COLLOQUIUM MATHEMATICUM

 VOL . LXV

1 993

FASC.2

CONVERGENCE OF ITERATES OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES WITH THE UNIFORM OPIAL PROPERTY

BY

RONALD BRUCK (LOS ANGELES , CALIFORNIA) , TADEUSZ KUCZUM OW (LUBLIN)

AND SIMEON REICH (LOS ANGELES, CALIFORNIA)

Introduction. Throughout this paper X denotes a Banach space , C a subset of X(not necessarily convex) , and $T:C\to C$ a self - mapping of C. There appear in the lit erature two definitions of asymptotically nonexpansive mapping . The weaker definition (cf. Kirk [14]) requires that $\limsup\sup \left(\|T^nx-T^ny\|-\|x-y\|\right)\leq 0$

$$n \to \infty \quad y \in C$$

for every $x \in C$, and that T^N be continuous for some $N \ge 1$. The stronger definition (cf. Goebel and Kirk [8]) requires that each iterate T^n be Lipschitzian with Lipschitz constants $L_n \to 1$ as $n \to \infty$. For our iteration method we find it convenient to introduce a definition somewhere between these two: T is asymptotically nonexpansive in the intermediate s ense pro-vided T is uniformly continuous and

$$\limsup \sup (\|T^n x - T^n y\| - \|x - y\|) \le 0.$$

$$n \to \infty$$
 $x, y \in C$

Many papers on the weak convergence of it erates of asymptotically non-expansive mappings have appeared recently; their setting is either a uni-formly convex space with a Fr \acute{e} chet-differentiable norm or a uniformly con-vex space with the Opial property. In this paper we are primarily interested in a generalization of the second case. Our proofs are not only simpler, they are more general: when τ is a Hausdorff linear topology and X satisfies the

uniform τ – Opial property , we prove that $\{T^nx\}$ i s τ – convergent if and only if $\{T^nx\}$ i s τ – asymptotically regular , i . e .

$$T^{n+1}x - T^n x \tau \to 0.$$

The τ - limit is a fixed point of T.

1 99 1 Mathematics Subject Classification : Primary 47 H 9 , 47 H 1 0 .

 $\begin{tabular}{ll} \it Key words \ and \ phrases : & asymptotically nonexpansive mapping \ , convergence \ of iter-ates \ , uniform \ Opial \ property \ . \end{tabular}$

 $1.70~{\rm R}$. B RU C K ET AL .

In the second part of the paper we show how to construct (in uniformly convex Banach spaces) a fixed point of a mapping which is asymptotically nonexpansive in the intermediate sense as the $\tau-$ limit of a sequence $\{x_i\}$ defined by an it eration of the form

$$x_{i+1} = \alpha_i T^n i_{x_i} + (1 - \alpha_i) x_i,$$

where $\{\alpha_i\}$ is a sequence in (0,1) bounded away from 0 and 1 and $\{n_i\}$ is a sequence of nonnegative integers . Schu [25] has considered this it eration for $n_i \equiv i$, under the assumptions that X is Hilbert, C is compact, and T^n

has Lipschitz constant $L_n \geq 1$ such that $\sum_n (L_n^2 - 1) < +\infty$; our results considerably generalize this result.

Recall the classical definition of the Opial property: whenever $x_n \to x$, then $\lim \sup ||x_n - x|| < \lim \sup ||x_n - y||$

$$n$$
 n

for all $y \neq x$, where \rightharpoonup denotes weak convergence. Henceforth we shall de - note by τ a Hausdorff linear t opology on X. The $\tau-$ Opial property is defined analogously t o the classical Opial property , replacing weak convergence by $\tau-$ sequential convergence . We say that X has the uniform $\tau-$ Opial property if for each c>0 there exists r>0 with the property that for each $x\in X$ and each sequence $\{x_n\}$ the conditions

$$x_n \tau \rightarrow 0$$
, $1 \le \limsup \|x_n\| < +\infty$, $\|x\| \ge c$

imply that $\limsup_n \|x_n - x\| \ge 1 + r(\text{ cf }. \text{ Prus } [2\ 1])$. Note that a uniformly convex space which has the $\tau-$ Opial property necessarily has the uniform $\tau-$ Opial property.

au—Convergence of it erates. A common thread in each of our theorems is the convergence of a sequence of real numbers. We separate out the principle, but it is too trivial to offer a proof:

Lemma 1. Suppose $\{r_k\}$ is a bounded sequence of real numbers and

 $\{a_{k,m}\}$ is a doubly - indexed s equence of real numbers which satisfy

 $\lim \sup \lim \sup a_{k,m} \le 0, \quad r_{k+m} \le r_k + a_{k,m} \quad \text{for each} \quad k, m \ge 1.$

Then $\{r_k\}$ converges to an $r \in \mathbb{R}$; if $a_{k,m}$ can be taken to be independent of $k, a_{k,m} \equiv a_m$, then $r \leq r_k$ for each k.

Theorem 1. Suppose X has the uniform $\tau-$ Opial property , C is a normbounded , sequentially $\tau-$ compact subset of X , and $T:C\to C$ is asymp - totically nonexpansive in the weak s ense . If $\{yn\}$ is a s equence in C such

that $\lim_n \|yn - w\|$ exists for each fixed point w of T, and if $\{yn - T^kyn\}$ is

au- convergent to 0 for each $\ k\geq 1,$ then $\ \{yn\}$ is $\ au-$ convergent to a fixed point of T .

Proof. We shall begin by proving that if $\{yn_i\}$ is a subsequence such that $yn_i\tau\to z$, then z=Tz. Define

$$r_k = \limsup \|T^k y n_i - z\|, \quad a_m = \sup (\|T^m y - T^m z\| - \|y - z\|).$$

$$i \quad y \in C$$

By the Opial property (1) $r_{k+m} = \limsup \|T^{k+m}yn_i - z\| \le \limsup \|T^{k+m}yn_i - T^mz\| \le r_k + a_m$,

i i

where $\limsup_m a_m \le 0$ by the weak definition of asymptotically nonexpan - sive . By Lemma 1, therefore, $\lim_k r_k = r$ exists and $r \le r_k$ for each $k \ge 1$. Thus, given $\varepsilon > 0$, (1) implies that for sufficiently large k and m,

$$r \le \limsup \| T^{k+m} y n_i - T^m z \| < r + \varepsilon.$$

i

By the uniform τ – Opial property , $\lim_m T^m z = z$. Since T^N is continuous, z is therefore a fixed point of T^N , and since

$$z = \lim T^{jN+1}z = \lim TT^{jN}z = Tz,$$
$$j \quad j$$

z is also a fixed point of T.

We have proved that τ - subsequential limits of $\{yn\}$ must be fixed points of T. Opial 's classical argument [20] can now be followed to deduce that $\{yn\}$ is τ -convergent to a fixed point of T; for otherwise, by the sequential τ - compactness of C, there must exist $z_1 \neq z_2$ and subsequences $\{yn_i^{\}}$ and $\{ym_i\}$ such that $yn_i\tau \to z_1$ and $ym_i\tau \to z_2$. By the Opial property,

$$\lim \sup \|yn_i - z_1\| < \lim \sup \|yn_i - z_2\|$$

i i

and

$$\lim \sup \|ym_i - z_2\| < \lim \sup \|ym_i - z_1\|.$$

i i

But this is impossible ; the sequences $\{\parallel yn-z_1\parallel\}$ and $\{\parallel yn-z_2\parallel\}$ both converge , so the limsup 's over subsequences are actually limits over the full sequence .

Theorem 2. Suppose the Banach space X has the uniform τ - Opial prop - erty, and let C be a nonempty, norm - bounded, sequentially τ - compact subset of X. If $T:C\to C$ is asymptotically nonexpansive in the weak sense and $x\in C$, then $\{T^nx\}$ is τ - convergent if and only if it is τ - asymptotically regular. The τ - limit of $\{T^nx\}$ is a fixed point of T.

Proof. It is obvious that if $\{T^nx\}$ is τ -convergent, then $T^{n+1}x - T^nx$ $\tau \to 0$. Conversely, suppose that $T^{n+1}x - T^nx\tau \to 0$.

If w is a fixed point of T, define

$$r_k = \| T^k x - w \|, \quad a_m = \sup(\| T^m y - w \| - \| y - w \|),$$

 $y \in C$

so that $r_{k+m} \leq r_k + a_m$. By the asymptotic nonexpansiveness of T, $\limsup_m a_m \leq 0$, hence by Lemma 1, $\{r_n\}$ converges. We have proved that $\{\|T^nx - w\|\}$ converges for each fixed point w of T. By the τ - asymptotic regularity of T,

$$T^n x - T^k T^n x \tau \to 0 \quad as n \to \infty$$

for each integer $k \geq 1$. Theorem 1 now shows that $\{T^n x\}$ is τ -convergent to a fixed point of T. (In particular, this proves that T has a fixed point.)

R e m a r k 1 . In the case X i s a Hilb ert space and τ i s it s weak t opology , Theorem 1 was proved by Bruck in [4] . In this case the result also follows from the nonlinear mean ergodic theorem [1 , 22 , 23] . See [2 , 5 , 1 0 , 1 1 , 19 , 24 , 26 , 28] for more recent results and a comprehensive and updated bibliography .

 $R\ e\ m\ a\ r\ k\ 2$. There is still another definition of "asymptotically nonex - pansive " mapping which appears in the lit erature :

$$\lim \sup \|T^n x - T^n y\| \le \|x - y\| \quad \text{for each } x, y \in C.$$

n

However, this is unsatisfactory from the point of view of fixed point theory: Tingley [27] has constructed an example of a bounded closed convex C in Hilb ert space and a continuous but fixed - point - free $T: C \to C$ which actually satisfies

$$\lim_{n} \| T^{n}x - T^{n}y \| = 0 \quad \text{for each } x, y \in C.$$

In his example it is even true that $\{T^ne_1\}$ is weakly convergent to 0, but of course 0 is not a fixed point.

The proof of Theorem 1 can also be applied to asymptotically nonex - pansive commutative semigroups . Let C be a nonempty subset of a Ba - nach space X. Let $\mathcal{T} = \{T(t) : t \geq 0\}$ be a family of mappings from C into it self . \mathcal{T} is called an asymptotically nonexpansive s emigroup on C if T(t+s) = T(t)T(s) for all $s, t \geq 0, T(t_0)$ is continuous for some $t_0 > 0$, and

$$foreach x \in C$$
,

$$\lim \sup \sup (\| T(t)x - T(t)y \| - \| x - y \|) \le 0.$$

$$t \to +\infty y \in C$$

THEOREM 3. In the setting of Theorem 1, a trajectory $\{T(t)x\}$ of an asymptotically nonexpansive semigroup \mathcal{T} on C is $\tau-$ convergent as $t\to +\infty$ iff $T(t+s)x-T(t)x\tau\to 0$ as $t\to +\infty$ for each $s\geq 0$. The limit is a common fixed point of \mathcal{T} .

Remark 3. Theorems 2 and 3 can be easily generalized to metric spaces

R e m a r k 4 . Theorems 2 and 3 can be proved in the nonexpansive case under the weaker assumption that X has the Opial property and τ i s "locally metrizable" (see Dye , Kuczumow , Lin and Reich [6] and Kuczumow [15]).

An averaging iteration of Schu . $\,$ J . Schu [25] considered the averaging it eration

$$x_{i+1} = \alpha_i T^i x_i + (1 - \alpha_i) x_i$$

when $T:C\to C$ is asymptotically nonexpansive in the stronger, Lip-schitzian sense. Here $\{\alpha_i\}$ is a sequence in (0,1) which is bounded away from 0 and 1. We shall consider, instead, the more general it eration

$$x_{i+1} = \alpha_i T^n i_{x_i} + (1 - \alpha_i) x_i, \tag{2}$$

where $\{n_i\}$ is a sequence of nonnegative integers (which need not b e increas - ing) . A strictly increasing sequence $\{m_i\}$ of positive integers will be called quasi - periodic if the sequence $\{m_{i+1}-m_i\}$ is bounded (equivalently , if there exists b>0 so that any block of b consecutive positive integers must contain a t erm of the sequence)

Theorem 4. Suppose X is a uniformly convex Banach space, C is a bounded convex subset of X, and $T:C\to C$ is asymptotically nonexpansive in the intermediate sense. Put

$$c_n = \max(0, \sup(\|T^n x - T^n y\| - \|x - y\|)),$$

 $x, y \in C$

so that $\lim_{n} c_n = 0$. Suppose $\{n_i\}$ is a sequence of nonnegative integers such that

$$\sum c_{n_i} < +\infty$$

$$i$$

and such that

$$\mathcal{O} = \{i : n_{i+1} = 1 + n_i\}$$

is quasi - periodic. Then for any $x_1 \in C$ and $\{x_i\}$ generated by (2) for $i \geq 1$, we have $\lim_i \|x_i - Tx_i\| = 0$. If , in addition , τ is a Hausdorff linear topology such that C is sequentially τ -compact and X has the τ -Opial property , then $\{x_i\}$ is τ -convergent to a fixed point of T.

Proof. We have not assumed C is closed, but since T is uniformly continuous it (and it siterates) can be extended to the (norm) closure C with the same modulus of uniform continuity and the same constants c_n , so it does no harm to assume C it self is closed. By a theorem of Kirk [14], T has at least one fixed point w in C.

.

1.74 R.BRUCKETAL.

We begin by showing that for a fixed point w, the limits $\lim_i \|x_i - w\|$ and $\lim_i \|T^n i_{x_i} - w\|$ exist and are equal. From (2) we have

and hence that

$$\|x_{k+m} - w\| \le \|x_k - w\| + \sum_{i=k}^{k+m-1} c_{n_i}.$$
 (3)

Applying Lemma 1 with $r_k = \|x_k - w\|$ and $a_{k,m} = \sum_{i=k}^{k+m-1} c_{n_i}$, we see that $\lim_i \|x_i - w\| = r$ exists for each fixed point w of T.

If r = 0 then we immediately obtain

$$\parallel Tx_i - x_i \parallel \leq \parallel Tx_i - w \parallel + \parallel w - x_i \parallel = \parallel Tx_i - Tw \parallel + \parallel w - x_i \parallel$$
, and hence by the uniform continuity of T , that $\lim_i \parallel x_i - Tx_i \parallel = 0$. There - fore we must also have

$$||T^n i_{x_i} - w|| = ||T^n i_{x_i} - T^n i_w|| \le c_{n_i} + ||x_i - w|| \to 0$$

If r>0, we shall prove that $\lim_i \|T^n i_{x_i} - w\| = r$ by showing that for any increasing sequence $\{i_j\}$ of positive integers for which $\lim_j \|T^{n_i} j_{x_{i_j}} - w\|$ exists , it follows that the limit is r. Without loss of generality we may assume that the corresponding subsequence $\{\alpha_{i_j}\}$ converges to some α ; we shall have $\alpha>0$ b ecause $\{\alpha_i\}$ is assumed to be bounded away from 0.

Thus we have

This completes the proof that

$$\lim \|x_i - w\| = r = \lim \|T^n i_{x_i} - w\|.$$

$$i \quad i$$

Let $\delta:[0,2]\to[0,1]$ be the modulus of uniform convexity of X, so that

whenever $0 < \alpha < 1$ and at least one of u, v is not $0_{line-comma}$ then

$$2\min(\alpha, 1-\alpha)\delta\left(\begin{array}{c} \parallel u-v\parallel\\ \max(\parallel u\parallel,\parallel v\parallel) \end{array}\right) \leq 1- \quad \parallel \alpha u + \max_{line-parenleft}(^1_{\parallel u\parallel}-,_{\parallel}\alpha_v)^{v\parallel}_{\parallel}) \quad .$$
 Take $u=T^ni_{x_i}-w$ and $v=x_i-w$; then

$$2\min(\alpha_{i}, 1 - \alpha_{i})\delta\left(\begin{array}{c} \|T^{n}i_{x_{i}} - x_{i}\|\\ \max(\|u\|, \|v\|) \end{array}\right) \leq 1 - \|\alpha_{i}u + \max_{(\|u\| + \|u\|, \|v\|)}\|$$

$$= 1 - \max(\|\|_{n_{T^{i}}^{x_{i+1}}}^{x_{i+1}} - ww\|_{\|u^{i}}^{\|x_{i}} - w\|).$$

Since $\parallel T^n i_{x_i} - w \parallel$, $\parallel x_i - w \parallel$ and $\parallel x_{i+1} - w \parallel$ all converge to r > 0 as $i \to \infty$, and since $\{\alpha_i\}$ remains bounded away from 0 and 1, we conclude that

$$\lim \delta(\parallel T^n i_{x_i} - x_i \parallel /r) = 0.$$

Therefore

$$\lim \|T^n i_{x_i} - x_i\| = 0. \tag{4}$$

This is equivalent to

$$\lim \|x_i - x_{i+1}\| = 0.$$

$$i$$
(5)

We claim that $x_j - Tx_j \to 0$ as $j \to \infty$ through \mathcal{O} . Indeed, since $n_{j+1} = 1 + n_j$ for such j, we have

$$\| x_{j} - Tx_{j} \| \leq \| x_{j} - x_{j+1} \| + \| x_{j+1} - T^{n} j + 1_{x_{j+1}} \|$$

$$+ \| T^{n} j + 1_{x_{j+1}} - T^{n} j + 1_{x_{j}} \| + \| T^{n} j_{x_{j}} - Tx_{j} \|$$

$$\leq \| x_{j+1} - x_{j} \| + \| x_{j+1} - T^{n} j + 1_{x_{j+1}} \|$$

$$+ \| x_{j+1} - x_{j} \| + c_{n_{j+1}} + \| TT^{n} j_{x_{j}} - Tx_{j} \| .$$

$$(6)$$

By (4) – (6) and the uniform continuity of T, we conclude that $||x_j - Tx_j|| \rightarrow 0$

$$asj \to \infty through \mathcal{O}$$
.

But since \mathcal{O} is quasi - periodic, there exists a constant b>0 such that for each positive integer i we can find $ji\in\mathcal{O}$ with $|ji-i|\leq b$. Thus (5) and the uniform continuity of I-T imply $x_i-Tx_i\to 0$ as $i\to\infty$ through all of \mathbb{N} .

If X has the τ - Opial property and C is τ - sequentially compact, the strong convergence of $\parallel x_i - Tx_i \parallel$ to 0 implies $x_i - Tx_i\tau \to 0$. Applying Theorem 1, we conclude that $\{x_i\}$ is τ - convergent to a fixed point of T.

Re mark 5. Schu [25] assumed that X is Hilbert and that the iterates T^n have Lipschitz constants $L_n \geq 1$ such that $\sum_n (L_n^2 - 1)$ converges. Even for Schu's original iteration $(n_i \equiv i)$, Theorem 4 is more general, since the convergence of $\sum_n (L_n^2 - 1)$ implies that of $\sum_n (L_n - 1)$, which in turn assures the convergence of our $\sum_n c_n$.

We can always choose a sequence $\{n_i\}$ satisfying the conditions of The - orem 4: since $\lim_n c_n = 0$, we can choose a subsequence $\{c_{m_i}\}$ such that $\sum_i c_{m_i} < +\infty$ and $\sum_i c_{1+m_i} < +\infty$, then put $n_{2i} = m_i$ and $n_{2i+1} = 1 + m_i$. If T is nonexpansive we can take $n_{2i} = 1, n_{2i+1} = 0$, recovering a well - known result on the iteration of averaged mappings (although it is not as general as the theorems of Ishikawa [1 3] and Edelstein and O'Brien [7] on asymptotic regularity).

Theorem 4 would be more satisfying if we had no condition of quasi - periodicity on $\{n_i\}$, but we do not know whether such a result i s true.

The uniform Opial property . We conclude by recalling a few exam - ples of spaces with the uniform Opial property .

Example 1 . If X is a Banach space with a weakly sequentially continuous duality map J_{Φ} associated with a gauge function Φ which is continuous, strictly increasing, with $\Phi(0)=0$ and $\lim_{t\to+\infty}\Phi(t)=+\infty$, then X has the uniform Opial property with respect to the weak topology (cf. Gossez and Lami-Dozo [12]). In particular, ℓ^p has the uniform Opial property with respect to the weak topology for $1< p<+\infty$.

EXAMPLE 2. $\ell^1 = c^*0$ has the uniform Opial property with respect to the weak -* t opology (cf . Goebel and Kuczumow [9] , Lim [1 8]) .

EXAMPLE 3. The James Tree $JT = B^*(B \text{ i s generated by the biorthog - onal functionals } \{f_{n,i}\}$ corresponding to the basis $\{e_{n,i}\}$) has the uniform Opial property with respect to its weak -* to opology. This is also true for the James space $J = I^*$ (I is generated by the biorthogonal functionals $\{fi\}$ corresponding to the basis $\{e_1 + ... + e_n\}$). See Kuczumow and Reich [1 6] for details.

EXAMPLE 4. It is known that $L^p[0,1]$ does not have the Opial property for $1 \leq p \leq +\infty$ and $p \neq 2$ (Opial [20]). Nevertheless, if (Ω, Σ, μ) is a positive σ — finite measure space, then for $1 \leq p < +\infty$ the space $L^p(\mu)$ does have the uniform Opial property with respect t o the topology of convergence locally in measure (cf. Brezis and Lieb [3], Lennard [17]).

REFERENCES

- [1] J.-B. Baillon, Un thé or è me de type ergodique pour les contractions non liné aires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1511-1514.
- $[\ 2\]$ $\ J$. B . B a illon and R . E . Bruck , Ergodic theorems and the asymptotic behavior of $\ \ contraction\ semigroups$, preprint .
- [3] H.Brezis and E.Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.

- [4] R . E . B r u c k , On the almost convergence of iterates of a nonexpansive mapping in
- Hilbe r-t space and the structure of the weak $\omega-$ limit set , Israel J . Math . 2 9 (1 978) , 1 1 6 .
- [5] ---, A symptotic behavior of nonexpansive mappings , in : Contemp . Math . 1 8 , Amer . Math . Soc . , 1 983 , 1 47 .
- [6] J. M. Dye, T. Kuczumow, P.-K. Lin and S. Reich, Random products of nonex-pansive mappings in spaces with the Opial proper-ty, ibid. 144, 1993, to appear.
- [7] M . E d e l s t e i n and R . C . O ' B r i e n , Nonexpansive mappings , asymptotic regularity , and successive approximations , J . London Math . Soc . (2) 1 (1978) , 547 -554 .
- $[\ 8\]$ $\ K$. G o e b e l and W . A . K i r k , A fixed point theorem for asymptotically nonexpansive
 - $mappings \;$, Proc . Amer . Math . Soc . 35 (1~972) , 1~71-1~74 .
- [9] $\,$ K . G o e b e l and T . K u c z umow , Irregular convex sets with the fixed point $prope^{r-t}$ y
- spaces satisfying Opial's condition , J . Math . Anal . Appl . 1 61 (1991) , 440 446 . [12] J . P . G ossez and E . L ami Dozo, Some geometric properties related to the fixed
- point theory for nonexpansive mappings , Pacific J . Math . 40 ($1\,972$) , $565-5\,75$. [$1\,3$] S . I s h i k aw a , Fixed points and iterations of nonexpansive mappings in Banach space , Proc . Amer . Math . Soc . 5 ($1\,976$) , 65-71 . [14] W . A . K i r k , Fixed point theorems for non Lipschitzian mappings of asymptotically nonexpansive type , Israel J . Math . 1 7 ($1\,9\,74$) , 339-346 . [$1\,5$] T . K u c z umow , Weak convergence theorems for nonexpansive mappings and semi groups in Banach spaces with Opial 's proper-t y , Proc . Amer . Math . Soc . 93 ($1\,985$) , 430-432 .
- [16] T. Kuczumow and S. Reich, Opial's proper-ty and James' quasireflexive spaces, preprint. [17] C. Lennard, A new convexity proper-ty that implies a fixed point propet-ry for L_1 , Studia Math. 10 (1991), 95 18. [18] T. C. Lim, A symptotic center and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135 143. [19] H. Oka, Nonlinear ergodic theorems for commutative semigroups of asymptotically nonexpansive mappings, Nonlinear Anal. 18 (1992), 619 635. [20] Z. Opial, Weak convergence of the sequence of successive approximations for non-
- expansive mappings % (1,0,0)=0 , Bull . Amer . Math . Soc . 73 (1.967) , 59.1-597 . [2.1] % (1.992) , r u s , Banach spaces with the uniform Opial $~prope^{r-t}$ y % (1.992) , 697-704 .
- [22] S . Re i c h , Nonlinear evolution equations and nonlinear ergodic theorems , ibid . 1 ($1\,976\,/\,77$) , $3\,1\,9-330$. [23] --- , A lmost convergence and nonlinear ergodic theorems , J . Approx . Theory 24 ($1\,978$) , 269-272 . [24] --- , A note on the mean ergodic theorem for nonlinear semigroups , J . Math . Anal . Appl . 9 1 ($1\,983$) , $547-5\,5\,1$. [25] J . S c h u , Iterative construction of fixed points of asymptotically nonexpansive map -

pings % = 100 , ibid . 1 58 (1 9 9 1) , 407 – 41 3 . [26] $$\rm K$. - K . T a n and H . - K . Xu , A nonlinear ergodic theorem for asymptotically nonex -

1.78 R.BRUCKETAL.

[27] D. Tingley, An asymptotically nonexpansive commutative semigroup with no fixed

points , Proc . Amer . Math . Soc . 97 ($1\ 986$) , $1\ 7-1\ 1\ 3$.

[28] H.-K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139-1146.

Added in proof. It seems worthwhile to point out that Schu 's iteration is valid in the class of spaces in which the nonlinear mean ergodic theorem is usually set:

T HEOREM 5. If , in Theorem $4,\tau$ is the weak topology , then the conclusion remains valid if the hypothesis that X has the $\tau-$ Opial $prope^{r-t}$ y is replaced by the hypothesis that X has Fr é chet differentiable norm , and the assumption that T is asymptotically nonex -

pansive in the intermediate sense is strengthened to the strong (Lipschitzian) asymptotic nonexpansiveness of T.

We sketch the proof : first , as in Theorem 4 we have $\lim_i \|x_i - Tx_i\| = 0$. Xu [2 8] has proved that I - T is demiclosed , which in our context means :

(7) All weak subsequential limits of $\{x_i\}$ are fixed points of T.

To prove the uniqueness of the weak subsequential limit we use an "orthogonality" relationship between fixed points , as in the proof of the nonlinear mean ergodic theorem . The idea is adapted from S . Reich [Weak convergence theorems for nonexpansive mappings in Banach spaces $\,$, J . Math . Anal . Appl . 67 (1979) , 274 – 276] .

Put $S_i = \alpha_i T^{n_i} + (1 - \alpha_i)I$ and , for $k \geq j, S(k, j) = S_{k-1}S_{k-2}...S_j$, so that $x_k 4 = Sthat_{\sum c_{n_i} < Let}^{(k,j)x_j} Let_{\infty_+ implies}^{kjdenote} that^{the}$ Lipschitz constant of S(k,j). The condition of Theorem

$$\lim_{j \to \infty} \sup_{k \ge j} L_{kj} = 1. \tag{8}$$

The proof of Theorem 4 that $\{ \| x_i - w \| \}$ converges for each fixed point w of T is still valid, but we need a stronger result:

(9) $\{ \| tx_i + (1-t)w_1 - w_2 \| \}$ converges for all fixed points w_1, w_2 and all 0 < t < 1. It follows from R . E . Bruck [A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces , Israel J . Math . 32 (1 979) , 1 7 – 1 1 6] that the line – e refers to a

strictly increasing , continuous convex function $\gamma:[0,+\infty)\to[0,+\infty)$ with $\gamma(0)=0$ such that for each $S:C\to C$ with Lipschitz constant L,

$$|| S(tu_1 + (1-t)u_2) - tSu_1 - (1-t)Su_2 || \le L\gamma^{-1}(|| u_1 - u_2 || -1L || Su_1 - Su_2 ||)$$

for all $u_1, u_2 \in C$ and 0 < t < 1. Applying this to $u_1 = x_j, u_2 = w_1$, a fixed point of T, and S = S(k, j) for $k \ge j$, we see by virtue of (8) and the convergence of $\{ \parallel x_i - w_1 \parallel \}$ that

$$\lim_{j \to \infty} \sup_{k \ge j} \| S(k,j)(tx_j + (1-t)w_1) - tx_k - (1-t)w_1 \| = 0.$$
 (10)

Since

$$\| tx_k + (1-t)w_1 - w_2 \| \le \| tx_k + (1-t)w_1 - S(k,j)(tx_j + (1-t)w_1) \|$$

$$+ \| S(k,j)(tx_j + (1-t)w_1) - w_2 \|$$

$$\le \| tx_k + (1-t)w_1 - S(k,j)(tx_j + (1-t)w_1) \|$$

$$+ L_{kj} \| tx_j + (1-t)w_1 - w_2 \|,$$

(9) follows from (8) and (1 0) by first taking the lim sup as $~k\to\infty$ and then taking the lim inf as $~j\to\infty$.

NONEXPANSIVE MAPPINGS 1 79 Put $gi(t) = (1/2) \parallel tx_i + (1-t)w_1 - w_2 \parallel^2$. We have proved that $\lim_i gi(t)$ exists. By the hypothesis of Fr \acute{e} chet differentiability of the norm,

lim

 $exists(_{1/2)\parallel}uniformly. \quad {}_{\parallel^2).Itis}in_{an}i, where \quad Jelementary exercise^{isthe}normalized_{inanalysis}duality_{thatifa}sequelet for the property of the property of$

pointwise convergent and equidifferentiable from the right at a point , then the sequence of derivatives converges at the point ; thus (11) $\lim \langle x_i - w_1, J(w_1 - w_2) \rangle$ exists for any fixed points w_1, w_2 of T.

$$i \to \infty$$

In particular, if w_1 and w_2 are weak subsequential limits of $\{x_i\}$, then when we first let $i \to \infty$ through a subsequence so $x_i \rightharpoonup w_1$, then through a subsequence such that $x_i \rightharpoonup w_2$, the resulting subsequential limits in (1 1) must be equal, i. e.

$$0 = \langle w_1 - w_1, J(w_1 - w_2) \rangle = \langle w_2 - w_1, J(w_1 - w_2) \rangle = - \| w_1 - w_2 \|^2.$$

This proves the uniqueness of weak subsequential limits of $\{x_i\}$ and completes the proof that $\{x_i\}$ converges weakly .

U . S . A . POLAND E - mail : BRUCK @ MTHA . USC . EDU and E - mail : CIESLAK @ PLUMCS 1 1 . BITNET SREICH @ MTHA . USC . EDU

 $Re \quad cedilla - c \quad u \quad par \quad la \quad R \quad \acute{e} \quad daction \quad le \quad 5 \quad . \quad 8 \quad . \quad 1 \quad 992$