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L?’-~ BOUNDEDNESS AND L?- COMPACTNESS OF A
CLASS OF FOURIER INTEGRAL OPERATORS

BEKKAI MESSIRDI , ABDERRAHMANE SENOUSSAQOUI
ABSTRACT . In this paper , we study the L?— boundedness and L?— compactness
of a class of Fourier integral operators . These operators are bounded ( respec -
t ively compact ) if the weight of the amplitude is bounded ( respectively tends
to0) .
1. INTRODUCTION
For ¢ € S(R™)( the Schwartz space ) , the integral operators

Po(z) = / 150 4, 6) Fp(6)d (1.1)

appear naturally in the expression of the solutions of the hyperbolic partial differ -
ential equations and in the expression of the C*°— solution of the associate Cauchy ’ s
problem (see [5,10]).

If we write formally the Fourier transformation Fp(f) in (1. 1), we obtain the
following Fourier integral operators

Fow) = [ [0, 0)()dydo (1.2)

in which appear two C'°°— functions , the phase function ¢(z,y,6) = S(z,0) — y6 and
the amplitude a.

Since 1 970 , many efforts have been made by several authors in order to study these
type of operators (see ,e. g. ,[1,4,6,7,8,15]). The first works on Fourier
inte - gral operators deal with lo cal properties . On the other hand , Asada and
Fuj iwara have studied for the first time a class of Fourier integral operators defined on

n
R
For the Fourier integral operators , an interesting question is under which condi -
tions on a and S these operators are bounded on L? or are compact on L2.
It has been proved in [ 1] by a very elaborated proof and with some hypothesis on
the phase function ¢ and the amplitude a that all operators of the form (2. 1)
( see below ) are bounded on L?.  The technique used there is based on the fact that

the operators I(a,$)I*(a, ), I*(a,¢)I(a,d) are pseudodifferential and it uses Cald é
ron - Vaillancourt * s theorem ( here I(a, ¢)* is the adjoint of I(a, ¢)).
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In this work , we apply the same technique of [ 1 | to est ablish the boundedness
and the compactness of the operators ( 1. 2 ) . To this end we give a brief and simple
proof for a result of [ 1 | in our framework .

We mainly prove the continuity of the operator F' on L?(R™) when the weight of
the amplitude a is bounded . Moreover , F' is compact on L?(R") if this weight tends to
zero .  Using the estimate given in [ 1 2] for h— pseudodifferential (h— admissible
)
operators , we also establish an L?— estimate of || F'|| .

We note that if the amplitude a is j uste bounded , the Fourier integral operator F
is not necessarily bounded on L?(R™). Recently , Hasanov [6] and Messirdi -
Senoussaoui [ 1 1] constructed a class of unbounded Fourier integral operators with
an amplitude in the H 6 rmander ’ s class S ; and in No<p<1 52)1_

To our knowledge , this work constitutes a first attempt to diagonalize the Fourier
integral operators on L?(R")( relying on the compactness of these operators ) .

Let us now describe the plan of this article .  In the second section we recall the
continuity of some general class of Fourier integral operators on S(R™) and on S&’'(R™).
The assumptions and preliminaries results are given in the third section . The last
section is devoted to prove the main result .

2. A GENERAL CLASS OF FOURIER INTEGRAL OPERATORS
If ¢ € S(R™), we consider the following integral transformations

(I(a, ¢)p)(z) = / / 90 a2, 0, y)ply) dydd (2.1)
R? x Ry

where ,z € R", n € N* and N € N(if N =0,6 doesn ’ t appearin (2. 1)) .

In general the integral ( 2. 1) is not absolutely convergent , so we use the technique
of the oscillatory integral developed by H 6 rmander in [ 8] .  The phase function ¢
and the amplitude a are assumed to satisfy the following hypothesis :

(H1) ¢eC®RY xRY xR R)(¢ is a real function )
(H2) Forall (o, 8,7) € N* x NV x N", there exists Cy g, > 0 such that
| 0505 030(2,0,y) |< Ca,p, AP0 4 (2,0, )
where A(z,0,y) = (14 | 2 |2 + [ 0 |2 + | y [*)}/? is called the weight and
C-Tlal=181=17D+ =max2=|a|-[B8]—-]|~]0)
(H3) There exist K1, Ko > 0 such that

K1>\(.’E,0,'y) < A(ayd)a ae(ba y) < KQ)\(I’,@,:Z/), V(x,@,y) € R;l X R(]iv X RZ

( H 3%) There exist K;, K3 > 0 such that

KiXN(,0,y) < A(x,099,0:0) < K3A(x,0,y), V(z,0,y) € R} x Ry x Ry.
For any open subset 2 of R? x R x Ry, € R and p € [0,1], we set
IH(Q) = {a € C®(Q):V(a,B,7) € N* x NV x N*,3Cq 3, > 0:
| 30505 a(x,0,y) |< Cop NI (26, 4)}

When Q = R? x R}’ x R, we denote reQ) =14,
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to the right hand side of ( 2. 1), we consider g € S(R? x R} x
R?),g(0) = 1. If a € Tfj, we define

aa(xaaay) :g(x/a, 9/0’,y/0’)d(1’79,y), o >0.
Now we are able to st ate the following result .
Theorem 2 . 1. If ¢ satisfies (H1),(H2), (HS3)and(H 3%), and if
a €TV, th en
1. For all ¢ € S(R™),limy_,yo0[I(as, p)p](x) exists for every point x € R™
and is independent of the choice of the function g. We define

(@, 8)¢)(@) = lm_o,0)0)(x)

—o+00

2. I(a,¢) € LS®R™) and I(a,9¢) € L(S(R™) (here L(E) is
the space of
bounded lin ear mapping from E to E and S'(R™) the space of al l distrib utions with
t emperate growth on R™).
The proof of the above theorem can be found in [ 7] orin [ 1 2, propostion IT . 2] .
Example 2 . 2. Let us give two examples of operators of the form ( 2. 1) which
satisfy

(H1) — (H3%) :

(1) The Fourier transform Fip(z) = [ e "Yip(y)dy, € S(R™), (2) Pseudod-
ifferential operators

Av(w) = (2m) " [ o,y 0)u(y)dyd
withy) € S(R™),a € Tl (R3").

3. ASSUMPTIONS AND PRELIMINARIES In this paper we consider the special form
of the phase function

where S satisfies

(@1) S e C®R"xRR),
(G2) Foreach (a,3) € N* there exist C,, g > 0, such that

| 0202 S(x,0) |< Co gz, 0)lo1=18D

(G3) There exists C; > 0 such that | z |< C1\(0,099), for all (x,0) € R*",
( G 3%x) There exists Cy > 0, such that | 0 |< Co)(z,d,S), for all (z,0) € R*™.
Proposition 3. 1. Let ’s assume that S satisfies (G 1), (G2),(G3)and(
G 3x). Then
the function ¢(x,y,0) = S(z,0) — y0 satisfies (H1 ), (H2), (H3)and (H
3%). Proof . (H1)and (H2) are trivially satisfied . The condition ( G 3 ) implies

Az, 0,y) < Mz, 0) + My) < C3(M0,065) + A(y)), C3>0.
Also , we have 9,,¢ = —0; and 9p,¢ = 0y, S — y; and so



A(0,0p5) = A0y, 0 + y) < 2X\(9y, Dy, y),
which finally gives for some Cy > 0,

A 0,) < Co(2\(Dy6, A, y) + A(y)) < C%Mam, 90, y)

The second inequality in ( H 3 ) is a consequence of the assumption ( G 2 ). By a
similar argument we can show ( H 3x). O
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(G4) There exists 6o > 0 such that
%S
inf | det z,0) |> do.
0., €kn | det 5 56 (% 0) 1= %

We note that if ¢(z,y,0) = S(x,8) — yb, then

82¢ (=, ) a2¢ (z, ) 825‘ (z, )

D(9)(,0,y) = (5—— . 0y 07y") = i, 0"))

dxdyline — phiggg, 02 (=, ) phi — lined?30%0 @ ) 93’;?};5 " )
and

928
[det D(G)(a,0,)] = | det 32 (2 )] > b,

Remark 3 . 2. By the global implicit function theorem (cf. [14],[3, theorem
4.1.7])

and using (G 1), (G2)and (G4), we can easily see that the mappings h; and
ho defined by

hi: (x,0) = (x,0.5(x,0)), ho:(x,0) — (0,005(x,0))
are global diffeomorphism of R?". Indeed ,

aac?viiz e 929 (r,(9
M0 =05 Tggg ) 0h RE0=On T )
962 (z,
and | det b (x,0) |=| det h%(z, ) |=| det 2 dwe S (x,0) |> 8o > 0, for all (z,0) € R?™. Then
| (B 0)t | = Mé(w | a0 |
ATl R p— S— )

| det 5= (,0) |

where A(x, ), B(x,0) are respectively the cofactor matrix of k) (z,0), h%(x,0). B
(G 2), weknow that || ta(,,0) || and || tp(,0) || are uniformly bounded .
Let ’ s now assume that S satisfies the following condition which is stronger than
(G2).
(G5) Forall (a, ) € N* x N, there exist Cy g > 0, such that

| 0205 S (2, 0) |< Ca s\, 0) >~ 1oI=18D)

Lemma 3. 3. If S satisfies (G 1), (G4 )and (G5 ), then S satisfies (G
8 ) and ( G 3x). Also there exists Cs > 0 such that for al 1 (z,0),(2,0') € R*",

|z —a" | +]0—0|<Cs[| (905)(x,0) — (965)(z',0") | + |0 —0"|] (3.2)
Proof . The mappings
R" 350 — f,(0) = 9,5(x,0), R">x— gb(x)=0sS(x,0)

are global diffeomorphisms of R " From (G4)and (G5), it follows that || (f;1)" I,



| (g5") | and || (hy') ||  are uniformly bounded on R?™. Thus ( G 5 ) and the Taylor
’ s theorem lead to the following estimates :  There exist M, N > 0, such that for all

(z,0),(2',0) € R*",
10 |=| £ (f2(0)) = £ (f2(0)) |[< M | 825(x,0) — 8,5(x,0) |< CeA(x, 0,.9),
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withCg > 0;

|2 |=| g5 (90(0)) — g5 (90(0)) |< N | 8pS(a,0) — 3pS(0,0) |< C7 (35S, ),
withC7 > 0;

| (2,0) — (2/,0) |=| hy (ha(z,0)) — hy  (ha(2’,0")) |

< Cs | (0,09S(x,0)) — (0,052, 0)) |

O

When 6 = ¢ in ( 3. 2), there exists C5 > 0, such that for all (z,2’,0) € R3",

|z —a' |< Cs | (998)(x,0) — (96S)(z',6) | . (3.3)

Proposition 3 . 4. If S satisfies (G 1) and ( G 5 ), then there exists a constant
€0 > 0 such that the phase function ¢ given in (3. 1) belongs to T'3(Qy.¢,) where

Qg0 = {(2,0,9) €R™; | 0S(z,0) —y P<eollz P+ [y*+]0)}.

Proo f — period We have to show that : There exists €y > 0, such that for all
a? 57 /y E Nn)

thereexistCy g,y > 0:
| 020,07 6(2,0,y) |< Ca gy Az, 0,y) 170D (2 0,y) € Q. (3.4)
If | v |= 1, then

0 if|la|=0
| 85(=6) | ifa=0;
If | |> 1, then | 939, 8] é(,0,y) |= 0.

| 929,00 ¢(x,0.y) |=| 929 (—0) |= {

Hence the estimate ( 3 . 4 ) is satisfied .
If | v |=0, then for all a, 8 € N";| a | 4+ | 8 |< 2, there exists Cy g > 0 such that
| 9205 ¢(,0,y) |=| 03075 (x,0) — 0305 (y0) |< Ca,pA(,0,) 271171

If|a|+]|8|> 2, one has 8;"85¢(x,9,y) = 3;‘855(90,9). In Q4 ¢, we have

|y =] 865 (x,0) —y — 0pS(x,0) < Veol| @[> + |y [P+ 16 %)% + CsA(,6),

with Cg > 0. For ¢y sufficiently small , we obtain a constant Cy > 0 such that

| Yy |§ 09)‘(1'70)7 V(l’, ovy) € Q¢,eo~ (35)

This inequality leads to the equivalence

Mz, 0,y) ~ MNx,0) inQy ., (3.6)

thus the assumption (G5) and ( 3 . 6 ) give the estimate (3.4). O

Using ( 3. 6 ) , we have the following result . Proposition 3 . 5 . If (z,0) —
a(xz,0) belongs to TM(RZ xRY), then (z,0,y) —

a(x,0) belo ngs to TP (R x R x RP) NI (Qg.), k € {0,1}.
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4. L?— BOUNDEDNESS AND L2?— COMPACTNESS OF F
The main result is as follows .
Theorem 4 . 1. Let F be the integral operator of distribution kernel

K(z,y) = /R (5@0 =) g1 0)79 (4.1)

where df = (27)""df, a € I (R2" 4),k = 0,1 and S satisfies (G1),( G 4 ) and ( G
5).

Then FF* and F*F  are pseudodifferential operators — with symbol in T'3™(R?*"),
k=0,1, given by

028 )

000z

028 4
- 0

IS )|

we denote here a = b for a,be TP(R?") if (a—b) € TP *(R?*") and o s tands for

the symbol . Proof .  If u € S(R™), then Fu(x) is given by

o(FF*)(x,055(x,0)) =] a(x,0) [°| (det Hx,0) |

o(F*F)(0yS(z,0),0) =| a(x,0) || (det

Fu(z) = i K (z,y)u(y)dy
0)a(z,0 e W0 (y)d ~
== / R M) g (4.2)
Rn [, LiS(, 0)u(y)dydo

= / e3@0 gz, 0)]—"u(9)39.
Rn

Here F is a continuous linear mapping from S(R™) to S(R™)( by Theorem 2 . 1) . Let

v € S(R™), then

u, V) L2 (Rn) = etS(@:0) g (o U dy v(z)dx
(Fu,v) L*(Rn) /(/ (2, 0)Fu(6)76) (2)d
= |, Fulo) /]R ) R — IL

thus
(Fu(z),v(x))L*(Rn) = (2m) " (Fu(f), F((F*v))(0))L* (Rn)

where

F((F*0))(8) = /R eSO 4(F 0)0(F)d7. (4.3)

Hence , for all v € S(R™),

(FF*v)(z) = / / (S @O -S@—c0) gy o) —a(F 0)dTdD.  (4.4)
Rn JRn

The main idea to show that F'F* is a pseudodifferential operator , is to use the fact
that (S(x,0) — S(Z 6)) can be expressed by the scalar product (x — = £(z, 7 6))



after considering the change of variables (z,% 0) — (z,7.§ = £(z,Z.0)).
The distribution kernel of FF* is

K(z, &) = / e/ (S@0)=5(2.0) ¢ (2 0) a(z,0)%6.
Rn
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.3 ) that if | x — 2 |> §A(z, 7 0)( where € > 0 is sufficiently small )
then

| (965)(x.0) — (855)(%.0) |> 2—;5A<x,a~:,e>. (4.5)

Choosing w € C*°(R) such that

w(x) >0, VzeR
11

suppw C] —1,1]
and setting

by o(2,20) = w(et\fxf 9|) Vo(a, & 6)
by o(2,20) = [1 — w(e&“(:; 9|))]b(1;, 7.0)

We have K(z,7) = K; (z,%) + K3,.(x,7), where

K (2,7) = / e S@N=5@My, (2,7 0)%, j=1,2.
Rn

We will study separately the kernels K; . and Ko ..
On the support of by ¢, inequality (4 . 5 ) is satisfied and we have

Ky (z,7) € S(R™ x R™).

Indeed , using the oscillatory integral method , there is a linear partial differential
operator L of order 1 such that

L(&/(S@0)=5(,0)) — (i(S(,0)=5(,0))

where

L =—i|(995)(x,60) — (855)(z,0) 7> D _[(96,5)(x,6) — (96,5)(Z,6)] ;.
=1

The transpose operator of L is



n

tL—ZFlI$9)89L+G( T,T )

=1

whereF(z, 7 0) € Fal(Qe), G(z,z,0) € ( )s

Fi(x,7,0) =i | (005)(x,0) — (965)(%,0) | 7% ((6,5)(x,6) — (s, )( 9)),
G(z,z20) = zz&gl | (09S)(x,0) — (0pS)(Z 0) |’2 ((0g,S)(x,0) — (09,5)(2.0))],
=1

Qc = {(z,2.0) € R® :| 9S(x,0) — 0S(3.0) |> —\(z,%,0)}.

205
On the other hand we prove by induction on ¢ that

(‘L)boe(2,2,0) = > gyq(z,8.0)0)bye(z,80), + €T30,
|v[<¢,7€Nn
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Ko (2,7) = / ! S@O=5@ N (tr)ap, (x,7.0)%.
Rn

Using Leibnitz ’ s formula , ( G 5 ) and the form (*L)9, we can choose ¢ large enough
such that for all o, o/, 8,8 € N*,3Cy o’ 3,8 > 0,

sup | 2975 P00 Ko o(2,7) |< Coral B, B
e ¢€ERn

Next , we study Ki : this is more difficult and depends on the choice of the
parameter €. It follows from Taylor ’ s formula that

S(xz,0) —S(z0) =(x—7&(x,7,0))Rn,
£(2,7.0) :/0 (0,9)(F + t(x — F), 0)dt.

We define the vectorial function

|z -3 )

~ - |z — 2| _
€ s 0 = — 5 0 1_ ———— x 9 .
€ 0) = (g gy €0 + (1=l ) (0:S)(E0)
We have
ge(‘rvg,e) = g(xvi,e)onsuppbl,e
Moreover , for e sufficiently small ,
Az, 0) ~ AT ,0) ~ \x, z,0)onsuppbdy . (4.6)
Let us consider the mapping
R 5 (2,7,0) — (2,7 .E(x,7.0)) (4.7)
for which Jacobian matrix is
I, 0 0
0 I, 0
arge azfege 8955
We have
Oy -
Tei(mal‘ﬂ)
RS lz—a| )08, RS
= 0,00, 2 GaG e Go )~ Ga0., )
2 =3 0N, o |w—&] _ S
_— 0)A ' (———— (& 0) — —(x.0)).
2ex(z,7.9) 06 TN @ B G gy G T 5 (@)

Thus , we obtain



OE. g 0’8

| 0, (z,2,0) - m(ﬂﬁ,e”
‘ rT—T | 85] ~ 825 ~
< PR - -
< ez a0, "0 ~ Fp00, )
-1 o~ ’ ‘ r—x | ) ~ 0\ ﬁ ~
@8O (o g 6@ 50) = 5 @O
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(G5),(4.6)and Taylor ’ s formula that

9, - / s
69( z,0) — aea 0)] < ‘aea +t(x—7),0) 769i8xj(x,0)|dt
Scmlw—fu‘l(x,fﬂx Cio >0
(4.8)
oS
|gj(xx9)—7 |</ |—x+tw—x) 0) - o-@Old (49)
J

§011|$—§f|, C11 > 0.

From (4.8 )and (4.9 ), there exists a positive constant C12 > 0 such that

06, 928
50, @20~ Bg.aa,

If e < 52¢ then (4.10)and ( G 4) yields the estimate

(%79) |§ Ciae, Vi,je€ {1, ,n} (410)

2

Wge(:ﬁ, 8) < det 9yé. (z, 7 0), (4.11)

with C' > 0 If € is such that (4.6)and (4. 11) hold, then the mapping given in (
4. 7) is a global diffeomorphism of R3". Hence there exists a mapping

60/2 < —Ce + 8y < —C. + det

0:R" xR" xR" 3 (2,2,§) = 0(2,28) € R”
such that

@, T 0(2, 7€) = ¢
0(z,%(2,7.0)) = (4.12)
9%0(z,7 &) = O(1), Va e N*"\ {0}
If we change the variable £ by 0(x,z.§) in K; (z,T), we obtain

Kl,e(:c,%):/ ei<”_iv5>b1’6(x7;i,9(:c,575))|det% x,7.6)|%. (4.13)
Rn

85(
From (4. 12) we have, for k = 0,1, that by ((z,Z.0(z,7.&)) | det g—g(x,%’f) | belongs

tol2™(R®")ifa € T (R?™).

Applying the stationary phase theorem (¢ . f. [12])to4. 13, we obtain the
expres - sion of the symbol of the pseudodifferential operator FF™*,

o(FF*) = by (2, 7.0(z,7.€))| det %Z

where R(z,&) belongs to I ?(R?") if a € I'7*(R?"), k = 0, 1.
For # = x, we have by (2,7 0(z,7.€)) =| a(x,0(z,z,£)) |> where 0(z,z,§) is the
inverse of the mapping 6 — 9,5(z,0) = £. Thus

(78| |e -z =+ R(z,f)

928

o(FF*)(x,0,5(x,0)) =| a(x,0) |* | det ——— 9000

(z,0)]"
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obtain the expression of F*F' : Vv € S(R"),

(.7-'(F*F)]-"71)v(9)z/]R e~ 8(@0) a(z, 0)(F(F 1)) (z)dx

_ / —iS(.0)
Rn

alz, 0)( / 5@ (o, B)(F(F 1)) O)P)da
Rn
:/ / efi(s(‘”’a)fs(x’é)) a(x,@)a(m,g)v(é)iédm
Rn JRn

Hence the distribution kernel of the integral operator F(F*F)F ! is

I?(@,g):/ BCCORECR) a(mﬁ)a(xﬁ)gx.
Rn

We remark that we can deduce I?(O, 5) from K(x,Z) by replacing « by 6.  On the
other hand , all assumptions used here are symmetrical on = and 6; therefore ,
F(F*F)F~! is a nice pseudodifferential operator with symbol

0928

* —1 _ — 2 -1
o(FEF)F7)(0, ~05(x,0)) =| a(x,0) | | det o5 (2, 0)[
Thus the symbol of F*F is given by (¢. f. [9])
o(F*F)(0yS(z,0),0) =| a(x,0) |* | det "5 (z,0) 7!
(7 ) ) == ) axag ’ .
O
Corollary 4 . 2. Let F be the integral operator with the distribution kernel
Kay) = [ S0 a(s, 0%
Rn
where a € T§H(RYY) and S satisfies (G1), (G4 )and (G5). Then , we

have :
(1) Forany m such that m <0, F can be extended as a bounded lin ear
mapping

onL?(R™)

(2) Forany m such that m < 0,F can be extended as a compact operator on

L*(R").
Proo f — period It follows from Theorem 4 . 1 that F*F is a pseudodifferential
operator with
symbolinT'2™ (R?™).

(1)Ifm < 0, the weight A>"(x,0) is bounded , so we can apply the Cald é
ron - Vaillancourt theorem ( see [ 2,12 ,13]) for F*F and obtain the existence of a
positive constant y(n) and a integer k(n) such that

| (F*F)u || L*(®n) < y(n)Qk(n) " Dy | 2(Rn), Vu e S®R”)

where



Q ( ) o(FF™*)) _‘a|+z esup €R2n|8aaﬁ (FF*)(aGS(x 0) )|
1BI<

Hence , for all u € S(R™),

| Full L2(Rn) <| F*F |72 oy | w1l 2 (Rn) < ((0)Quiny (0 (FE))/? || w || L (Rn)

Thus F is also a bounded linear operator on L*(R™). (2 ) If m < 0, 1im ;| 4| +00 A" (,0) =
0, and the compactness theorem ( see [ 1 2,
1 3] ) show that the operator F*F can be extended as a compact operator on L?(R™).
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integral operator F is compact on L?(R™). Indeed , let (¢;); € N
be an orthonormal basis of L?(R™), then

n
| F*F = (@), )F*Fg; |0 asn — +oc.
J=1

Since F is bounded , for all ¢ € L?(R"),

n - n n

IFy = {pi 0)Fp;l12 < |[F*F = > (05, W) F*Foilllb = > (5,15l
j=1 j=1 j=1

it follows that

n
||F—Z<<Pja~>Fs0j =0 asn— 400
j=1

U

Example 4 . 3. We consider the function given by

S(x,0)= > Capz®0?, for(z,0) € R
|a|+|8]=2,a,8 €Nn
where C, 3 are real constants . This function satisfies (G 1), (G4 )and (G5) .
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