7 g(x(rﬁrrz))//.

Let A=a_j,a_s,--- be a greedy expansion in base 3 of an element Z[3] N[0,1). Define S4 to be the
set of elements of Z[3] > 0 whose g — r eedy expansion has the su fi — f, A. In other words we classify
all

elements of Z[3] > 0 by their fractional p®~" t and map them via ® to have a tile T4 = ®(S4). An empty
word is designated by A and the tile T} is called the central tile . As already noticed in Thurston [ 4 1
] , the Pisot condition gu® " antees that T4 is compact and the rest ¢ — r ction to units is necess a — r



y to have a tiling by this const » — u ction . Therefore we restrict ourselves to Pisot units . Under this
restriction , it is not so easy to
show that these T4 give a tiling of the space R"172"2 — 1 though we expect it is always valid . Let Fin

(8)

be the set of all finite beta expansions . This is obviously a subset of Z[1/8] > 0. If 5 s atisfies

Fin(p) = Z[1/] = 0,
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then we say that § has finitely expansible property parenleft — F'). This property ( F ) implies that
is a Pisot number (see [ 1 6] ) . It is comparatively easy to const » — u ct a tiling defined by Pisot
units with ( F ) , in the above sense ( [2]) . In [ 5] , we introduced a wider class of Pisot units with
this tiling property called weaklyfiniteness . It is conjectured that this property holds even for all Pisot
numbers (c¢. f.[8],[38],[39]). In this paper , we do not discus s further this tiling property .

The second aim of this paper is to explore the problem of connectedness of Pisot dual tiles of low
degree using again the Schur - Cohn crite r —1i,,, discussed in Section 2 on page 275. A general arcwise
connectedness criterion for Pisot dual tiles is established in Theorem 4 . 1 on page 287 .

Furthermore we can prove the following theorem .

Theorem 1 . 2 Each tile corresponding to a Pisot unit [ is arcwise connected if dg(1) terminates with
1.

The proof is found after the one of Theorem 4 . 1 on page 287 . Our conjecture is that for all Pisot
units
with finite S— expansion of 1 , the last non zero digit of dg(1) must be one . The conjecture is t r —u e
especially
for cubic Pisot units 8 with finite S— expansion of 1, (see [4],[1 1] ) and as we prove in Theorem 4
. 9 on page 307 it is also t r — u e for qu" ™% tic Pisot units 8 with finite 5— expansion of 1 .

To treat all Pisot units , Theorem 1 . 2 is not enough since the f— expansion of 1 is not finite in

general .
Let p be the characte r — ¢ stic polynomial of 5. If p(0) = 1 then the S— expansion of 1 cannot be finite

( see

P —r oposition 1 of [ 1] ) . Even when p(0) = —1 there r — a e many such cases . Including these cases
, we can generalize the above conjecture :

Conjecture 1 Let (3 be a Pisot unit and consider i ts eventually periodic B— expansion of 1: dg(l) =

'd71> ) d*'ru (dfnfla ) d,n,k)”.Then
dep_p —d_p = £1.

This conjecture is shown to be valid for de g — r ee less than 5 in this paper . More challenging would
be the following conject™* re :
Conjecture 2 Let 3 > 1 be a real number and assume that i ts B— expansion of 1 is eventually periodic
with dp(l) = .d_1, -, d_p,(d—p—1, - yd_p_r)“. Then |d_,_ —d_, | coincides with the absolute
value of the norm of B.

This conjec' ™" re was first fo m—r ulated in [ 3] . Strong numerical evidence exists for this conjecture
. How - ever , unfortunately the Pisot dual tile can be disconnected even if this conjecture ist r —u e .
We summa i — r ze our main results in the following theorem .
Theorem 1 . 3 Let 8 be a Pisot unit of degree 8 or 4 defined by the monic polynomial p(zx) € Z[zx]. If
deg B =3 or p(0) = 1 then each tile is connected . If deg =4 and p(0) = —1 then each
tile is
connected if and only if

at+c—2|p] =1

forp(z) = z* — ax® — bz — cx — 1.
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These s tatements a — r e a combination of Theorem 4 . 4 on page 29 1 , Theorem 4 . 5 on page 292
, Theorem 4 . 7 on page 301 and Theorem 4 . 8 on page 307 . In spite of the quite simple na ¢ — ¢
of the s tatement , the proof is pretty involved having lots of subcases . However we may say that this
result gives us a bre a — kyr — h ough .

In fact , if deg 8 =4,p(0) = —1 and a + ¢ — 2[f] = 1, there exists a disconnected tile . Asfa—r
as we know , no example of disconnected Pisot dual tiles was known before .  As these tiles a — r e
generated by consecutive integers , it was even expected that Pisot dual tiles a — r e always connected .
Thus this result gives an unfortunate su r — p rise that there exists a concrete family of Pisot units one
of whose dual tiles is disconnected . ( See a rem a — r k after Theorem 4 . 8 on page 307 . )
Fig . 1: The proj ection of the central tile ( disconnected ) generated by ¢ — he Pisot unit S wi h —t minimal
equation xt—

323 -T2 —62—1=0

W — henB— expansion of 1 is eventually periodic ,w®™" te it as

dﬁ(l) =C-1, ...C_M(C_M_l...C_M_L)w

with c_pr # c_p— . We say that the period ( resp . preperiod ) of f— expansion of 1 is L( resp .M).

As a byproduct , we will give a complete classification of the 3— expansion of 1 for cubic and qua™~*
ic Pisot units in Theorem 4 . 3 on page 290 , Theorem 4 . 9 on page 307 and Theorem 4 . 6 on page 298
which are na t — u rally proven during our proofs . Theorem 4 . 3 on page 290 was proved by Bassino [ 1
1] . She computed the S— expansion of 1 for any cubic Pisot number , including non units . In view of
the prominent role of the expansion of 1 in symbolic dynamics of beta expansion , it is worthy to state
independently Theorem 4 . 9 on page 307 and Theorem 4 . 6 on page 298 . It is also an unfo r — ¢
unate su p — r rise that there is no uniform bound on the length of the expansion of 1 for qua”~¢ ic Pisot
units with finite 8— expansion of 1 . Also , there is no uniform bound on period and preperiod of the
expansion of 1 for qu®~" tic Pisot units with infinite S— expansion of 1 . The next table m a — k.5 the
situation cle r —a er .

Further study of connectedness may be explored in a different setting . Pisot dual tilings under a
certain condition a —r e fo m — r ulated as a geometric realization of substi ¢ — u tive dynamical system

Cante ¢ —r ni [ 14 ] s t — u died connectedness of such substitutive tilings and gave general criteria
which works for these tiles . It
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’ Table ignored!

Tab . 1: Length bounds related to the expansion of 1 .
may be f r — u itful to extend the above conjectures to his si u — t ation and to study the connectedness
of a family of substitutive tiles .

This paper is organized as follows : In Section 2 , we prep e some results related to the Schur -
Cohn criteria to count the number of roots inside / outside the unit ¢ ¢ — r cle . Section 3 on page 279
is devoted to the connectedness of tiles associated to expanding integral matrices of low degree by the K
i —r at - Lau crite ¢ — r on . Tiles associated to Pisot numbers a — r e treated in Section 4 on page 287

The beginning of Section 4 on page 287 is of importance .  We give a proof of Theorem 1. 2 on
page 273 and describe a method to prove connectedness of Pisot dual tiles . This is more complicated
than the one in Section 3 on page 279 but the underlying sp’~" it is simil » —a.  Then we show in the
subsections 4 . 1 and 4 . 2 the connectedness for quadratic and cubic Pisot units . Later subsections
are for the qu®~" tic Pisot units .  The idea of the proof of disconnectedness is found in Lemma 3 on
page 300 in this las t section .  In few words , we show the disconnectedness of a proj ection of the tile
along the d 7 — r ection of the negative real root and use the forbidden words for beta expansions in A}
to ¢ cut ’ the tile .  Convenient lists a — r e found in Figure 2 on
page 309 and Figure 3 on page 3 1 0. In the shaded box , the expansion of one is not written in a
fixed length . Readers find the explicit form in Theorem 4 . 9 on page 307 and Theorem 4 . 6 on page
298 . The four disconnected cases are also indicated in Figure 3 on page 310 .

2  Expanding po | ynomials and P i sot po | ynomials

Let f(z) = >, a;xz" " be a polynomial with complez coefficients a; within this section . Admitting
an

abuse of terminology , we say that f(x) is an expanding polynomial if each root has modulus g — r eater
than one . A monic real polynomial f is a Pisot polynomial if it has a real root greater than one and
other roots

a — r e inside the unit ¢ r — ¢ cle and additionally | a, | > 1. These definitions agree with the
original si t — u ation

when f(x) is the i » — r educible polynomial over Z of an algebraic integer .

We briefly review the Schur - Cohn crite r» — i,, to count the number of zeros inside / outside the
unit ¢ r —¢ cle . In the literature , the Schur - Cohn ¢ r — ¢ terion is often explained in the simplest case
that all the dete m — r inants
a—renon zero (iii ). In general , this restriction leads us to a difficulty to characte i —r ze polynomials
with prescribed location of zeros , in terms of a single family of polynomial inequalities . However for
expanding polynomials , such a characterization is well known . Further a ch a — r acterization of Pisot
polynomials will be given ( Theorem 2 . 2 and Coroll a —r y 2 . 2 on page 278 ) , which will be used
later on .

The reciprocal polynomial of f is defined by f*(z) = xdegff(l/z), Let D,, = D, (f) be the dete r —m
i - nant of following 2n x 2n matrix with coefficients :

a—T

aj—1, . . ; . .. . .
) - forforl, < +iy < <niand’,, < jand <ii_ 4+ j <1
bi; = eight — less — colon ~ @i—j, - -

0, oh —terwise

(iii) A cle a— 7 and original description including such degenerate cases i s found in [40]. Ane 7 — a lier version of

—t

t — h;s section was based on t — h;s Japanese book , without noticingh’ e stand @ — 7 d name after Schur - Cohn .
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r — tes Tepresent O .

Table ignored!

U
n 2n

which is the resultant of f and f*. Hence D,, = 0 if and only of there exists an inversible root [, that
is, f(B) = f(1/ B) = 0. Especially if a real polynomial f has a root on the unit circle then D,, = 0.
By definition , D,, # 0 for expanding polynomials and Pisot polynomials with n > 3, s ince | a, |> 1
does not allow an inversible root . Delete the n— th ,2n— th rows and columns from D, to get a
2(n—1)x2(n—-1)

matrix with dete r —m inant D,,_;. From D, _; we create D,,_5 in the same way . Continue 1 k — i, this
till we

get

’ Table ignored! ‘

Then the famous Schur - Cohn ’ s crite r —io,( ¢ . f. [31])is
Theorem 2 . 1 Assume that D; #0(i =1,...,n) and le t p be the number ofsign changes ofthe sequence
1,—D1,Da,....(=1)"D,,. Then f(z) € Clx] has p zeros inside the unit circle and no zeros on the unit
circle .
A technical problem arises from the non vanishing assumption on D;.

Example 1 We have (D, Dy,...,Ds) = (1,0,0,0,1,5) for z°—22* —22% — 22 — 22+ 1 and
(1,0,0,0,1,—5) for % —2x* — 2% — 222 — 22 + 1. However the situation ofzeros is the same : there are
ezxactly wo roots in the unit circle and three outside for both polynomials . When consecutive zeros

appear in Dy, Da, ..., Dy, the number of sign changes of 1,—D1,Da,...,(—=1)"D,, does not te Il how
many roots lie in the unit circle .

The clas sical theo » — y of Schur - Cohn assures that there is a way to escape from such a situation
by t k — a ing different principal minors of the co r — r esponding quadratic form (¢ . f. [40]),
or by replacing f with other polynomials which have as many zeros as f( ¢ . f. Theorem 45 . 1 and
Theorem 45 . 2 0f [31]) .

However this is not convenient in practice .  As we wish to derive results on families of polynomials
, exceptional treatments should be reduced to a minimum .  For this pu r — p ose , we prep”~® e some
necess a — r y and sufficient conditions of expanding polynomials and Pisot polynomials .
Corollary 2 . 1 Thepolynomial f(x) € C[x] is expanding ifand only if sgn (D;) = (—1)% for i=1,...,n,
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we define

1 2z>0
sgn(x) = braceex — bracele ftmid — braceex — braceleftbt —1 x <0
0 z=0.

The origin of this Coroll a—r y dates back to Hermite and Hurwitz who connected the root distribution
problem with the inv a — r iants of He m — r itian fo r —m s .  The determinants D; do not vanish
because they are principal minors of a positive definite Hermitian forms . We derive this Coroll a — r y
2 . 1 by slightly extending
Marden ’ s argument in page 1 94 — 200 of [3 1] (c. f. [17]) . Define f0(z) = f(z) and
fil(x) = &) fi()- o
O,(f)f;‘ (z) for j =0,1,....,n—1 with f;(z) = >} kD zn=i=k D j—r ect determinant computation yields

fk 4 1(0)Dy, = — f1(0)... fk(0) Dyys

and hence

sen(DDeg1) = —sgn(F1(0)-.. £k +1(0)) (2.1)

provided f1(0)...fk+ 1(0) # 0, which is (43 . 4 )in [3 1] (iv ). A cr —u cial fact is If f; has p,
zeros inside the unit circle and f;41(0) # 0, then f;41 has

. . i fFi1(0
picl={ j—p; TP <> 0" (2.2)

zeros inside the unit circle . The set ofzeros on the unit circle of f; coincides with that of fj41.
which is a consequence of Rouch é ’ s theorem for circles of radius 1 4+ ¢ with small € * s , using the
equality
| f(2) |=] f*( z) | valid on the unit ¢ i — r cle .

Proof of Corolla r —y2.1. The su fi — f ciency of the condition sgn (D;) = (—1)* is a direct
consequence of
Theorem 2 . 1. Let us prove the necessity . We claim that that if f;41 has a root in the closed unit
disk then ‘ A
f; also does . To show this , we divide the situation into t h — r. cases . If | ngj)_j > | 0 | then ( 2
. 2) gives

p; =pj+l >0. If|n¢(1j)_j < \Ogj)|thenpj:nfjfpj+1 >0sincepj+1 <n—j-—1L1
Finally _

if | n ),j |=] 0% | then the leading coefficient and the constant te  — m of f; have the same absolute
value ,

proving that at least one root of f; is in the closed unit disk . This shows the claim . As f is expanding
, this claim shows that f; is also expanding for j = 1, ..., n. Therefore f;(0) can not vanish for j =1, ...n.
Observing ( 2. 2) again , since p; =0 for j = 0,...,n, we have f;(0) > 0 for j = 1,...,n. The relation (
2. 1) implies that sgn (DyDy+1) = —1, which shows the as sertion . a50

We give a characterization of Pisot polynomials , which does not seem to have been w” ™ tten down
elsewhere although it follows from the above reviewed results .

(iv) Dy = (—1)*Agin[31].
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Theorem 2 . 2 Fach Pisot polynomial satisfies f(1) < 0and D; < 06 = 2,..,n).
Conversely a

polynomial f(x) = 2" +a1a" L + - -+ + a, € R[z] is a Pisot polynomial if f(1) <0 and D; < 0(i =
2,..,n). If a, # +1 then every Pisot polynomial satisfies f(1) <0 and D; < 0(i = 2,...,n).

In other words , provided a,, # %1, a Pisot polynomial is characterized by a system of inequalities
f(1) <0and D; < 0(i =2,...,n). It is likely that this ch a — r acterization is also valid for a,, = 1. We
prove some cases of low degree in Corolla —ry 2. 2.

Proof : Assume that a monic f € R[z] is a Pisot polynomial with | a, | > 1. As there is only one real
root greater than 1 , we have f(1) < 0. Using f1(0) =| a,, |> =1 > 0 and (2.2), f1 and f have the same
number of roots inside the unit ¢ i — r cle . As f1l is of de r — g ee n — 1, f{ must be an expanding
polynomial .

Thus Corollary 2 . 1 reads sgn (D;(f;)) = (—1)7 and thus sgn (D;(f1)) = (=1)7 sgn (D;(f)) =1 for
j=1,..,n— 1. Employing the formula (43 .3 )in[31]:

FL0Y*2D;(f) = —=Dj-1(f1)

with f1(0) =| an |* =1 > 0, we get D; = D;(f) < 0 for j = 2,...,n, proving the las t statement . Now
we consider the case a,, = £1. We replace a; by a; + ¢; with small ¢; * s , and we write the co r — r
esponding

Schur - Cohn determinants as i(DE“'“’E”). If | ap +&p [> 1 then i(DEI’“"g") < 0 by the above discussion .

As igl’”"s”) — D; when (g1, ...,&,) tends to 0 , we have D; < 0 for ¢« = 2,...,n. This proves the first s
tatement of the Theorem .

It remains to show that f(1) < OandD; < 0(¢ = 2,..,n)isasufficient condition to have
a Pisot polynomial .  Let us st a —r t with the case |a, | > 1. Since f(z) is a monic polynomial
in R[z] and D; < 0(i=1,...,n), Theorem 2 . 1 implies that there a — r e exactly n — 1 zeros inside the
unit cr —icle. f(1) < 0 shows the existence of at least one positive root greater than 1 , proving
that f is a Pisot polynomial . Finally let us as sume that f(z) € R[z],| a,, |=1,D; < 0(i = 2, ...,n) and
f(1) <o.
Choose a small real ¢ such that | a, +¢|> =1 > 0. Substitute a,, by a, + ¢ and denote by i(DE) the

co r — r esponding Schur - Cohn determinants . Then following the same discussion ,i(DE) < 0 for
1 =1,2,...n implies that f(x)+ € is a Pisot polynomial .  On the other hand , D,, # 0 implies there
a —r e no zeros of f on the unit ¢ i —r cle , because , by definition , D,, is the resultant of f and f*. As
the roots are continuous

f — u nctions with respect to coefficients , this shows that f is a Pisot polynomial . a50

Corollary 2 . 2 If n =3 or n = 4 then a monic polynomial f(z)=a" +ax" 1+ - - +a, €R[z] is a
Pisot polynomial if and only if f(1) <0 and D; < 0(i =2,...,n).

Proof : According to Theorem 2 . 2 , it remains to show that if f is a Pisot polynomial with a,, = +1,
then D; # 0(i = 2, ...,n). Recall that D,, # 0 for Pisot polynomials with n > 3. Note that

1 ai Qan,
1 ap_1 a
Dy = n-l 1" =(=14+n2+ a1 —anar))(=14+n2 —a,_1 + anay).
ap  Ap-1
an, a1 1

Dy = 0 implies a,,_1 = ana;. From the two equalities a,, = +1 and a,,_1 = ana; we deduce D3 = 0,
which shows the case for n = 3. For the quartic case , we have
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Dy= —(a1 —ag +az)(ay + az + az) (24, — 4ag — 32)?
Dy = —(a1+a3)*(2a, —4az —a3) foras =-1
Dy = —(a1 +a3)?
and
Dy= —(a; —a3)*(—2+ a1 —az +a3)(2 + a1 + as + a3)
D3= —(a; —a3)®*(a; +a3) foras=1.
Dy = —(a1 —as)’
If ag = —1, then Dy = 0 or Dy = 0 happens only when ag = —ay, since Dy # 0. But this implies

Dy = 164,, > 0. Together with the fact that Theorem 2 . 2 gives Dy < 0, we have Dy = 0, a contradiction

If ay = 1, then Dy = 0 or D3 = 0 happens only when a3 = —a;y. This gives Dy = 164,, (2 + a2)? >0

which leads us to the same contradiction . a50

3  Connectedness of self - af fine t ilings generated by an expanding
matrix

In this section we shall prove connectedness of tiles generated by an expanding matrix , up to de g — r

ee 4 .

3. 1 Connectedness of sel?~hwrher af fine tilings generated by an expanding cubic ma

trix
The next lemma is an explicit fo r — m of Coroll r —a y 2 . 1 on page 276 .
Lemma 1 The polynomial p(x) = x® + ax? + bx + ¢ with integer coe f — fi cients is expanding if and
only if

110" = tact) << Ja® = +1;, (3.1)

Theorem 3 . 1 Let A € M3(Z) be an expanding matriz with | detA |=q and D = {0,v,---, (¢ — 1)v}
with v € R3\ {0}. Then T(A, D) is connected .

Proof : Let p(z) = 2 4+ ax? + bz + ¢ with a, b, c € Z be the ch a — r acteristic polynomial of A, which is
expanding . We s t — u dy the following two systems of inequalities , equivalent to (3. 1) :

. a— + e
eight — greater — greater — less — greater — greater — colon abb— — +%Cacp? 4+= ¢ 2222 <

<5045 —2,, and colon — gr

0
>
(3.2)
From the first one , we get the following bounds for the coefficients :

c>2 —2c+2,<b<2c—-1, —c+1<a<c+1,

while from the second we have :

c< =2, 2c4+2<b<-2c—-1, c—1<a<—c—1.
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To show the connectedness of T'(A, D), we use the K i —r at - Lau Criterion .  Since the way of finding
the multiplying factor is the same for both systems , here we solve only the first system . We can divide
the classification into the following cases : Case! Suppose that —2c¢ +2 < b < —c. From the system ( 3
. 2 ) in this case we get —b—c<a<c—1 N

and0<1l+a<ec.
¢Ifa> —-b—cthen —c+1 <a+b<0.Wealso have that —c <b+¢<0. So the required

polynomialish(z) = (14 z)p(x) = 2* + (1 4+ a)z® + (a + b)z* + (b+ )z + c.
¢ If a = —b — ¢ then the required polynomial h(z) is :

P +A+a)* +(1-c)® +(b+c)z+ec= (2> +z+1)p(x).
Case? Suppose that —c+1 < b < —1. From the system ( 3 . 2 ) in this case we get -b—c<a<c—1

which implies that —c+1 < a < ¢—1. So in this case the multiplying factor is g(z) = 1. Casef, Suppose
that 0 < b < ¢ — 1. From the system (3. 2 ) in this case we get 24+ b — ¢ < a < ¢ which

impliesthat —c+2 < a < c.

¢ If a < ¢— 1 the multiplying factor is g(z) = 1. ¢ f a =cthen b > 1land 1 —c < b—¢ < 0, so the
polynomial h(z) is

t(e—D2d +(b—c)x® +(c—bx—c= (z—1)p(x).
Casef Suppose that ¢ < b < 2¢ — 1 which implies that —c¢ < ¢ — b < 0. From the system ( 3. 2 ) in this
case we get —1 <b—a<c—2and1<1—-a<c
¢ If a < 1+ c the required polynomial h(z) is

4+ (a—D2* +(b—a)z? + (c— bz —c= (z — 1)p(x).
¢lfa=14+cthenb>c+2,—c+1<b—-2c<0,-2c+2<2c—2b+1<0.
O If —c+1<2c—2b+1<0 then the requ’~" ed polynomial h(z) is

2 (c—1Dzt +(b—2c—1D)a® + (2c—2b+ 1)z + (b —2¢)z + ¢ = (z — 1)*p(x).

QIf —2¢+2<2¢c—2b+1< —cthen —c+1<3c—2b+1<0and —c<2b—4c—-1<—-1.01If
2b — 4¢ — 1 > —c then the required polynomial h(z) is

74+ (c—1)28+(b—2¢) x5+ (3c—2b)x* +(2b—4c—1) 23 + (3¢ —2b+1) 2% +(b—2¢)x+c = (2% 4+1) (2 —1)™°"P(z).
o If 2b — 4¢ — 1 = —c then the required polynomial h(z) is

28+ (¢ —1)2° + (b —2¢)z* + (2¢ — b)x — ¢ = (3,22 4+ 22 — 1)p(x).
ad0

3.2 Connectedness of — sel/~hwphen of fine tilings generated by an expanding quartic
ma -

triz
From Coroll a —r y 2 . 1 on page 276 , we deduce
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with integer coe f — fi cients is expanding if and

only if

d>2,
eight — greater — greater — less — greater — greater — colon | ¢ —ad |< d* -2,

o+ cl<1 + b+d, <0

— 14+b —acc—plus2y dplus—a2d—2bd—acdd—plus24+bd2—d3
or (3.3)
d< -2,
2
eight — greater — greater — less — greater — greater — colon lc—ad|<d” -2,
—d

o+ cl<—1- b—d, >0
— 1+b —ac C_plusidplu57a2d72bd—acdd7plus2+bd2—d3 :

Proof : From Coroll a — r y 2. 1 on page 276 we observe that :

D2 >< 00 = |c—ad|< d? -2,

g (@2 )b ke (4, 4+ S aad ) < Oaed + d® + bd® — d¥) > 0
D3 <0 < or

7 (@2 )4 )2t (4 4+ S aad ) > Oacd + d* + bd® — d¥) < 0,
Dy>0 < |a+c|<l+b+d or |a+c|<—-1-b—d.

and that :
) <—1-b— .
iy <dP-2% el g e hen (=T 1t a4 (G e = aded) <> o
" et o< O

Second , since for the expanding polynomial p(0),p(1) and p(—1) have the same sign ,

d>2 =|a+c|<l+b+d
d< -2 =|a+c|<—-(1+b+4d).

We get the des ¢ — r ed result (3.3). ab0

Theorem 3 . 2 Let A € M4(Z) be an expanding matriz with | detA|=d and D ={0,v,---,(d—1)v}
with v € R*\ {0}. Then T(A, D) is connected . Proof : Let p(x) = x* + az® + bz? + ¢ — x + d with
a,b,c,d € Z be the characte i — r stic polynomial of A, which

is expanding . From the systems of inequalities ( 3 . 3 ) we get the following bounds for the coe f — fi
cients :

|d|>2, —|d|<a<|d|, =3|d|+8<b<3|[d|-8 —3|d|+6<c<3]|d]|—6.
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d< -2,

C’onditionsieight — greater — greater — less — greater — greater — colon o plus—a’d—2bd—

) lus2  —
2 —acc—plus
ad|<d \c’1+ ela—17"

+p

d>2

- 7

Conditions®eight — greater — greater — less — greater — greater — colon o
_ ad |< d°—2

a—'rninuscplus—c2+ da—plus®d—2bd—
7|c(alt+bc\ <14b+d,

Since the matrix A is expanding if and only if —A is expanding and the characteristic polynomials of
both
matrices a — 7 e monic polynomials , we may choose p(x) or p(—z) appropriately in the proof , which
enables us to assume that a > 0. Now we use the K i — r at - Lau Crite ¢ — r on again .
First suppose that the coefficients of the polynomial p(x) satisfy Conditions 1 with @ > 0. Here we
d< =2,

b+d+1<a+c
1—d?> <c—ad -

— 1+ ba — min

have 2 possibilities : Case lgreater — greater — greater — less — greater — greater — greater — colon

d< -2,
O<a+c<-b—d-1,
l-d*<c—ad<d® -1,

b—acc— plusidplus —a’d — 2bd -

or Case 2greater — greater — greater — less — greater — greater — greater — colon

Let us see the range of the coefficients in Case 1 . We get that

do < < — ai - d,
greater — greater — greater — less — greater — greater — greater — colon "
¢ _claJr ++d? << bc< a—d7

e For a = —d we get that b > 0. So the required polynomial h(x) is

6, (14+d)z® +(b+d+1a*+(c—b—d)a®*+ (b+d—c)z* + (c— d)x +d,
where the multiplying factor is 22 —z + 1. @ For 0 < a < —d — 1 we have that 2d < ¢ < —d — 1 and
d—2<b<a-2.
—If ¢ =2d then d < —7,b =d — 2,a = 0. The required polynomial h(z) is
9,-22% 4+ (d + 1)2" + 6,_42° + (d + 5)4,—(d + 4)2° + 22° — d,
where the multiplying factor is (z241)(z—1) (22 —2+1). - If 2d+1 < ¢ < d we get d—2 < b < minus—d_2.
% If b > d + 1 the requ’~" ed polynomial h(z) is

S+ (a2 +(1+b—a)a*+(@a-b+c)x®+ (b—c+d)a*+ (c—d)z+d,
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where the multiplying factor is 22 — x + 1.
xIfd—2<b<dthena=0ora=1.

o For b — a = d we have that the polynomial h(z) is

"+ (a—1)25+(d+ D2’ + (c—1—d)z* + (2d — )z + (c—b—d)z* + (d — )z — d,

where the multiplying factor is (22 + 1)(z — 1).
oForb—a<d-1,a=0and b= d— 2 the multiplying factor is (z? — 2 + 1)(2? + 1)(x — 1).
Forb—a<d—1,a=0and b=d— 1 the multiplying factor is (22 —z + 1)(z — 1).

For b—a <d—1,a =1, and b = d the multiplying factor is (2% — z + 1)(2? + 1)(z — 1).
—Ife>d+1then |al,|bl,|c|a—relessthan | d| so the multiplying factor is g(z) = 1.
Now let us see the Case 2 of the Conditions 1 which leads to :

d= -2,
eight—greater—greater—less—greater—greater—colon ab == 0_1 or colon—greater—greater—less—greater—greate
c=1,

In this case we have two subcases :
¢ For a = minus — d we have that b > 1 and d + 1 < ¢ < —3. So the polynomial h(z) is

-~ (1 +d)2®+ A +b+dat +(c—b—d)a®+ (b—c+d)a®+ (c—d)x +d,

where the multiplying factor is 22 — x + 1.
¢ For 0 < a < minus — d_1, we have that 3d +8 < b < d—minus_3 and 2+d < ¢ < —3d — 6. o If
—2d<c¢< —-3d—6 we havethat d <2+ 2a+b< —-d—1

—If24+2a+b>d+1 the polynomial h(x) is

27+ (24 a)2® + (2 + 2a + b)2® + (1 + 2a + 2b+ c)a + (a + 2b + 2¢ + d)z® + (b + 2¢ + 2d)x* + (c + 2d)x + d,

where the multiplying factor is (22 + 2z + 1)(z + 1). — If 2+ 2a + b = d then the polynomial h(z) is

2+ (2+a)®+ (1+d)z"+ (a+b+c+d+ 1)z + (a+ 2b+ 2¢ + 2d)2° + (2b + 3¢ + 3d — 1)z* + (a + 2b + 3c+
3d)x® + (b+ 2¢+ 3d)x? + (¢ + 2d)z + d,
where the multiplying factor is (22 + z + 1)(2? + 1)(z + 1).
o If —d <c¢< —-2d—1 we have that 2d+3 <b< -2anda < —-d—2. -If d+1 < b < —2 then the
polynomial h(z) is
25+ (1+a)z* + (a+b)x® + (b+ )2 + (c + d)x + d,
where the multiplying factor is x + 1.

——I1f2d+3<b<dthen2d+3<a+b< -2
x If a+b > d+ 1 then the polynomial h(z) is

25+ (1+a)z* + (a+b)a® + (b+ c)2® + (c+ d)z + d,
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where the multiplying factor is x + 1.
xIfatb<dthena<-d—3,¢c>—-d+1landd<2a+b+2<-—1.
oIf d+1 < 2a+ b+ 2 then the polynomial h(x) is

x” + (2plus — a)z® + (2a + b+ 2)2° + (2a + 20+ ¢ + 1)2* + (a + 2plus — b2cplus — d)a® + (b + 2¢ + 2d)2” + (¢ + 2d)xd -

where the multiplying factor is (z? + 2z + 1)(z + 1). o If 2a + b + 2 = d then the polynomial h(z) is

22+ (a+2)2®+(d+ 12"+ (A +a+b+c+d)a® + (a+2b+ 2c + 2d)x® + (2b + 3¢ + 3d — 1)z +
(a+2b+3c+3d)z® + (b+ 2c+ 3d)2* + (c + 2d)z + d,

where the multiplying factor is (22 +x + 1)(2? + 1)(z + 1).

o/fd+2<c< —d—1then2d+6 <b< -3 —d.
—If b < d then a < —d — 2, and the polynomial h(x) is

25+ (1 +a)z + (a+b)x® + (b+ )2 + (d + ¢)z + d,

where the multiplying factor is x + 1.
—If b > d + 1 then the multiplying factor is g(z) = 1.
Second suppose that the coefficients of the polynomial p(z) satisfy Conditions 2 with a > 0. Here
we have 2 possibilities :
d>2,

Case lgreater — greater — greater — less — greater — greater — greater — colon ~— — 2b —qdz < <c* _|_0_Sa?1§ =2,
b—acc— plusa_dplus —a?d — 2bd — a
or
dy > <2, +c<b+d,
reater — greater — greater — less — greater — greater — greater — colon 1 —d*> < c¢—ad < d* — 1,
ba — minuscplus — ci_da — plus®d — 2bd — acdplus — di bd? —
In Case 1 we get 3 subcases :
e d>20<a<d—2b=minus—dc=a—minus, Here the polynomial h(x) is
2%+ ax® + (1 — d)4,_ax + d,
where the multiplying factor is 2% + 1.

o atl<d<—b2 -3 0 0ses — . —d—ad+d?,

greater—greater—greater—less —greater—greater—greater—colondod 252
a

In this case we get that the bounds for the coefficients a — r e

—d+1<b<2d-3 and —-2d+3<c<0.
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—2d+2<b+c<0.
* If b+ ¢ < —d then the polynomial h(x) is

2"+ (1+a)®+(1+a+b2°+(1+a+b+c)z +(d+a+b+c)a® + (d+ b+ )z + (c+d)z +d,

where the multiplying factor is (z% + 1)(x + 1). * If b+ ¢ > —d + 1 then the polynomial h(z) is

25+ (14 a)z + (a+b)x® + (b+ )2 + (c + d)x + d,

where the multiplying factor is x + 1. — If —d+ 1 < ¢ < 0 we have that —d+1 < b < d. x If b < d the
multiplying factor is g(x) = 1.
x If b = d then the polynomial h(x) is

2% +ax® + (d - 1)z* + (c — a)z® — cx — d,

where the multiplying factor is 2% — 1.

OZ S; a<d-— 2,27,27“7‘1 —ad + d?,

e greater — greater — greater — less — greater — greater — greater — colon )
24ad—d* <c< —a.

This case is possible only if 2 < d < 4 and the multiplying factor is g(z) = 1 except when d = 2,
a=0,b=2,c=0. In this case the multiplying factor is 2% + 1.
Now let us consider the Case 2 of the Conditions 2 . Here we get that 0 < a < d,—d+1<b<3d— 3,
and —d+1<¢<3d-3.
elfc>2dthend>3,b>a+dand ¢c < —a+0b+d and for d = 3,4 we have that b = a + d and
¢ = 2d. In this case the polynomial h(z) is

2" 4 (a—2)2% + (b+2—2a)z° + (2a +c—2b—1)a* + (2b+d — a — 2¢)2® + (2¢ — b — 2d)x* + (2d — ¢)x — d,

where the multiplying factor is (z? — z + 1)(z — 1).

o Ifd <c¢<2d—1 then b > a and there a — r e three cases to be s uw — ¢ died : — If b = a then ¢ = d and
the polynomial h(zx) is
25+ (a—1)z* + (d — a)2,_d,

where the multiplying factorisz — 1. - If a+1 < b < a+d—1 then d < ¢ < minus — a+ b+ d. Here we
see that b — ¢ > d — minus, x If b — ¢ = minus — d then a = 0,c=b+ d and b < d — 3. The polynomial
h(z) is

2" — 284+ (b+1)a’ + (d — 1)z* — bz — d,
where the multiplying factor is (22 + 1)(z — 1). * If b — ¢ > minus — d; 1 then the polynomial h(z) is

25+ (a—1)z* + (b—a)z® + (c = b)a® + (d — ¢)x — d,
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——Ifb>a+dthenc>d+1,0<2d,—2d+2<b+d—2c<d-1.

x If b+d—2c > minus —dy1 thena >2and —2d+1<a+c¢—20+1<0.0oIf a+c—2b> minus—d
the polynomial h(x) is

2+ (a—2)2%+(1-2a+b)x" +(a+c+1—-20)a% +(b+d—2c+a—2)2°+ (1 —2a+c+b—
2d)z* + (a — 2b+ ¢+ d)2® + (b+d — 2¢)z* + (c — 2d)x + d,

where the multiplying factor is (z3 + 1)(x — 1)2. ¢ If a + ¢ — 2b+ 1 < minus — d then the polynomial
h(zx) is

2+ (a—2)2"" + (b+2—2a)2" + (2a+c— 20— 1)2® + (2b—a —2c+d — 1)2" + (2 — a + 2c — b — 2d)2°+
(20 —b—c+2d—2)x° + (1 —2a +2b — ¢ — d)z* + (a + 2¢ — 20 — d)a® + (b+ 2d — 2¢)x® + (¢ — 2d)z + d,

where the multiplying factor is (3 +1)(2? +1)(z — 1)%. * If b+d — 2¢ < minus —d then d > 5,a < d—1
and the polynomial h(z) is

2"+ (a—2)25 + (b—2a+2)x° + (20— 2b+ ¢ — 1)z + (2b —a — 2¢ + d)2® + (2¢ — b — 2d)z* + (2d — ¢)z — ,d
where the multiplying factor is (z? —z + 1)(z — 1).
off—d+1<c<d—1then—d+1<b<2d—-1.
~-Ifb>dthena<d—1andec>2-—d.
* If ¢ <1 then a>1-candb=d. The polynomial h(z) is
2% +ax® + (d - 1)z + (c — a)z® — cx — d,
where the multiplying factor is 2% — 1.
xIfec>2thend>3and - d<a-—-5b<0.
oIf a —b> —d+ 1 the polynomial h(z) is
25+ (a— 1zt + (b—a)z® + (c = b)z® + (d — ¢)z — d,
where the multiplying factor is  — 1. o If a — b = —d then the polynomial h(x) is
2"+ (a—1)2 + (d—1a® + (1 —2a —d+ )4y _cx® + (a — ¢)x? + (c — d)x + d,
where the multiplying factor is (z — 1)?(x +1). = If b < d — 1 and a < d then the multiplying factor is
g(z) =1. - If b < d—1 and a = d then the polynomial h(x) is
25+ (d— 1)z + (b—d)z® + (c — b)z? + (d — ¢)x — d,

where the multiplying factor is = — 1.

ab0

Remark 1 Here we do not restrict ourselves only in the case when the characteristic polynomial of the
matriz A is irreducible . Thisfact is in contrast with thefollowing section .
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4 Connectedness of self - af fine tilings generated by a P isot un i
t.

We give a sufficient condition for the tiling generated by a Pisot unit to be a — r cwise connected . Let
5 be a

Pisot unit whose minimal polynomial is p(z) = 2" — a1z~ — - - - — ay,_17 — a,, € Z[z] with a,, = +1. Tt
follows immediately from Thurston ’ s const 7 — u ction that there r — a e only finitely many tiles up to
translation , that the number of tiles coincides with that of different suffix of the S— expansion of 1 ,1i .
e . , the c a — r dinality

ofg_reedy{Uéc (expansionl) tk = 1,2, ...Uofi?e}ﬁz%‘z”g}%[m N[0, 1), whichisidenti fiedwithai—rghtin finite(or finite)admissi

word in A;; U A‘g_ The tile T4 was defined as ®(S4). Symbolically the set T4 is the collection of left
infinite admissible sequences

...as3a2a1a9 D A= ...agagalao.A

. R S .. ;
Herejgwe denoteadmissible’ a®whenall® finitetheconcatenation

Ug -
s (1)} k=1,2,...
[t 1, tiv1) where AU

; into ;. £70 0 R
realzzedbeAE and DY thesaymapinat @Z?efctznfzmte word

0,1)is

depends subdividedontheinter—val by {

suffixes a—r e admissible®Twerdsa ¢ The«Bandinterval [

{O}intobelongs(()c,f_ = [é‘)]). <Intp < thesensetz < -0f, -~ < 1lgimensional a0d the shaperpepesgue Of
T4 measure , the smallest tile T4 co r — r esponds to a suffix A which satisfies maxy>1 Ug(l) <A<1
by the lexicographical orde r — i,, The larger the su fi — f, the stricter the rest » — i ction on the
integer parts ...azazaiag by the admissibility condition (1. 2 ) . Conversely T4 becomes biggest when
0<A< minUg(l#O U,é?(l)7 identifying 0 with A. Especially the central tile T} is the biggest tile .

Theorem 4 . 1 Let > 1 be a Pisot unit . Set 1 = maxy>1 Ug(l) which gives the smallest ti le T,. If

T,N (T, - ®(87Y) # 2, (4.1)

then each Pisot dual ti le is arcwise connected .

To begin our proof , we recall g — r aph d r — i ected attractors and graph directed iterated function
system
( GIFS for short ) . Let G = G(V, E) be a strongly connected g —r aph where V' = {1, ..., ¢} is the set of

andEisthe

ardiisthe seto fdirectedcontractivemapedges i ha — REaBIT hent™he setby[of32, edgeshi™  1]ther

verticesde fineauni fo Theorem

Ky, ..., K4 of compact non - empty sets s atisfying

q
Ki={J U Fu(K). (4.2)
j=1lee Ei,j

The set of contractions {F, | e € E} is called a graph directed i teratedfunction system and the sets
K; a—r e called graph directed attractors .  Connectedness and r — a cwise connectedness criteria for
these graph directed attractors a —r e found in [ 29 ] as well . We claim that Pisot dual tiles form graph
directed self affine attractors . Let G; be the natural map defined by the following commutative diagram



T Q(B)

Q) — o
d—1.

R Rat
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. The set equations a — r e given in the following

form :

Ty = UGl(Ti@A)v (4.3)
i@ A

where the summation is taken over all possible ¢ € [0,8) N Z such that i @& A is admissible ( see [ 5] )
. Note that we identify ¢ & A with the co r — r esponding S— expansion to realize it as a nonnegative
real number . Since there are finitely many tiles up to translation , it is easy to show that they fo r —m
graph d r — i ected self affine attractors by using (1. 2) . This proves the claim .

ProofofTheorem 4 . 1. To prove that all tiles are connected , it suffices to show that two neighbo”
ng tiles T(;_1)ga and Tijpa have nonempty intersection . Indeed , if this is t r —u e, then for any two
points on a tile it

is easy to find an e— chain connecting these by repeated applications of (4 . 3 ) (see [21]) .
USince@nistheadmissibleadmisSibilitythenuCondition@msadmissible(12) is deSCTibedforanyadmissible by the

lexicographicyords. HenceOrder, forawordputting,,_uig €4 B’;‘*if we have

n s

Si@A D) S"'] + ’U)Cl’l’LdS(ifl)@A D) ST] +w — 5_1.
This shows that

Ti—nea NTiwa O (TN (T, — ®(B71))) + D (w).

Thus , by the assumption , each tile is connected .
Finally we discuss shortly the local connectedness and a —r cwise connectedness . Recalling the theorem
of H a — h,, and Mazurkiewicz , it suffices to show that each tile is a locally connected set having at least
two points . Local connectedness is shown easily by (4. 3 ), since each tile is reconst r — u cted as a
finite union of sufficiently small connected compact sets . a50

From Theorem 4 . 1 on the previous page we immediately get a
Corollary 4 . 1 Iffor the Pisot unit [(3,3a;, € Z(i = 1,2,---) such that | a; |< [B] and ®(1) +
Z?il ai(b(ﬁl) =
0 then each Pisot dual ti le is arcwise connected .
which is akin to the Kirat - Lau criterion . In practice , this Coroll a — r y is quite useful but not enough
in some
cases .
Proof : Let z; = max (a;,0) and yi = max (—a;,0). Then we have

> @B+ () = yi®(B) + (n) — 2(1/8)
1=1 1=1

Since the maximal digit | 3| € Ag does not appe®™ " in x; and yi, both ...zax120 &1 and ...y2yly0 & 7
a—r e admissible by (1. 2) . Therefore the left hand side belongs to T, and the right to 7,,—®(1/8). a50
For a string of symbols w = a1, as,- -, a, let us w™ =" te w® for the right periodic expansion

A1,A2, "+ 5 Qny A1, A2, * *yApy st 5 A1, A2, * 5 Apy © *

and wy for the left periodic expansion



Cr 1,02, 0 Any A1, G2, 0 0 Ayt 0, A1, A2, 0 5, A
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Here we shall prove Theorem 1 . 2 on page 273 that each tile is connected if dg(1) terminates with 1 .

Proofpgy—ofoTheoremyinl.2 :d d— 17ythe(zc)ai:u7npt10n _d— 226? iicﬂ; legc_dil_mlf whichy, gives
rise to a relation
Letlyy ) itheco oxgreatestmtegiz;etthat than d such that c_, = [B]. Since S is also a root of
P(z)(1-
w([Bl k=1, c—d+1,0, [B],c—2,- -y c—pg1), [B] = L, cp—1, -y cmaq1.n =
W(C—la C_2, ", C_d+1, O)ybraceleft—z 0,--, 0-77 -0.1
d—k—-1

is a common point of T, and T;, — ®(87"), where 7 is the biggest su f — fi, in the S— expansion of
1. ab0

We remark here that this Theorem 1 . 2 is a generalization of the same result proved under the
finiteness condition ( F ) (see [2]) .
4.1 Connectedness of — self ~hwphen offi ne tilings generated by a quadratic Pisot unit

It is well k£ — nywyn that Pisot dual tiles for quadratic Pisot units 7 — a e nothing but intervals . For the
s a — k. of the completeness , we describe them in this subsection . Let 8 be a quadratic Pisot unit . Its
minimal polynomial

is either 22 — ax — 1(a > 1) or 22 — az + 1(a > 3).

Case x? —azx — 1(a > 1). In this case dg(1) = a, 1 which satisfies the condition of Theorem 1 . 2 on
page 273 . Therefore T4 is a non empty compact connected set in R', that is , a closed interval . One
can
obtain their concrete shapes by computing extremal values . Take the conjugate ' = (a — Va2 44,2 €

(—1,0).Then

n = {Zai(ﬁ')i| Qig1, @i <jez @, 1}
o0

00 00
— 3 a(,@')zk_l, > a(,@l)%
k=1 k=0
af’ a o

B [ 1_(g)%,-1_(s/)? } =LAl

The other tile is
1 i=0
Tlfﬁ {Zal GT)\ (IO?éCL}
. aff ¢ =[-18-1]

1= (5)? 1= (8)*
The translation —1/3’ was perfo r — m ed to make clearer the si u — ¢ ation .
Case 2° — ax + 1(a > 3). We have dg(1) = (a — 1), (a — 2)¥ and 7 = maxy>1 Ug(l) =(a—2) “

T a — k. the conjugate 3’ = (a — va? —4y,2 € (0,1). By (4. 3 ) we have



G (T\) =BT =ThUT U---UT, o UT,
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G_1(Too1) =To,a—1UT10-1.-Ta—3,0-1 UTq—2,4-1.

Up to translation , there a —r e only two tiles T and 7,,. If A <jo, 7 then T4 is con u—7r — g ent to T
and if A >;., n then Ty is con g —r — u ent to T},. Observing the above set of equations , the smaller tile
T,appe”™* s only at the las t te r —m s Tq_; and T2 q—1. Therefore in view of the proof of Theorem
4 . 1 on page 287 , to prove the connectedness of tiles , we only need to show a we®* er condition :

To1NTy o 7é g,

which is shown by

a—1 a-—

fm12 75 =7

As a result , the condition of Theorem 4 . 1 on page 287 is sufficient but not necess a — r y to have
connectedness . A simil ¢ — r computation yields :

=2
2 +a—1+ Z(a —2)(B) €Ty s.

a—2 a—1 a—2
T)\ = [0, 1 + 1—7/8/] = [0, B] and Tafl — 7 = [0, 1_7&] = [0, 5 - ].]
4.2 Connectedness of  sel/=hwphen offi ne tilings generated by a cubic Pisot unit .

Let 8 be a Pisot unit of de g — r ee 3 defined by the monic polynomial p(x) € Z[z]. In this subsection we
prove that the dual tiling generated by 8 is connected , i . e . each tile is connected . To make explicit
the

cubic case of Coroll @ —r y 2. 2 on page 278 , we have

Theorem 4 . 2 A monic polynomial

3

p(z) = 2* — az® — bx — c € Z[7]

18 a Pisot polynomial if and only if three inequalities

l<a+b+te, |b—1|<a+c and (c*—b)<sgn(c)(l+ ac)

hold . The following Theorem due to Akiyama [ 4 ] and Bassino [ 1 1 | gives the f— expansion of 1 for
the cubic

Pisot units . Note that [ 1 1 ] also dealt with non unit Pisot cases .

Theorem 4 . 3 Let [ be a cubic Pisot unit and le t

3

p(z) =2® —ax® —bx — ¢

with ¢ = %1 be its minimal polynomial . Then the [— expansion of 1 is given by thefollowing table .



Connectedness ofnumber theoretic tilings 291

’ Table ignored! ‘

From now on , for simplicity we denote 3i = ®(3"). Theorem 4 . 4 Let (3 be a Pisot unit ofdegree 3 .
Then each tile is arcwise connected .

Proof :

We only need to prove this theorem for the cases when the f— expansion of 1 is infinite because the
other cases are shown by Theorem 1. 2 on page 273 (¢ . f. [4]). Weuse Corolla—ry 4. 1on
page 288 to prove the connectedness of each tile .

c=land —a+1<b< -2. C’asei

Here dg(1) = .a—1,a+b—1,(a+b)*, | 3] = a—1 and the smallest tile in this case is T, for n = (a + b)

Since every conjugate of 3 is also a root of p(z)(z3 — 1)(1 + x)(1 + 2%+ -+ 2%" + .. .), we have

1+ (b + 1)ﬂ1+ eD;ualfzeroi((a + b)62+(a - 2)63 - (b + 2)54 - (a + b)65 - (a - 2)/66+(b + 2)57)662:0

and all the coefficients have absolute value less than || =a — 1.

c=-land—a+3<b<0. Casei

Here dg(1) = .a—1l,a+b—1,(a+b—2)¥, |B] = a—1 and the smallest tile in this case is T,
for

n=a+b—1,(a+b-2)

¢ Supposethatb < —1.

Since every conjugate of 8 is a root of p(z) Y ;2 z*, we have

1+(1-b)pB1 (1 -a—0)B27(2—a—b)PZ;8i =0
and all the coefficients have absolute value less than a — 1.
¢ Suppose that b = 0. Since every conjugate of /3 is a root of p(z) >_:2 2L, we have w(1,1—a),0,1. =0
and w(1,0),0.1 =
w(a—1,0).1 —0.1. Adding .(a — 2)* we get that a common point of T, and T}, — ®(57!) is

w(1,0),0.p =w(a—1,00.n — 0.1

According to (1. 2 ), both expansions are admissible .

Case3. c¢=—landl <b<a-—1.

Here dg(1) = .a,(b—1,a —1)* and the smallest tile in this case is T), for n = (a — 1,b — 1)*. Since every
conjugate of 3 is also a root of p(z) Y e, z*, we have
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1—bB1T P2, ((1 — a)B27 (1 — b)33)32i = 0.

and all the coefficients have absolute value less than |5| = a. a50

4.8 Connectedness of  sel’ ~"wrhen offi ne tilings generated by a quartic Pisot unit .
Let 3 be a Pisot unit of degree 4 defined by the monic polynomial p(z) = 2* — ax® — b2? — cx — 1 € Z[z].
We prove that the dual tiling generated by (3 is connected , i . e . each tile is connected , if p(0) = 1. We
also

prove that if p(0) = —1 then a+c¢—2| S| < 1 and that each tile is connected if and only if a+c—2[3] = 1.
If p(0) = —1 and a + ¢ — 2[f] = 1, we prove the existence of a disconnected tile . As a byproduct , we
give a complete clas sification of the S8— expansion of 1 for qua™! ic Pisot units . Let us start with a
Proposition 4 . 1 A monic polynomial

4

p(z) = 2* —az® —ba? —cx —d

with d = +1 is a Pisot polynomial if and only if

{Lb:ELé? +e, ford=-1; {’y < +adbTc , >0, ford=1.

which is just an explicit form of the qu®~" tic case of Coroll r —a y 2 . 2 on page 278 . In the Theorem
4 . 5 and Theorem 4 . 7 on page 301 , we frequently use P a —r —r y ’ s conditions (1. 1 )and (1. 2
) on admissible words .

Theorem 4 . 5 Let 3 be a Pisot unit ofdegree 4 with minimal polynomial p(r) = 2* —ax® —br? —cx+1.
Then each tile is arcwise connected .

Proof : To prove this and the following Theorem we use Theorem 4 . 1, Coroll a —r y 4 . 1 on page
288 . If g

is a Pisot unit of de g — r ee 4 then , according to the » — P oposition 4 . 1 , we have that the coe f — fi
cients s atisfy the

system of inequalities :

a>1
b —o a . = 4
-2 <>1%+c¢c—1, = colon — less — eight
e ‘T g 3' —Tat < < <ab— <1, +c+1.
Case 1. Ifl—-a<c<—-1then4d—a<b<a.

o If 2 < b < a, we have a > 2. Here , | 5] = a,

dg(l) =.a,b—1,(a+c,b—2)~,
and the smallest tile is T}, for

(a+ce,b—2)*, ifb—1<a+g
b—1,(b—-1,b—-2)* ifb—1=a+c.

21

Since every conjugate of 3 is also a root of p(z) Y o, z**, we have
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1— Bl + (1—b)B2+ PZy(—(a+ c)B3 + (2 — b)B4)B2i = 0.

Here , all the coefficients have absolute value less than |3, so according to Corolla —r y 4. 1 on
page 288 , each tile is a — r cwise connected . o If b =1 then a > 3,¢ > 2 — a. In this case |§] = a,

dg(l)=.a,0,a+c—1,a—1l,a+c,(a+c—1)

and the smallest tile is T}, for n =a—1,a + ¢, (a+ ¢ —1)“. Since every conjugate of § is also a root
of p(z) Yoy 2%, we have
L — BT Py(~B27 (1 - a)B3F(1 - )B4)33i = 0,

and all the coefficients have absolute value less than [3]. e If 4 —a < b <0 then a >4 and ¢ > 3 — a.
Here |f] =a—1,

dg(l)=.a—1l,a+b—1l,a+b+c—1,(a+b+c—2)

and the smallest tile is T;, forn =a+b—1,a+b+c—1,(a+ b+ c—2)“. Since every conjugate of /3
is also a root of p(z) > o,z we have
1 — cB1T P (Mimus=b 32T (1 — a) B3 + (1 — ¢)54)B3i = 0,
and all the coefficients except 1 — a have absolute value less than |3]. A common point of T}, and
T, — (8 1)is
w(l—=1¢0,-b),—cn=w(a—1,0,0).y — 0.1.
Case 2. If0<c¢<a—1then4—2a<b<2a.

elf4—2a<b< —a,wehavea >4,c>3,2<2a+b—2<a—2and |f] =a—2.
*Ifb< —a—1,then c>4 and a > 5.
Fi—rst, let us find the f— expansion of 1 . Since 1 < a+b+c—2 < a— 2, there exists an integer

2<k<a—-2with 2 <a+b+c—2< %2 which implies that (k —1)(a+b+c—2) <

a—2<k(a+b+c—2).
oIf (k—1)(a+b+c—2) > c—2 we get k > 3. Let m be the integer defined by m = inf {i :
i+D(a+b+c—2) >c—2}. Since b < —a, we have m > 1. By the definition
m < k—2andim+1)(a+b+c—2) <a-3.
¢If (m+1)(a+b+c—2) <a—3let us show that the f— expansion of 1 is even - ¢t — u ally periodic
with period 1 and preperiod m + 3, so let us write it as dg(1) =

'd17 d27 Y dm+37 du??)l+4‘
W — hepm = 1, since
p)1+2)=5,(a—1)4,—(a+b)3,—(b+¢)2;_(c—1)x + 1,
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1=a-2,2a4+b—-2,2a+2b+c—2,2a+2b+ 2c — 3,(2a + 2b + 2¢ — 4)

Hereds = dpya,ds = dpyy3,d3 = dppyo.
W — hepm = 2, since

p)(1+z+2%) =6, (a—1)5, (a+b—1)4, (a+b+¢c)3s_(b+c—1)2, (c— 1z +1,

we get that

l=.a-2,2a+b—-3,3a+2b+c—3,3a+3b+2c—4,3(a+b+c¢)—53a+b+c—2)

Here d¢ = dppt4,ds = dimt3,ds = dpyy2,ds = dpp41, where the formulas of d; will be given later .

W — hepm > 3, since
m i plus—four — (a—1)z™ 3 —(a+b—1)2™ T2~ (at+b+c—1)z™ ! — 5m, o
p(z)Plgz" = amy Jei- (atbie—D)ad— (bhe—1)2,_(c—)zt1 Limal@ +b+c

( where the terms P, (a + b+ ¢ — 2)x® do not appear for m = 3), we have that

di=a—-2, dy=2a+b—-3, d3=3a+2b+c—4,

di=dic1+(a+b+c—2) forie{4,5,---m},

dm+4 = (m+1)(a+b+c—2), dm+3 :dm+4—|—1, (**)

dm+2 = dm+3 — (C — 1), dm+1 = dm+2 — (b +c— 1)
We now verify that the conditions of lexico g — r aphic order on dg(1)r — a e satisfied . Since
a+b+c—12>2, wehavethat do <ds <---<dp <dmny1. Herewegetthatds >b+2a—3>1
and dp,+1 =< a—2. Since dy, 11 > dypy2 and dy 12 > 0 we need to check only the case when d,, 11 = a—2,

which implies that do — d;, 42 = @ — ¢ > 0. So the conditions of lexicographic order a — r e satisfied . ¢
If (m+1)(a+b+c—2)=a—3then m =k + 2. As a result we have

ma+b+c—2)<c—2<(m+1D(a+b+c—2)=a—-3<a—-2<(m+2)(a+b+c—2),
which implies that b+2c—2 > 0. FormSince;(lx)(xweget+1)(wa2 4 2:bp +3% = — 1oy =_ PP dia™ -
(c+2)x + 1 is equal to
To—(a—2)6p—(b+a—2)5,_(2a+2b+c—1)4,_(b+ 2c—2)2,_(c+2)x + 1,
and dy = a—2 > dy >d3 >d4=0,0§d5 SC—3SCL—4, we get that

dg(1)=.a—2,(b+2a—2,2a+2b+¢c—1,0,2c+b—2,¢c—3,a — 3)“.

For m > 2 we will show that ¥ If b+ 2c — 2 > 0, the 8— expansion of 1 is even'™* ally pe’~" odic with
period 2m + 4
and preperiod 1 . So



dg(l):.a—2,(d2,-~-,d2m+3,c—3,a—3) “

Vv If b4 2c—2 = 0, the S— expansion of 1 is even!™* ally periodic with period 1 and preperiod 2m 4 4.
So

dg(l) =.a —2,da,- - -, dom+1,doms2 — L,a—2,a+b+c—3,(a+b+c—2)
In both cases ,d; ’ s satisfy

. . five—minus—i
p(x) Pl oz Pt et = p?m+5 . p2ms g, p2mt —(c—2)z+1.

Since ma + (m + 1)b+ (m + 1)c — 2m + 1 = 0, we have

d1:a72, d2:2a+b—3,
di=ia+ (i —1)b+ (i —2)c—2(i—1) for 3 <i<m,( these terms do not appear for

m=2)
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dmty1=a—b—2¢, dpio=a—c, dpy3=0, dyplus—four=a— minus—0b,
domis—i=ta+ (i+1)b+ (i+2)c—2(i+1) for 1<i<m—2,(theseter—msdonot

appear form = 2)
d2m+3 =b+2c—3

Since a +b+c—2 > 0, we have d; < d;1 and dpyyo4+i > dmtsti for 2 < i < m. We also have that
de > 0,0 <dpto <dmit1,dmta <a—4and dopyo < a—2.Sincedy1 < a—3forb+2c—-3 > 0,
for2 < i < 2m+ 3 we have that

Ogdiga—S.

For b+2c—2 = 0 we have that m(a+b+c—2) = ¢— 3, dpm—pius1 = a—2 and dz = 3a — 3c for m > 3.
Sincea+b+c—3=a—c—1l,dpyo=a—canddy—(a—c)=a—c—12>0,

for ¢ = a — 1 we need to comp®~" e d3 with d,,+3 = 0. Since d3 > 0, the conditions of lexico g — r
aphic order on dg(1)r — a e satisfied in this case also . e If (k —1)(a +b+ ¢ — 2) < ¢ — 2, let us show
that the B— expansion of 1 is eventually periodic with prepe™* od 1 and period 2k + 2. So

w
dﬁ(l) = .a — 2, (dg, . ',d2k+1,6 — 3,& — 3)

)

— ; ; three—minus—i
where d; * s a — r e as follows : p(x) P la? Pl ot = x2F+3 — p2EFL g2kt

we have

—(c—=2)z+1. So

d1:a72, d2:2a+b—3,
di=ia+(G—1)b+ (1 —2)c—2(i—1) for 3<i<k—1,(these terms do not appe®~" for

k=3)
dp =ka+ (k—1)b+(k—2)c—2k+3, drt1=ka+kb+ (k—1)c—2k+3,
diyo = (k—Da+kb+ke—2k+3, diys=(k—2)a+ (k—1)b+ kc— 2k + 3,

dogt1—i =ta+ i+ Db+ (1 +2)c—2(G+1) for 1 <i<k—3,(these terms do not appe®™"

fork = 3)
d2k+1 =b+2c—3.

So we have that di > da,d; < djq1 for 2 <i <k —1,di > diy1 > diy2,diyo < diy3, digyi > digp144
for 3 <i<k. Fi—rstwenoticethatdy, > 1,dp < a—2,dgyos > 1,dgyrs < di and
dog+1 > drpy1 — 1. Soall the d; > s a — r e nonnegative and smaller than d;, only dj can be equal
tod;. But,if (k—1)(a+b+c—2)=c—3 we have that d3 > ds > dp41 > di42. So conditions of
lexicographic order are satisfied .

Second we find the common point of T}, and T;, — ®(37'). Since every conjugate of 3 is also
aroot of p(z)(z? +z +1)(z + 1) Y ;" 6%, we have

i—equal—zero

1+ (2—¢)B1TPZ((2 — 2¢ — b)B2T (1 — a — 2b — minuss.) 337 (1 — 2a — 2minus — b..) 54
plus — parenleft2 — 2a — b) B35+ (- minus=three) ga+ three—minus ) g7y 365 — ()



and all the coe f— fi cients have absolute value less than |3]. * If b = —a, we have 5—a < 2c—a—1 < a—3.
We get that

dg(l)=.a—-2,(a—2,c—1,2c—a—1,2c—a—2,c—3,a—3)"
forl <2c—a—1<a-—3,while
dg(l)=.a—2,a—2,c—2,2c—3,(2c — 4)~
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forb—a<2c—a—1<0.

o If 3 < ¢ < a— 2, since every conjugate of § is also root of p(x)(x® + 2 + 1) P52 .1 ye0i ™, We have

1+(1-0)fl4+(a+1—-0¢)B24 (1 —c)B3+ (2 —¢)B4P2,pi = 0.
For 4 < ¢ < a — 2 all the coefficients have absolute value less than ||, so according to Corollary 4 .
1 on page 288 , each tile is a — r cwise connected . For ¢ = 3 we get that
a—2,01 =w,2,0,2.0

which shows that a — 2,0.n = w1,2,0,2.n — 0.1 is a common point of T, and T,, — ®(57!)
for a > 5. ¢ If c =a — 1, since eve r — y conjugate of 3 is also a root of

p(z)(x® —1)(z +1)? Zx& = 0,then
i=0

1+ (3—a)B17 (3 —a)B2T(—2p4 — B5T3612B7T 38 — 39) P, 36i = 0

and for ¢ > 4 all the coe f — fi cients have absolute value less than | 3], so , according to Corollary
4 . 1 on page 288 , each tile is a — r cwise connected . If b = —a,c = 3 and a = 4 we have that

ds(1) = .2,(2,2,1,0,0,1)

7

and for n = (2,2,1,0,0,1)¥ we get that

w(1,2,1,0,0,0),0,0.n = w(1,0,0,0,1,2),0,1,1.p —0.1

is a common point of T, and T,, — ®(571).
elf —a+1<b< -1, wehave3—a<b+c<a—-2.¢Ifb+c>0andc> 2, we have ¢ > 3 and

dg(l)=.a—1,(b+a,c+b,c—2,a—2)
Since every conjugate of /3 is also a root of p(z)(z 4+ 1) Yo, z*" = 0, we have

14 (1 —c)prH(minus=b_cyp2 — (a +b)B37(2 — a)B4T(2 — ¢)B5) P, f4i = 0

and for b < —2 all the coefficients have absolute value less than |3|. So , according to Coroll
a—ry4. 1on page 2838 , cach tile is 7 — a cwise connected . For b = —1, since dg(1) = .a — 1,(a —
l,e—1,¢—2,a—2)%, the smallest tile is T}, for
n=(a—1,c—1,¢—2,a—2)¥. Thus we get that

n=wlc—2,a—2,a—1,c—1),e—1n —0.1
is a common point of T}, and T, —®(f Y. olfb+c>0and c= 1, we have b= —1,a > 3 and

ds()=.a—1,a—2a—-1,(a-2)

Hence the smallest tile is 75 for n = a — 1, (a — 2)“. S ince every conjugate of 3 is also a root of
p(2)(1+2%) Y0y 2% = 0, we have
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1 - B17(627(1 — a)B3) P, f3i = 0.
So a common point of T, and T,, — ®(57!) is

w(0,1,0).n =w(0,a —1,0),1.p — 0.1
oIf b+ ¢ < —1, we have a > 4 and

dg(l)=.a—1l,a+b—1l,a+b+c—1,(a+b+c—2)
So the smallest tile in this case is T}, for

a+b+c—1(a+b+c—2)", fore>1;

= a+b-—1la+b—-1,(a+b—-2)“, forc=0.

Since every conjugate of /3 is also a root of p(z)(z 4+ 1) Y o, 2% = 0, we have

L+ (1= e)B1H (M0 =) B2 — (a + b) B3 (2 — a) B4 (2 — ¢) B5) Py B4i = 0
and for b < —2 all the coefficients have absolute value less than |3|. So , according to Coroll
a—r71y4. 1on page 288 , each tile is 7 — a cwise connected . For b = —1 we have that ¢ = 0 and
n=a—2,a—2,(a—3)“. So
w(2,0,0,1),1.n =w(a —2,a—1,0,0).n —0.1

is a common point of the smallest tile T}, and T}, — @(ﬁ_l). e If 0 <b<a, we have ¢ > 2 and

w
1
be—1,a )
1,
w
b—2)
-a; il a 2
_ cay, ; pifi at U>> 022 1l <0,
dg(1) = greater—greater—less—greater—greater—colon .- *" " ifira >5= 3%2enaflz Ghan
—2)
-1, (a» O,q ’
7a1 a—1 ( a—1
w
(a=2)
)
N a— . pb=c=0; R
So 8] =7 a1, if, erwise; and the smallest tile is T, for

a®
a®

. ( y—
n = eight—greater—greater—greater—greater—less—greater—greater—greater—greater—colona « ,foc_lvblzaa_?fb—



Since every conjugate of /3 is also a root of p(z) >_i 23 = 0, we have

1—c¢B1— (b82%(a—1)B3T(c — 1)B4) X 83i = 0. (4.4)
i=0

x* For b < a—1, with the exception of the case where b = ¢ = 0, all the coe f — fi cients have
absolute value less than |8] = a. So, according to Coroll a —r y 4 . 1 on page 288 , each tile is
a — r cwise connected .

Forb=c¢=0, from (4. 4 ), we get that
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w(1,0,0),0.n =w(a—1,0,0).n —0.1

w
is a common point of the smallest tile 7}, and T}, — ®(p~1), where n =a —1,a — 1, (a — 2) * For

b=aand c>1, from (4.4 ), we get that
n=wlc—1,a—1,a),en— 0.1

w
is a common point of the smallest tile 7, and T,, — ®(8~!) where = (a,c—1,a — 1) x For b =a

and ¢ =0, from (4.4 ), we get that
w(1,0,0),0.n = (a —1,a,0).n — 0.1

w
is a common point of the smallest tile 7, and T}, — ®(8~') where 7 = (a,a — 2) elfa+1<b<2a,

we have c — b+ a > —1.
* Ifc—b+a>0, wehave |[f] =a+1 and

dg(l)=.a+1,(b—a—1,c+a—bb—c—1,rc,a) “

Since every conjugate of 3 is also a root of p(z)(z — 1)(4,—1)P,2z% = 0, we have

1—(c+1)B1T((c —b)B2T (b — a)B331T*B4T¢B5) (1 — 2*) P2, 38 = 0

and all the coe f — fi cients have absolute value less than |3]. * Ifc—b+a=—-1and b>a+2, we
have |8] = a+1 and

w
dg(l)=.a+1,(b—a—2,a+1,b—a—2,0,a—1,b—a,a—1,b—a—1,a)

Since every conjugate of 3 is also a root of p(x)(2,—z + 1) PXyz> = 0, we have

1—(c+1)81 — (aB2 — B3T°B4T*B5136) P, 85 = 0

and all the coe f — fi cients have absolute value less than |B]. * Ifc—b+a=—-1landb=a+ 1, we
have ¢ =0, | 8] = a and

dg(l) = .a,a,(a,a—1) “

Since every conjugate of 3 is also a root of the p(z)(x? + 1) P, 34i=° we have

n=w(a—1,a),a,0y —0.1

is a common point of the smallest tile T}, and T}, — ®(371).

ab0



From the proof of the Theorem 4 . 5 on page 292 we get also the following theorem which gives the
3— expansion of 1 for any Pisot unit of degree four with minimal polynomial z* — az® —bz? —cz+1 = 0.
Theorem 4 . 6 Let (3 be a Pisot unit of degree four with minimal polynomial p(z) = x* — ax® — ba?—
c—x+1=0. The B— expansion of 1 is:

— Whenl —a<c< -1,
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xandd —a <b<0, dg(l)=.a—l,a+b—1l,a+b+c—1,(a+b+c—2)%
*xandb =1,dg(1) = .¢,0,a+c—1l,a—1l,a+c (a+c—1)%
*and2 <b<a,dg(l) =.a,b—1,(a+c,b—2)*
— When0<c<a-1
*and 4—2a<b< —a—1, let k be the integer of {2,3,---,a—2} with (k—1)(a+b+c—2)<

a—2<kla+b+c—2).

x If (k—1)(a+b+c—2)>c—21let
m = inf {i € N such that (i+1)(a+b+c—2)>c—2}. We have 1 <m <k —2.
oIf (m+1)(a+b+c—2)<a-—3,the B— expansion of 1 is eventually periodic with period 1
andpreperiod m + 3.

two—b two—b

m=1=dg(l) =.a —2,two —a;b—2,a— twoy 1c—2,a—two] two—a 4 b-

+c—two_3,(
m=2=dg(1) =.a—2,two—a;b—3,a — three}?"° ", c—3,a - threeiwo*b+c —two_4,3(a+ b+ c) — 5, (threeaboth
m>3=dg(l)=.a—2,two—ayb—3,a— threetfo_bJrc —4,dy, -

with d; =di—1+a+b+c—2 for 4 <i<m( these terms do not appearfor m = 3)

dnt1 =dmy2 —b—c+1,
dmt2 = dmys —c+ 1,
dm+3 = dm+4+ 1,
dmta=(mMm+D(a+b+c—2).
olf(m+1)(a+b+c—2)=a— 3then
m=1=dg(1) =.a—2,("™°"*+b—2,a — twoi’vo_bJrc —1,0,¢ — tworb—2,¢—3,a — 3)*

andbraceex — braceex — bracele ftmid — braceex — braceex — bracele ftbt

If m >2and b+2c > 3, the S— expansion of 1 is eventually periodic with preperiod 1 and period
2m + 4. So

dﬂ(l) =.a - 2? (tWO*a_‘_b - 37 d?n T '7d2m+3vc - 3,CL - 3) v

If m>2and b+2c=2, the B— expansion of 1 is eventually periodic with period 1 andpreperiod
2m + 4. So

dg(1) =.a — 2,7 +b—3,d3," - -, dam+1,doms+2 — l,a — 2,a+ b+ c—3,(a+ b+ c—2)where
di=ia+(GE—1)b+(i—2)c—2(i—1) for 3<i<m,( these terms do not appearfor

m=2)

dm+1=a—b—2¢, dpio=a—c¢, dpi3=0, dyplus—four =a— minus—>b,



domys—i=ta+ (G +1)b+ (i +2)c—2(i+1) for 1<i<m—2/( these terms do not
appear form = 2)
d2m+3 =b + 2c — 3.

x If (k—1)(a+b+c—2)<c—3,the [— expansion of 1 is eventually periodic with preperiod 1

andperiod of length 2k + 2. So
dﬁ(l) =.a— 2,(2a+b— 3,ds,- -, dog+1,¢— 3,a — 3)w
with di=ta+ (i —1)b+ (i —2)c—2(i—1) for 3<i<k—1,( these terms do not appear
fork =3)

dp =ka+ (k—1)b+ (k—2)c—2k+3, dry1 =ka+kb+ (k—1)c— 2k +3,
diyo = (k—Da+kb+kec—2k+3, diys=(k—2)a+ (k—1)b+ ke — 2k +3,

dopyi—i =ta+ (@ + Db+ (i+2)c—2(i+1) for 1<1i<k—3,( these terms do not appear

fork =3)
d2k+1 =b+2c—3.
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_ _ .a—2,(a—2,¢c—1, 2¢c—a—1, 2c—a—2, w ;pif2c—a ;
*xandb = —a, dﬂ(l) - J‘a72, a—2,c —2,2 c—3,(2¢c— w ¢ — 37 a— 3) 7,Lf 2c—a > 2§1;
4)

*xand —a+1<b< —1,

a—1,(07Psma ch — plus.c — 2,a — 2)¥,  if(b,c) £ (—1,1);

b >0 h dg(1) =
*for o= e pave 6() ! -a'_17a_27a_17(a'_2)w7 Zf(b,C):(—Ll),

x ifo+ce<-1,dg(l)=.a—l,a+b—1,a+b+c—1,(a+b+c—2)

)

*xand0 < b < a,

* for ¢>1 we have dg(1) = .a,(b,c—1,a—1) - for ¢ =0 we have dg(1) =less — colon,0,a —

Y

,b—1,(a,b—2)* ceifrh == 1.2
L, (a” 0,a — Z)w.a:gflvafl,afl,(afm“’ t llf bb Z 1’0§

*xanda + 1 < b < 2a,

« for a—b+c>0 we have dg(l)=.a+1,(b—a—1l,a—b+c,b—c—1,c,a)* * for a—b+c=-1
we have

a,a,(a,a— 1), qfbmeaualy 1.

ds(1) = :
a+ 1, (MTETC-2, a4+ 1, minus — by—2.0,a — 1,b — minus,,a — 1,a — minus —b_1.a)*, ifb>a+2.
l : lE'xample2 4— t t h that i of Pisot it ofdegree
polynomia T4 Y e WeagsWant _pg2to_showe, thati= fromo we a classy,, pi, o Bunits? 770000

of ldwhichwithayarerootsofarbitrarily,,,, the preperiod . For n >5a=n+2,b=4—2a= —2n
and ¢=a—1=n+1 we have that |B] = a—2 and the B— expansion of 1 is

d,B(]-) = .n, ]-7b7‘aceleftfz 3747 5; = 37” - 2,”7 ]-7 0; n— 2;szraceleftn - 47“ - 57 ) 3, 270777‘; 07 1.

n —4 elements 1 — D elements Therefore the length of the preperiod is 2n.
Lemma 3 If f is a Pisot unit ofdegree four with minimal polynomial p(z) = x* — ax® — ba® — cx — 1,
and if the negative root ~ of the polynomial x* — |B|x — 1 has the property

p(y) >0,
then at least one of the ti les is not connected .
Proof : Let dg(1) = .d_1,d_2,---and £ =£_1571 4+ €272 4 - - - be a S— expansion with dg(1) >
£-1,6.2,--- > .d_9,d_3, . Since p(—1) > 0 and p(0) = —1, the polynomial p(x) has at least one root
in the inte r — v al (—1,0). Let # € (—1,0) be the biggest among such roots . First we want to show that

TeN(T\+®(¢-—mB ™) =0 (4.5)

form € {1,2,---}suchthat £.1 > m. If we suppose the contr a — r y , then there exists an
expansion - - -, ¢1,co.m with ¢; € [—|8],[B8]]NZ for i = 0,1,- - - and ¢y < |B] — 1, which implies that



mo~ 1+ co + Z;’il ¢;0" = 0. The as sumptions of the lemma show that v < 6. So  is between two roots
of the polynomial 22 — | 3]z — 1 and we have that

186> 1 18l6 6> —|Blo—1
<g TPl T e

$+\_5J_1+ <07

1-62 6



Connectedness ofnumber theoretic tilings 301 which implies that mf~! + ¢y + > .- | ¢;6" < 0. Second
, we prove the existence of a disconnected tile .

Since.d_g,d_g,--- < dg(1),let
I=min {k €N|.d_3,d_3, -, (d_y + 1) is admissible } . For [ = 2 we have by (4. 3),

Gfl(T)\):T(]UTlU-"UTLBJ _1UTU3J and LﬂJ Z(d72+1)2d,2,d,3~“
By using (4. 5 ) with £ = |8]/8 and

1Bl —m

Tlm_mCT)\-i-q)( 3

);

we deduce

Ty NTigy —m=9

for m =1,2,- -, | 8]. Therefore the central tile T is disconnected . For [ >3 let e =d_3,- -+, (d—; + 1).
Then we have

Goa(T)=Tp VT U---UTy ,
with

d—2a6 >lea: d—2)d—3a = Uﬁ(l)

Therefore the tile T, is disconnected in the same way by using (4.5). ab50 Theorem 4 . 7 Let f be a
Pisot unit ofdegree 4 with minimal polynomial p(x) = x* — ax® — br?® — cx — 1.
Each ti le is arcwise connected exceptfor the following cases :

a’e_

. =75, . <
eight—greater—less—greater—colon® —— % < q—minus. a—=
2 <? ’ 2=

= eight—greater—less—greater—colon®c —;

3,1b’ S _17

Proof : We only need to prove this theorem for the cases when the S— expansion of 1 is infinite because
the other cases a — r e shown in Theorem 1 . 2 on page 273 .  According to r — P oposition 4 . 1 on
page 292 , the coefficients satisfy the following system of inequalities :

7 |Z| 5 < +a4b+c:621’21.
Here we have the following bounds for the coe f — fi cients :
jght ter —1 t on. “7
eight — greater — less — greater — colon
g g g 2! -7 42, < e<b < a<2ta 4% 2.

Casei For minus —a+1<c< —-1wehavea>2,1—a—c<b<—-1+4+a+c hence2—a<b<a—2.
e For b <0 we have || =a—1 and

a-+
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a—lia+b—1l,a+b+c—1,(a+b+¢c)”, if(c,b)#(—1,0);
.a—1l,a—1,a—1,0,0,1, if(c,b)=(-1,0).

Therefore the smallest tile in this case is 7T}, for

a+b—1l,a+b+c—1,(a+b+¢)”, forc<—-2;
n=less —colon (a+b—1)", forc=—1landb +# 0;
a—1,a—1,0,0,1, for(c,b) =(-1,0).

* For ¢ > 2 — a, since every conjugate of 3 is also a root of p(z)(x® — 1) P2,2% = 0, we have

1+cB1T(bB21 (@ —1)B3 — (c+1)B4 — bB5 — (a — 1)B6™ (c + 1)B7) P2, 36i~°

and

w(o,minus —b.c—minus —1,a —1,0,0).n =  Wininus—c—1,6 —1,0,0,0,b —minus), minus —cn —0.1

is a common point of the smallest tile T, and T,, — ®(87'). * For ¢ = 1 — a we have b = 0. Since every
conjugate of 3 is also a root of

p()(@

1 — (a — 2)Pone — minus(a — 2)Bplus — twoSthree — plus(a — 1)Splus — four(a — 2)Sfive — plus((a — 2)56 — (a — 1)38 —

0
and

w(a—1,0,0,0,0,a —2),a — 2,a—1,1,0,0.n =
w(a—2,a—1,0,0,0,0),0,a —2,a—2np —0.1

is a common point of the smallest tile 7}, and T}, — @(5*1). eForb>1wehavea>3,2—a<c<-1
and 1 <b<a+c—1. Here |8] =a and

dg(l) =.a,b—1,(c+a,b)

b

therefore the smallest tile in this case is T,, for n = (a + ¢, b)*. Since every conjugate of 3 is also a
root of p(z)(z® — 1) 32, 2% = 0, then

1+eB1T (821 (a—1)B3 — (c+1)B4 — bB5 — (a — 1)B61 (c + 1)87) P2, 86i = 0
and all the coefficients have absolute value less than |3]. Case?. For 0 < ¢ < a — 1 we have —2a + 2 <
b <2a—2. N
olf 2a+2<b<—-athena>5and1<c<a-—3.
x« Ifl<c<a—4thenl—a—c<b<minus—aand 8] =a—2.
F i—1rst,let us find the S— expansion of 1. Since 1 <a+ b+ ¢ < a — 2, there exists an integer
ke{2,3,---,a—2} with 22 <a+b+c < %= which implies that (k —1)(a+b+c) <

a—2<k(a+b+c).
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oIf (k—1)(a+b+c) > c+2wegethk > 3andc < a—4. Letm be the integer
defined by m =inf {i : (i+1)(a+b+¢) > c¢+2}. Bydefinition,m < k—2and,
since b < —a, we get m > 1. Let us show that the f— expansion of 1  is eventually periodic with period
1 and that the length of the prepe”—* od is m + 3. So let us write it as

dﬁ(l) = .a — 2, dz, ceey dm+3,d(fn+4A

W — hepm = 1, since

p)1+2)=5,_(a—1)4,—(a+b)3,—(b+¢)2;_(c+ 1)x — 1,
we get that

l=.a-2,2a+b—2,2a+2b+c—2,2a+2b+ 2¢c — 1,(2a + 2b + 2¢)

Hereds = dypta,ds = dmy3,d3 = dimya-
W — henm = 2, since

px)1+z+2*) =6, (a—1)5,_(a+b—1)dy_(a+b+¢)3s_(b+c+1)2,_(c+ 1)z — 1,

we get that

l=.a—22a+b—3,3a+2b+c—3,3a+3b+2c—2,3(a+b+c¢c)—1,(3a+3b+ 3c)

Here d¢ = dppt4,ds = dits, dg = dpy2,ds = dpy41, where the formulas of d; will be given later .

W — henm > 3, since

m .1 Dz™ T3~ (a+p—1)z™ 2= (a4 btc—1)z™ 1 — " ]
p(@)PiZox" = m = plus — fours  —(a — (a)+b+c+1§w3 - (2+c+1)x;, (c+1)z)—1 P, (a+b+ c)ig—

( where the terms Y ;- ,(a + b+ ¢)z’ do not appe®™" for m = 3), we have that
do=2a+b—3, d3=3a+2b+c—4,
di=di-1+(a+b+c) forie{4,5,---m}
( these terms do not appe®~" for m = 3), (x)
dm+4:(m+1)(a—|—b+c), dm+3:dm+4—1,
dm+2 = dm+3 — (C + 1), dm+1 = dm+2 — (b +c+ 1)

We now verify that the conditions of lexicographic order on dg(1) are satisfied .~ Since a+b+c+1 >
0, we have that dy < d3 < -+ < dp < dps1- Here we get that

do >b+2a—3>2anddyp1 =m(a+b+c)+a—c—3<c+1l4+a—-c—3<a-—2.

From definition of m, we have that d,,42 = (m+1)(a+b+¢) —c—2 >0 and , since m <k —2, we
have that (m + 1)(a + b+ ¢) < a — 2. Since dp12 < dpmts < dmta, till now we showed that all d; ’ s are
nonnegative and d; < a — 2.



We now s t —u dy the cases where d; is not strictly smaller than d;. For m =1 only dy = b+ 2a — 2
may be equal to a — 2. For m > 2 only d,,4+1 may be equal to a — 2, which
means that m(a+ b+ c¢) = c+ 1 and that dy — d;;,12 = a — ¢ — 2 is a positive integer .
So we showed that the above expansions of 1 defined by (x¥)a — r e S— expansions of 1 . ¢ If (k—1)(a +
b+c¢)<c+1and k(a+b+c)=a—2,let us show that the 5— expansion of
1 is finite with length 2k + 4. Let us write it as dg(1) = a — 2,d, - - -, dag+3, 1, where
p(I)W - hezszk 7:_:6())2: zt =w2ktd az:—iy;—*l_zizedix%*—élgetii -1

k=1l 2t X pg1( 4+D

=0=2 :since

dg(l)=.a—2,2a+b—2,2a+2b+¢c—2,a—2,0,2c+b+2,c+2,1.

i

We now verify that the conditions of lexicographic order on dg(1) are satisfied .  Since 1 —a — ¢ <
b<minus —a wehave 3<a—c—1<b+2a—2<a—2. Sinceds =dp+ (b+¢) =ds — (c+2), we
have 0 < ds < a — 2. Since dg = —(a + b), we have 0 < dg < a — 5.
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order a — r e satisfied .
W — henk > 3, since k(a +b+c¢) = a — 2, we get
dg =2a+b— 3,
di=ta+ (i —1)b+ (i —2)c—4 for 3 <i<k—1,(these terms do not appear for k = 3)
dip =ka+(k—1)b+(k—2)c—3, dry1 =ka+kb+ (k—1)c—2,
dpt2=a—2, dpy3 =0, dpya=1-b—aq,
dok+ominus—i = ta+ (i + )b+ (i +2)c+4 for 1 < i< k—3,( these terms do not appe” ™ for k = 3)

dopyo =2c+b+3, dogys=c+2, dopys=1.

We now verify that the conditions of lexicographic order on dg(1)a — r e satisfied . Here we
have that do < d3 < -+ < dp,da > 2and dy = (k—1)(a+b+c)+a—c—3 < a— 2. Since
di+1+c+2=a—2, we have 0 < di1 < a— 5. We also have that diy4 > di45 > --- >

dog42,dpra =1 —b—a < c < a—4danddayyo 2b+c+2+(k—1)(a+b+c):0.5’o

we showed that all d;a — r e nonnegative and not greater than d;. Since dy > 3 we have that a — 2
may be followed by 1 or 2. If di, = a — 2 we have that do —dg11 =b+a+c+ 1> 2. So the conditions
of lexico g — r aphic order are satisfied . ¢ If (k —1)(a+b+¢) <c+1and k(a+b+c) >a—2, let us
show that the §— expansion

o [}(z)z'sH-fim'tekzo,M,,withﬂlengthk:omi = QQLiS;LetPi :gs+k2 1§”T”eixitgik2 _iif(l) = .dy,ds, -, dopro, 1, where
W — henk = 2, we get

dg(l) =.a—2,2a+b—2,2a+2b+c—1,a+20+2c+1,2c+b+2,c+2,1

We now verify that the conditions of lexicographic order on dg(1) are satisfied . Since 1 —a — ¢ <
b< minus—a then3<b+2a—-2<a—-2. Since2(a+b+c) >a—2then2<

204+2b+c—1<c—-1<a—-50<a+2b+2c+1<a-5. Alsob + 2¢ + 2 < a — 6and

b+2c+3=2(b+c+a)—b—2a+3>1—b—a > 1. Only dy or dg can be equal to d;. Since 1 < d
the conditions of lexicographic order a — r e satisfied .

W — henk > 3weget
di=a—2, do=2a+b-—3,
di =ia+ (1 —1)b+ (i —2)c—4 for 3 <i<k—1,(these terms do not appear for k = 3)
dy =ka+ (k—1b+ (k—2)c—3, dxs1=ka+kb+(k—1)c—1,
dpso = (k- Da+kb+ke+1, deps=(k—2)a+ (k—1)b+ke+3,
dok+1minus—i = ta+ 1+ )b+ (i +2)c+4 for 1 <i<k—3,(these terms do not appe” = for k = 3)

dog+1 =2c+b+3, dopya=c+2.



We now verify that the conditions of lexicographic order on dg(1l)a — r e satisfied .

Here we have that 2 < dy < ds < cee o < di,dp > dgr1 > diyo,diyo < dpys and
dits > dgpya > -+ - > dogs1. The condition (kK —1)(a+b+¢) < ¢+ 1 < a— 2 implies that d =
(k—1)a+b+c)+a—c—3 < a—2and diy3 < a—4. Also , since k(a + b+ ¢) > a — 2, then
dito =k(a+b+c¢)+1—a>—1.Sincec+ 1> (k—1)(a+ b+ c¢) then dogtr1 > 0. So we showed that
all d; 7 s satisfy 0 < d; < dj. S ince dy > 3 we have that a — 2 may be followed by 1 or 2 . If d, = a — 2,
which means that (k—1)a+ (k—1)b+ (k—2)c—1 =0, then dy —di11 = a—c—1 > 1. So the conditions
of lexicographic order are satisfied .

Second , let us find the common point of the smallest tile 73, and 7,, — ®(3~!). Since every
conjugate of 3 is also a root of p(z)(5,-1)(2,—z + 1) P°,z'% = 0, then

L+ (c+1)B1H((b+c+1)B2T(a+b+¢)B3T(a+b—1)p4T(a — 2)B5 — (c+2)36
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—(b+c+1)B7T—(a+b+0)B8— (a+b—1)89 — (a—2)B10% (c + 2)B11) P 01 seros10i = 0
and
W(et2,0,1 —a —b,0,minus —b_._1,0,a—2,0,a+b+c,0),c+1n=
w(@a—2,0,a+b+¢0,c+2,0,1-a—-0,0,—1—-b—¢,0.np —0.1

is a common point of the smallest tile 75, and T, — ®(871). If c = a—3, we have 2222 < b < —q, B8] =
a — 2 and

dg(1) = .a —2,b+"™""* -2, (a-threetwo=b _ 4 q threeiwo_b_S, a—twoyb—3,0,1—a—0b,2—a—>b,00b+""_3)

To show that one of the tiles is not connected , according to Lemma 3 on page 300 , it is enough to
prove that p(y) > 0. Since 42 — (a — 2)y — 1 = 0, we have
PN 27 =7 +7e —(a=3)y—1=72(y—2) > 0.
elf —a+1<b<—1,wehavea>3,0<c<a—1.%x If0<c<a-—3, wehavea>4 and

. _ - i >=%
d(1) = eight — less — colon.ay =~ 11a% +1 a—1,0,c+ 1, l,zrfiri,f,’ffljjl ), i Z}cb —|—gi S <7, 7"
) ’b,b+ a )

o If eplus —b < —2 and a — plus — b > 2, s ince every conjugate of 3 is also a root of p(z)(x® —
1)P2,x% =0 , we have

1+ ¢Sl parenleft — bB2" (a — 1)83 — (¢ + 1)84 — bB5 — (a — 1)B6™ (c + 1)B7) Pes B6i =0

zero—equali

and
w(c+1,0,minus — b0,a — 1,0),c.n =w(a—1,0,c+ 1,0,b — minus 0).n —0.1
is a common point of the smallest tile T, and T,, — ®(87'). o If b = minus —a+ 1 and ¢ > 1, we have
¢+ b < —2 and the smallest tile is T;, for n = (¢ +1)
Since every conjugate of 3 is also a root of p(m)(4z,1)(x +1)P2,2% = 0, then
1+ (c+ 1B ((c+1—a)B2T 83T (a — 2)B4
—(c+2)B5T(a—c—1)36 — BT — (a — 2)38" (c +2)B9) P B8i =0

equal—zeroi

and

w(c+2,0,0,a —c—1,0,a—2,1,0),c+ 1.n =w(a —2,1,0,¢+ 2,0,0,a — ¢ — 1,0).n -0.1

is a common point of the smallest tile 7;, and T,, — ®(371).



cevery "= minus — a + landconjugatec = of%;Swehavezzoamotofb S;é) (mandé}ﬁfﬁf”“tPioiomtileé“;:o‘t];fef;rn = 1¥.Sinc
1+ B1— (a—2)322B31T P2, Bi =

and all the coefficients have absolute value les s than |3]. x If ¢ = a — 2, we have —a+2 < b <
—1,|8] =a—1and

dg(l)=.a—1l,a+ba+b—2,a—1,1.
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to Lemma 3 on page 300 , it is enough
to prove that p(y) > 0. Since 42 — (a — 1)y — 1 = 0, we have

P Z7 —va+7" = (a=1)y=1=7*1-7)>0.
o If 0 < b < a, we have | ] = a and

dg(l) = .a,b,c, 1.
elfa+1<b<2a—2, wehavea >3,2<c¢c<a—landl+a<b<a+c—1.|8]=a+1and
dg(l) = .a + 1,minus — a_1,ca — plus — b,b — plusl —c,c —1,1.

Case®, Ifa§c§a+3,wehavea21and#§b§a+c—1.oIfc:a,wegetlngZa—land

.a,b,1, ifb<a;
dlg(l) =17 . . .
.a+1,b—minus,—1,2a — b, minus — bgy1,0a — 1,1, ifb>a.
elfc=a+1, we get %HSbSZaand
wl’
dg(1) = less — colonl) . ijbi ><= a0t

y ca+1,b—a—1,2a—b+1,b—a,a,q
1a+1,0,0,(0,a,0,0,a,a, ¢ H b a7 e mbi Lm0 0 e

xForbpage < 300,% it~ is 1, toshowenough to provet! that
is  not

the tiles’s, 1ot connected, 2., — ay — laccording'®y, .pave Lemma 3 on

OJp(y)

MN=>7' -’ —(@a=1)7 = (a+ 1)y —1=~(1—-7)>0.

* For b = a, since eve r — y conjugate of 3 is also a root of p(z)(z — 1)PX,2% = 0, we have

1+ aB1 — 32" parenleft — beta3 — 84) P°,33i = 0

and all the coe f — fi cients have absolute value less than || =a+1. e Ifc=a+2, weget a+2 < b <
2a+1,|8] =a+1and

dg(l)=.a+1,b—a—-1,2a—b+2,b—a—1,a+ 1,1
oIfc:a+3,Wegeta+2+“T+1§b§2a+2,Lﬁj =a+1 and

dg(l)=.a+1,b—a—1,(2a —b—plus3,b —a — 1,0, 2a — plus — b3, 2b — 3a — 5, 4a — 2b — plus6,2b — 3a — 4, 2a — plus

To show that one of the tiles is not connected , according to Lemma 3 on page 300 , it is enough to
prove that p(y) > 0. Since 42 — (a + 1)y — 1 = 0 we have that

p(y) 27" —ay’ = 20+ 27 — (a+3)y — 1= " >0.
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ab0

From the proof of this theorem we can easily see that a +c¢—2[3] = 1 for the cases when at least one
of the tiles is disconnected and a+c—2| ]| < 0 for the cases when each tile is connected . So , the above
theorem can be written in the following equivalent way :

Theorem 4 . 8 Let f3 be a Pisot unit ofdegree 4 with minimal polynomial p(r) = 2* —ax® —bx? —cx —1.
Then a+c—2|6]| <1, and each tile is arcwise connected if and only if a+c—2[5] <0.

In [ 14 ], Canterini gave an interesting example of GIFS substi ¢t — u tive tiles that the union J; K;
in(4.2)
is connected although each Kj is disconnected . In our setting ,J; K; co r —r esponds to the central tile
T.

As the proof of disconnectedness relies on Lemma 3 on page 300 , the readers see that T} is disconnected
provided there exists a disconnected tile and d_; > d_5. After submission of this paper , we could fu
r —t her show that all the tiles a — r e disconnected , provided there exists a disconnected tile . As
this paper is already of this length , this fact will be published elsewhere . Therefore we can not find
examples like Canterini ’ s among quartic Pisot dual tiles .

Finally from the proof of Theorem 4 . 7 on page 301 we extract the following theorem which gives
the g—
expansion of 1 for any Pisot unit of degree four with the minimal polynomial z* — az® —b2? —cx —1 = 0.
Theorem 4 . 9 Let f be a Pisot unit of degree four with minimal polynomial p(x) = z* — az® — bax?—
c—x—1=0. Then the B— expansion of 1 is:

4

— When—-—a+1<c<—1,

o for b <0 we have

d5(1) = a—l,a+b—1,a+b+c—1,(a+b+¢)”, for(e,d)# (—1,0);
PAYTY a-1la-1,a-1,0,0,1, for(c,b) = (—1,0);

o for b>1 we have dg(l) =.a,b—1,(a+c,b)

— When0<c<a,
o for b<minus—a and c<a—4,letk be the integer of {2,3,---,a— 2} with
(k—1)(a+b+¢c) <
a—2<k(a+b+c).
« If (k—1)(a+b+c)>c+2,let m=inf{ie€N such that (i+1)(a+b+c)>c+2}.

m=1=dg(l) =.a—2,two —a;b—2,a — two’* " 1c—2,a — two'}
b—three

m=2=dg(l) =.a—2,two—ayb—3,a— threetfoberc -3,a— threef&“ee*bJrc — two_2,three — a’’

two—b+c — tu

+three —c_1

m>3=dg(l)=.a—2,two—ayb—3,a— three'ji_wo_b+



with d; =d;_1+a+b+c for 4<i<m and
dmpt1=dp+a+b+c+1,

dmpt2 =dmy1 +b+c+1,
dm+3 =dmi2 +c+1,

dpta =(m+1)(a+b+c).
If (k—1(a+b+c)<c+1and k(a+b+c)=a—2 we have

braceex — braceex — bracele ftmid — braceex — braceex — bracele ftbt

k=2=dg(l)=.a—2,2a+b—2,2a+2b+c—2,a—2,0,2c+b+2,c+2,1,
k>3=dg(l)=.a—2,2a+b—3,ds, -, dagy1,2¢c+ b+ 3,c+2,1 suchthatd; =



308  Shigeki Akiyama  and Nertila Gjini ia+ (i —1)b+ (i —2)c —4 for 3 <i < k—1,( these terms
do not appearfor k= 3)
dy =ka+(k—1)b+(k—2)c—3, diy1=ka+kb+ (k—1)c—2,
diy2=a—2, dpg3=0, dypa=1-b—a,

dagominus —i = ia+ (i+1)b+ (i+2)c+4 for 1 <14 < k—3,( these terms do not appearfor k = 3).
x If (k—1)(a+b+c)<c+1and k(a+b+c)>a—2 we have

k=2=dg(l)=.a—2,2a+b—2,2a+2b+c—1,a+2b+2c+1,2c+b+2,¢c+ 2,1,k >3 =
dg(l) =.a—2,2a+b—3,ds,- - -,dog, 2c + b+ 3,c+ 2, Lsuchthat

di =ia+ (i —1)b+ (i —2)c—4 for 3<i<k—1, ( theseterms do not appearfor k =3)

dy = ka+ (k= 1)b+ (k—2)c—3, dysr = ka+kb+ (k- De—1,
dpro=(k—1Va+kb+kc+1, disz=(k—2)a+ (k—1)b+kc+3,

dok+1minus—i = ta+ (i+ )b+ (i+2)c+4 for 1 <i<k—3,( these terms do not appearfor k =3),
o for b< —a and c¢=a— 3 we have

dg(l) = .a — 2,two — ay b — 2, (a-three ftwo=b _ 4 ¢ _ threefofb,f), a—twoyb—3,001—a—5b,2—a—>5b,0,two —a;b—

o for —a<b< —1and c<a—3 we have

a_—1q1 +bte—1,(at bt e o>=  1.-2
ds(1) = less — colon.ag =11’ a +Ta—1,0,c+1, 1’b—1,§;ig(’ac+1,1, b+c)” for;fz:b ol et <7 1L,

ofor —a<b<-1and c=a—2wehae dg(l)=.a—1l,a+ba+b—2,a—1,1,
o for minus—a < b < —1and ¢ = a—1 we have dg(1) =.a —1,a+b,(a+b,0,,"™"% 0, a+b—1)

o for 0<b<a weget dg(l)=.a,b,c,1,
ofor b>a+1weget dg(l)=.a+1,b—a—1l,c+a—bb—c+1l,c—11.
- When a+1<c<a+ 3 we have

w
b)
o o wtlminus—bs_1l,a—two_b—plusl,minus—bg,a,l, s forib <= _.a+1 ;
oforc = a+l, dﬁ(l) =a+1,0,0,(0,a,0,0,a,0a,1) -1.a’b+1,(0,aminus—b.b,b,a—b—plus1,0 » fmﬂfm”bb = G <a—1;

o for c=a+2 we have dg(l)=.a+1,b—a—1,2a—b+2,b—a—1,a+1,1,0 for ¢c=a+3 we have

(a—two

dg(l) = .a+1,b — minusg_1, —b—plus3,b—a—1,0,a — two_b — plus3, b — two_three—a_s,a — four_two —b — p!

Example 3 Here we want to show that , from a class of Pisot units of degree 4 which are roots of the
polynomial x* — ax® — bx? — cx — 1 = 0, we can obtain an arbitrarily long B— expansion of 1 . For

n>3,a=n+2,and c=a—4=n—-2b=1—a—c=1-—2n we have that |B] =a—2=mn and the
B— expansion of 1 is



d,@(l) =.n, 27braceleft—z 2,3,--,n—-3,n—-2,n,0,n,0,n — 2yz—braceleft n—2n-3,---3,2,0,n,0,1.

n—3clements N — 3 elements Hence the length of the B— expansion of 1is 2n+ 4.
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Connectedness ofnumber theoretic tilings 309 Fig .2 : 3— expansion of 1 for z* —ax® —bax? —cx+1 = 0.
The leng'™" is not fixed in the shaded box .



310 Shigeki Akiyama and Nertila Gjini Fig .3 : B— expansion of 1 for a* —az® —bz? —cx — 1 =
0. T — h. length i s not fixed in h — t, shaded box . Four

di sconnected cases are indicated .
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