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Introduction . Throughout this paper X denotes a Banach space ,C a
subset of X ( not necessarily convex ) , and T : C' — C' a self - mapping of C.
There appear in the lit erature two definitions of asymptotically nonexpan -
sive mapping .  The weaker definition ( cf . Kirk [ 14 ] ) requires that
lim sup sup (| 7"z —=T"y || —[lz—y]|) <0

n—o0 yedl

for every x € C, and that T be continuous for some N > 1. The stronger
definition (cf. Goebel and Kirk [8]) requires that each iterate T™ b e Lip -
schitzian with Lipschitz constants L, — 1 asn — oo. For our it eration
method we find it convenient t o introduce a definition somewhere b etween

these two : T is asymptotically nonexpansive in the intermediate s ense pro - vided
T i s uniformly continuous and
limsup sup (|| T"xz—-T"y| —|z—-yl)<0.

n—oo z,yelC

Many papers on the weak convergence of it erates of asymptotically non -
expansive mappings have appeared recently ;  their setting i s either a uni - formly
convex space with a Fr é chet - differentiable norm or a uniformly con - vex space with
the Opial property . In this paper we are primarily interested in a generalization of the
second case .  Our proofs are not only simpler , they are more general : when 7 is a
Hausdorff linear t opology and X satisfies the
uniform 7— Opial property , we prove that {T™xz} i s 7— convergent if and only
if {T™x} is 7— asymptotically regular ,i. e .

Ty — TP2r—0.

The 7— limit is a fixed point of T
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In the second part of the paper we show how t o construct ( in uniformly convex
Banach spaces ) a fixed point of a mapping which i s asymptotically nonexpansive in
the intermediate sense as the 7— limit  of a sequence {z;} defined by an it eration of
the form

Tip1 = 0T"ig, + (1 — a;)x;,

where {a;} is a sequence in ( 0, 1) bounded away from 0 and 1 and {n;} i s a sequence
of nonnegative integers .  Schu [ 25 ] has considered this it eration for n; = ¢, under
the assumptions that X i s Hilbert ,C i s compact , and T

has Lipschitz constant L, > 1 such that > (L2 —1) < +oo; our results
considerably generalize this result .

Recall the classical definition of the Opial property :  whenever z,, — x, then
limsup || 2, —2 || <limsup | xn—vy]
n n
for all y # x, where — denotes weak convergence .  Henceforth we shall de - note by 7

a Hausdorff linear t opology on X. The 7— Opial property is defined analogously t o
the classical Opial property , replacing weak convergence by 7— sequential convergence

We say that X has the uniform 71— Opial property if for each ¢ > 0 there exists
r > 0 with the property that for each x € X and each sequence {z,} the conditions

p7—0, 1<limsup | z,| <+oo, |z]| >c¢
n

imply that lim sup,, || 2, — 2 || > 14+7r(cf. Prus[2 1] ). Note that a uniformly
convex space which has the 7— Opial property necessarily has the uniform 7— Opial

property .

7— Convergence of it erates . A common thread in each of our theorems is
the convergence ofa sequence of real numbers. We separate out the
principle , but it is too trivial t o offer a proof :

LEMMA 1. Suppose {rg} s a  bounded s equence  of real

numbers and
{ak,m} is a doubly - indexed s equence of real numbers which satisfy
lim sup lim sup agm <0, 7Thim <7k +agm for each k,m> 1.

k m

Then {ry} converges to an r € R; if agm can be taken to be independent of
k,akm = am, then 1 <1y for each k.

THEOREM 1 . Suppose X has the uniform t— Opial property , C is a norm -
bounded , sequentially T— compact subset of X , and T : C — C s
asymp - totically nonexpansive in the weak s ense . If {yn} s a s equencein C
such

that lim,, || yn —w || ewists for each fived point w of T , and if {yn — T*yn} is
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T— convergent to 0 for each k > 1, then {yn} is 7— convergent to a fized point
of T .
Proof. Weshall b egin by proving that if {yn;} i s a subsequence such
that yn;7—z, then z =Tz. Define
re=lmsup || TFyn; —z ||, am =sup (| Ty ~T"z [ - [ly—=z]).

i yeCl

By the Opial property (1) 7j4p = lim sup || T ™yn; —z || < lim sup || TFF™yn,; —
Tz || <7k + am,

i i
where lim sup,, an < 0 by the weak definition of asymptotically nonexpan - sive. By

Lemma 1, therefore , limy r = r exists and r < ry, for each k > 1. Thus, given e > 0, (1)
implies that for sufficiently large k and m,

r < limsup || T ™yn; — T™z ||< r +e.
1

By the uniform 7— Opial property ,lim,, 7™z = z.  Since T i s continuous , z is
therefore a fixed point of TV, and since

z=Hm TNt = imTT'VN 2z = T2,
JoJ
z is also a fixed point of T
We have proved that 7— subsequential limits of {yn} must be fixed points of T.
Opial ’ s classical argument [ 20] can now be followed t o deduce that {yn} is 7—
convergent t o a fixed point of T'; for otherwise , by the sequential 7— compactness of

C, there must exist z; # 2o and subsequences {yng and {ym;} such that yn;7—z; and
ym;T—22. By the Opial property ,

lim sup || yn; — 21 || <lmsup | yn; — 22 ||
i1
and
lim sup || ym; — 2z2 || < limsup || ym; — 2z || -
11

But this is impossible ;  the sequences {||yn —z21 ||} and {|yn—22]]} both
converge , so the limsup ’ s over subsequences are actually limits over the full
sequence .
THEOREM 2 . Suppose the Banach space X has the uniform 1— Opial prop - erty
, and let C be a nonempty , norm - bounded , s equentially T— compact subset of X
If T:C — C is asymptotically nonexpansive in the weak sense and = € C,|
then {T"x} is T— convergent if and only if it is T— asymptotically
reqular . The 7— limit of {T"x} is a fived point of T .
Proof. It is obvious that if {T"z} i s 7— convergent , then Tz — T"x
7—0. Conversely , suppose that T" 1z — T"27—0.



172 R.BRUCKET AL .
If wis a fixed point of T, define

re= || T'e —wll, am=sup(|T"y—w| - |y-wl]),
yel

so that 7p4m < 1y +a,. By the asymptotic nonexpansiveness of
T, lim sup,, a,, < 0, hence by Lemma 1, {r,} converges . We have proved that {||
T"x —w ||} converges for each fixed point w of T. By the 7— asymptotic regularity
of T,

Tz — TFT"27—0 asn — 0o

for each integer kK > 1. Theorem 1 now shows that {T™x} i s 7— convergent t o a
fixed point of 7. ( In particular , this proves that T' has a fixed point . )
Remark1. Inthe case X is a Hilb ert space and 7 i s it s weak t opology ,

Theorem 1 was proved by Bruck in [4 ] .  In this case the result also follows from the
nonlinear mean ergodic theorem [1, 22, 23]. See [2, 5, 10, 11,
19, 24, 26, 28] for more recent results and a comprehensive and updated
bibliography .

Remark2. There is still another definition of “ asymptotically nonex - pansive
mapping which appears in the lit erature :

limsup |[T"z—-T"y||< |x—y]| foreachz,yeC.

b2

n

However , this i s unsatisfactory from the point of view of fixed point theory : Tingley
[27] has constructed an example of a bounded closed convex C in
Hilb ert space and a continuous but fixed - point - free T: C —  C which actually
satisfies

lim || T"x —T"y | =0 foreachz,y e C.

In his example it is even true that {T"e;} i s weakly convergent t o 0 , but of course 0
is not a fixed point .

The proof of Theorem 1 can also b e applied t o asymptotically nonex - pansive
commutative semigroups . Let C' b e a nonempty subset of a Ba - nach space X.
Let T={T(®) :t > 0} be a family of mappings from C into it self . T is
called an  asymptotically nonexpansive s emigroup — on Cif T(t+s) =T(t)T(s) for
all s,¢t > 0,T(to) is continuous for some tg > 0, and

foreachz € C,
lim sup sup (| T(t)e ~ Ty |~ |« —y ) <0.

t— +ooy e C

THEOREM 3. In the setting of Theorem 1, a trajectory {T(t)z} of
an asymptotically nonexpansive semigroup T on C is T— convergent as t — +oo
iff T(t+s)x—T(t)zT—0 as t — 400 for each s> 0. The limit is a common fized
point of T.
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Remark3. Theorems 2 and 3 can be easily generalized t o metric spaces

(X, d).

Remarkd4. Theorems 2 and 3 can be proved in the nonexpansive case under
the weaker assumption that X has the Opial property and 7is  “ locally metrizable
7 ( see Dye , Kuczumow , Lin and Reich [ 6 | and Kuczumow [15] ) .

An averaging iteration of Schu . J . Schu [ 25 | considered the averaging it
eration

Tit1 = aiTil‘i + (1 — ai)xi

when T : C — (Cis asymptotically nonexpansive in the stronger
,  Lip - schitzian sense .  Here {a;} is a sequence in (0, 1) whichis bounded
away from 0 and 1.  We shall consider , instead , the more general it eration

Tiy1 = o T"ig, + (1 — )z, (2)

where {n;} is a sequence of nonnegative integers ( which need not b e increas -

ing ) . A strictly increasing sequence {m;} of positive integers will be called quasi -
periodic if the sequence {m;;1 —m;} i s bounded ( equivalently , if there exists b > 0 so
that any block of b consecutive positive integers must contain a t erm of the sequence )

THEOREM 4. Suppose X is a uniformly convexr Banach space , C
18 a bounded conver subset of X , and T :C — C is asymptotically nonexpansive
in the intermediate sense . Put
cn =max(0, sup(| T"z—T"y |- [lz—yl)),
z,y € C

so that lim, ¢, =0. Suppose {n;} is a s equence of nonnegative integers such that

chi < 400

7

and such that

(’):{i:ni+1=1+ni}

is quasi - periodic . Then for any x1 € C and {z;} generated by (2 ) for i>1,
we have lim; || z; — Tz; || =0. If , in addition ,T is a Hausdor(f linear topology
such that C is sequentially T— compact and X has the 7— Opial property , then {xz;}
is T— convergent to a fixed point of T .

Proof. Wehave not assumed C1isclosed, but since T is uniformly
continuous it (and it s it erates ) can b e extended t o the ( norm ) closure
C with the same modulus of uniform continuity and the same constants c,, so it does
no harm t o assume C' it self is closed . By a theorem of Kirk [14], T has at least one
fixed point w in C.
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We begin by showing that for a fixed point w, the limits lim; || 2; — w ||
and lim; || T™i,, — w || exist and are equal .  From ( 2 ) we have

| k1 —w ||< ap [[ T"ke, —w || +(1 — o) || 2x —w |
=ap || Tz, — T ko | +(1 = ag) || 2x —w ||

<ol ze —w | +en) + (A —ag) [z —w [|[€ |2k —w || +en,,
and hence that

E+m—1
l2esm —w | <lzx—w] + > cu. (3)
i=k
Applying Lemma 1 with rp, = | zx —w || and ag.,m = Zfikm*l Cn,;, WE see
that lim; || z; —w | = r exists for each fixed point w of T.
If r = 0 then we immediately obtain
[Tz —zi|[< [ Tei —w |+ w—zi | =[Tei =Tw| + [Jw-2l],
and hence by the uniform continuity of T, that lim; || 2; — Tx; ||= 0. There - fore
we must also have
[T, —w || = T e, = T"w || <cn+[[zi—w]| —0
asi — 00.
If » > 0, we shall prove that lim; || 7™, —w || = r by showing that for any
increasing sequence {i;} of positive integers for which lim; || 7™ jx;; —w || exists ,

it  follows that the limit isr. Without loss of generality we may assume that
the corresponding subsequence {a;,} converges to some a; we
shall have @ > 0 b ecause {o;} i s assumed t o be bounded away from 0 .

Thus we have

r=tim g —w =l || 21—
= liJm | i, T" jai; + (1 — oy, )i, —w ||
< aliminf || T" jz;, —w || +(1—a)r

J

<alimsup | T"jz;, —w ||  +(1—a)r

J

<alimsup(|| zi; —w | +en, ) + (1= a)r
J

<alimsup |z —w | +(1—-a)r=r.
J
This completes the proof that
lm ||z, —w]| =r=lm| T ,, —w]| .
11

Let ¢ : [0,2] — [0,1] b e the modulus of uniform convexity of X, so that
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whenever 0 < a < 1 and at least one of u, v is not 0jjne—comma then

| u—wv]

ina,1-)s (1, feme

1
> <1- || Oéu""maxlinefparenleft(HUH_7||av)‘l|)”)

Take u = T"i,, —w and v = z; — w; then

2 mi 1 NG HT"Z%—le <1 ) 1 at)w
mlH(Oéz, - Olz) HlaX(H W ” ” " ||) N || azu-l—max(H(u — H, || o)) ||
b
= 1 —max(|[[n7; 5, - —ww|"jz, —w ),
Since || T™iy, —w ||, || @; —w || and || ;41 —w ||  all converge to r > 0 as i — oo,

and since {a;} remains bounded away from 0 and 1 , we conclude that

Bm 6(|| Ty, — x4 || /7) = 0.
)
Therefore

lim | 7"y, — x; ||= 0. (4)
This i s equivalent t o
i

We claimthat z;—Tz; — 0 asj — oo through O. Indeed,
since n;+1 = 1 + n; for such j, we have

|z —Tz; || <[lz;—zjp1 || + [@jp1—=T"F+ 1, || (6)
<Nzjor—zi |+ Nz =T+ 1ayy, |l

tllzjm =zl Fennt | TT"ay = T || -
By (4) - (6 ) and the uniform continuity of T, we conclude that || ; — Tx; || — 0

asj — oothroughQ.

But since O is quasi - periodic , there exists a constant b > 0 such that for each
positive integer ¢ we can find ji € O with | ji —4 |<b. Thus ( 5 ) and the uniform
continuity of I — T imply z; — Tx; — 0 as i — oo through all of N.

If X has the 7— Opial property and C' is 7— sequentially compact , the strong
convergence of || z; — Tz; || t o 0 implies x; — Tx;7—0.  Applying Theorem 1 , we
conclude that {x;} i s 7— convergent to a fixed point of 7.

Remark5. Schu[25] assumed that X is Hilbert and that the iterates
T™ have Lipschitz constants L,, > 1 such that Y (L2 — 1) converges . Even
for Schu ’ s original it eration (n; = 4), Theorem 4 i s more general , since the
convergence of  » (L2 —1) implies that of > (L,—1), which in turn
assures the convergence of our ) c,.
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We can always choose a sequence {n;} satisfying the conditions of The - orem 4 :
since lim, ¢, = 0, we can choose a subsequence {¢y,, } such that >, ¢, < 400 and
Zi Ci4m,; < +00, then put ng; = m; and ng;1 = 1+ m,. If T' is nonexpansive we can
take mo; = 1,m9;41 = 0, recovering a well - known result on the iteration of averaged
mappings ( although it i s not as general as the theorems of Ishikawa [ 1 3] and
Edelstein and O > Brien [ 7]  on asymptotic regularity ) .

Theorem 4 would be more satisfying if we had no condition of quasi - periodicity on
{n;}, but we do not know whether such a result i s true .

The uniform Opial property . We conclude by recalling a few exam - ples of
spaces with the uniform Opial property .

ExamMpLE 1. If X is a Banach space with a weakly sequentially continu -
ous duality map Jg associated with a gauge function ® which i s continuous , strictly
increasing , with ®(0) = 0 and lim; 4o ®(f) = oo, then X has the
uniform Opial property with resp ect t o the weak t opology ( cf . Gossez and Lami -
Dozo [12]). In particular , P has the uniform Opial property with resp ect t o the
weak topology for 1 < p < +oc0.

EXAMPLE 2. /' = ¢*0 has the uniform Opial property with respect to the weak
—x t opology ( cf. Goebel and Kuczumow [9],Lim [18] ).

EXAMPLE 3. The James Tree JT = B*(B i s generated by the biorthog - onal
functionals {f, i} corresponding t o the basis {e,;}) has the uniform Opial property
with resp ect to its weak —x t opology . This is also true for the James space
J =1T1* (I1is generated by the biorthogonal functionals {fi} corresp onding t o the
basis {e1 + ... +€,}). See Kuczumow and Reich [ 1 6 ] for details .

EXAMPLE 4 . It is known that LP[0,1] does not have the Opial property for
1 <p < +Hocandp# 2 (Opial [20]). Nevertheless, if (Q,%,pu)
is a positive o— finite measure space , then for 1 < p < 400 the space L”(u) does have
the uniform Opial property with resp ect t o the t opology of convergence lo cally in
measure ( cf . Brezis and Lieb [ 3], Lennard [1 7] ) .
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Added in proof . It seems worthwhile to point out that Schu ’ s iteration is valid in
the class of spaces in which the nonlinear mean ergodic theorem is usually set :

T HEOREM 5. If ,in Theorem 4,T is the weak topology , then the conclusion remains
valid if the hypothesis that X has the T— Opial prope” ! y is replaced by the hypothesis
that X has Fr € chet differentiable norm , and the assumption that T is asymptotically
nonex -
pansive in the intermediate sense is strengthened to the strong ( Lipschitzian ) asymptotic
nonexpansiveness of 1.

We sketch the proof : first , as in Theorem 4 we have lim; || z; —Tz; || =0. Xu[28]
has proved that [ — T is demiclosed , which in our context means :

(7)  All weak subsequential limits of {x;} are fixed points of T.

To prove the uniqueness of the weak subsequential limit we use an *

¢ orthogonality ” rela-
tionship between fixed points , as in the proof of the nonlinear mean ergodic theorem .
The idea is adapted from S . Reich [ Weak convergence theorems for nonexpansive mappings
in Banach spaces ,J . Math . Anal . Appl. 67 (1979),274—-276] .

Put S; =oa;T™ + (1 — Oéi)I and , for £k > 7 S(k,j) = Sk_lsk_g...Sj, so that
T4 = Sthat(;:’afjkLetLgieizgleiesthatthe Lipschitz constant of S(k,7). The condition of
Theorem

lim sup Ly; = 1. (8)
=00 >

The proof of Theorem 4 that {|| z; — w ||} converges for each fixed point w of T is still
valid , but we need a stronger result :

(9) || txs + (1 — t)wy — wa ||} converges for all fixed points w1, ws and all 0 < ¢ < 1.
It follows from R . E . Bruck [ A simple proof of the mean ergodic theorem for nonlinear
contractions in Banach spaces , Israel J . Math . 32 (1979 ),17—-116]that th line—e
re exists a

strictly increasing , continuous convex function < : [0, +00) — [0, 4+00) with (0) = 0 such
that for each S : C'— C with Lipschitz constant L,

| S(tuy + (1 — t)ug) — tSuy — (1 —t)Sus || < Ly~ '(|| ug —ug || =1L || Suy — Suz ||)

for all uy,us € C' and 0 <t < 1. Applying this to uy = T, us = w1, a fixed point of T,
and S = S(k,j) for k > j, we see by virtue of ( 8 ) and the convergence of {|| x; —w; ||}
that

lim sup || S(k,j)(tz; + (1 —t)wr) —tzp, — (1 —t)wy || =0. (10)
=00 k>

Since



[ ter + (1 —wr —wa || < |t + (1 —t)wr — S(k, j)(tz; + (1 —t)w1) ||
+ 1 Sk, 5)(tz; + (1 — t)wi) — we ||
<tk + (1= twy — S(k, j)(tz; + (1 = t)ws) ||

+Lij || tr; 4+ (1 = t)wr — wa |,

(9) follows from (8 ) and ( 1 0) by first taking the lim sup as k — oo and then taking the
lim inf as j — oo.



NONEXPANSIVE MAPPINGS 179 Put gi(t) = (1/2) || tw; + (1 — )wy —ws || . We
have proved that lim; gi(t) exists . By
the hypothesis of Fr € chet differentiability of the norm ,

lim .4
—+04

isthe

emists(l/Q)Hum'formly, 12).ItisMant, where  Jelementaryexercise normalizedinanalysisAUalitYshati fa SEGU

pointwise convergent and equidifferentiable from the right at a point , then the sequence
of derivatives converges at the point ; thus (11 ) lim (z; —wy, J(w1 — we)) exists for
any fixed points wi,ws of T.

1 — 00
In particular , if w; and ws are weak subsequential limits of {x;}, then when we first let

1 — 00 through a subsequence so x; — w1, then through a subsequence such that x; — wa,
the resulting subsequential limits in ( 1 1 ) must be equal , 1. e .

0= <w1—w1,J(w1—w2)> = <’U.)27U)1,J(U)1 7’[1.)2» = — || w1 — W2 ||2 .

This proves the uniqueness of weak subsequential limits of {xl} and completes the proof
that {x;} converges weakly .
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