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A BOUNDARY VALUE PROBLEM OF FRACTIONAL ORDER
AT RESONANCE
NICKOLAI KOSMATOV

ABSTRACT . We establish solvability of a boundary value problem for a nonlin -
ear differential equation of fractional order by means of the coincidence degree
theory .

1. INTRODUCTION

This article is a study of the boundary value problem of fractional order with
non - lo cal conditions

DYu(t) = f(t,u(t),u'(t), aete(0,1),
Do ?u(0) =0, 7u(€) = u(l),

where 1 < a < 2,0 < ¢ <1 and 762! = 1. It will be shown that , with the present
choice of boundary conditions , the boundary value problem is at resonance . We
apply a well - known degree theory theorem for coincidences due to Mawhin [ 16 ] .

The monographs [ 10,20, 2 1, 22 ] are commonly cited for the theory of fractional
derivatives and integrals and applications to differential equations of fractional or -
der . Contributions to the theory of initial and boundary value problems for non
- linear differential equations of fractional order have been made by several authors
including a recent monograph [ 1 3 | and the papers [1,2,9,15,24]. Although
an ap - plication of the coincidence degree theory to a fractional order problem is not
known to the author , we can account for several results that have been devoted to both
the - oretical developments [ 5,1 7,1 9] and applications [ 23 ] to various types of
boundary
and initial value problems . A broad range of scenarios of resonant problems were
studied in the framework of ordinary differential and difference equations [ 1 7 | ( more
generally , dynamic equations on time scales [ 3,1 1] ) on bounded and unbounded |
12]
domains with periodic [ 1 8 ] , non - lo cal boundary conditions [4,6, 7,8, 23] as
well as
boundary value problems with impulses [ 14 ] .

2. TECHNICAL PRELIMINARIES

We start out by introducing the reader to the fundamental tools of fractional calculus

and the coincidence degree theory .
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2 N.KOSMATOV EJDE-2010/135 The Riemann - Liouville fractional integral of
order « > 0 of a functionu €
L?[0,1],1 < p < oo, is the integral

Tou(t) = r(la)/o (t — 5)°u(s)ds. (2.1)

The Riemann - Liouville fractional derivative of order a > 0,n = [a] 4+ 1, is defined by

Dou(t) = w;; /0 (t — 5)"Lu(s)ds. (2.2)

Let ACI0, 1] denote the space of absolutely continuous functions on the interval
[0,1]and ACn[0,1] = {u € AC[0,1] : u™ € AC[0,1]},n =0,1,2,.... We make use
of several relationships between (2. 1) and ( 2. 2 ) that are stated in the next two
theorems (see [10,20,22]).

Theorem 2 . 1. (a) The equality D*I%g = g holds for every g € L'[0,1];
(b) For ue L 0,1],n=[a]+1,8>0, if I “ue ACn — 1[0,1], then

5 5 k=0 yp—k—1 qn—k-1
IPD%u(t) = D Pult) — " u)(0).

) = D"t = 3 g (= 7O

-«

For o« < 0, we introduce the notation Z7¢ =D Theorem 2 . 2 . If

Bya+ B >0 and g€ LY0,1], then the equality
I°1%g. =1°%Fg
Definition 2. 3. Let X and Z be real normed spaces . A linear mapping

L :dom L C X — Z is called a Fredholm mapping if the following two conditions
hold :
(i) ker L has a finite dimension , and
(ii) Im L is closed and has a finite codimension .

If L is a Fredholm mapping , its ( Fredholm ) indez is the integer Ind L = dim ker L—
codim Im L.

In this note we are concerned with a Fredholm mapping of index zero . From
Definition 2 . 3 it follows that there exist continuous projectors P : X — X and

Q : Z — Zsuchthat

ImP=ker L, ker@Q@Q=ImL, X=ker L& ker P, Z=1Im L& Im Q
and that the mapping
L | dom LN ker P:dom LN ker P — Im L

is one - to - one and onto . The inverse of L | dom LN ker P we denote by Kp : Im
L —
dom LN ker P. The generalized inverse of L denoted by Kp g : Z — dom LN ker P
is defined by KP,Q = KP([ — Q)

If L is a Fredholm mapping of index zero , then, for every isomorphism J
Im @@ — ker L, the mapping JQ + Kpg : Z — dom L is an isomorphism and , for

everyu € domL,
(JQ+ Kpg) tu= (L+J 'P)u.
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Definition 2 . 4 . Let L : dom L C X — Z be a Fredholm mapping , E be a
metric space, and N : FE — Z be a mapping . We say that N is L—
compact on Fif QN : E — Z and KpgN : E — X are continuous and compact on E.
In addition ,

we say , that N is L— completely continuous if it is L— compact on every bounded

EFcCcX.

The existence of a solution of the equation Lu = Nu will be shown using [ 1 6 ,
Theorem IV . 1 3] . Theorem 2 . 5 . Let Q C X be open and bounded ,L be a
Fredholm mapping of index

zero and N be L— compact on 2. Assume that the following conditions are satisfied

(i) Lu# ANu for every (u,\) € (( dom L\ ker L) N 9N) x (0, 1);
(ii) Nuelement — slash Im L for e very u € ker L N 0%
(iii) deg (JAN |ker LNOQ, QN ker L,0) # 0, with Q: Z — Z a continuous
projector such that ker Q@ =Im L and J:Im Q — ker L is an is omorphism .

Then the equation Lu = Nu has at least one s o lution in dom L N .
Suppose now that the function f satisfies the Carath é odory conditions with
respect to LP[0,1],p > 1; that is , the following conditions hold :
(C1) foreach z € R" the mapping t — f(t, z) is Lebesgue measurable ;
(C2) fora.e.tel0,1], the mapping z — f(t,2) is continuous on R";
(C3) foreachr > 0, there exists a nonnegative ¢, € LP[0, 1] such that , for a .

t € [0,1] and every z such that | z |< r, we have | f(t, 2) |< ¢, (¢).

3. MAIN RESULTS
Consider the differential equation

Du(t) = f(t,u(t),u'(t)), a.ete(0,1), (3.1)

of fractional order 1 < ar < 2, subject to the boundary conditions

D*2u(0) = 0, (3.2)
nu(§) = u(1), (3.3)

where 0 < £ < 1 and
ne*t =1. (3.4)

We let the following assumption stand throughout this article :

(P)p >

dq = line — p,,_
O[_launq ine — pp—1.

Let AC)0c(0,1] be the space consisting of functions that are absolutely continuous on
every interval [a, 1] C (0, 1]. We introduce the space



Xo={u:ue AC[0,1],u" € AC\c(0,1], D% € L?[0,1]}.

Let
X ={uecCo,1]nC*0,1]: lim_ 27/ (t)exists}
—+¢0
with the weighted norm || u ||= max {|| w || 0, || >~ || 0}, where || - || 0 is the max
-norm and || #7% || 0 = sup;eqy | 27 0(t) | . Let Z = LP[0,1] with the usual
norm || - ||, where p satisfies (P). Define the mapping L : dom L C X — Z with

dom L ={u € X : usatisfies (3.2 )and (3.3)}

andLu(t) = D%u(t).



4 N.KOSMATOV  EJDE-2010/135 Define the mapping N : X — Z by

Nu(t) = f(t,u(t),u'(t)).
Lemma 3. 1. The mapping L:dom L C X — Z is a Fredholm mapping of index
zero . Proof . It is easy to see that ker L = {ct®~! : ¢ € R}. We claim that

ImL = {g € Z:nI%g(¢) =I%9(1)}.

Letg € Zand

u(t) =I%(t) + et ', ceR.

Then D*u(t) =g(t),a.e.in (0,1 ). By Theorem 2. 2,

D 2u(t) = T2 “u(t)
=T* “I%(t) + I (t* 1)
=T2g(t) + c['(a)t,

so that D*~2u(0) = 0. One can readily verify that , in view of (3.4), u satisfies ( 3. 3 )
provided nZ%g(§) = Z%g(1). It is obvious that uw € AC[0,1]. Then ' exists , for a
. e.t€(0,1], and , by Theorem 2 . 2 |

u'(t) =T g(t) + c(a — 1)t 2
Moreover ,
lim 7%/ (t) = c(a — 1
im, u'(t) =cla—1)

since

2—« a—1 tl/q || g ||p o
lim ¢*7¢ | 2% g(¢) |< lim =
0+ =0t D(a—1)((a —2)q + 1)1/

Let t1,t2 € (0,1) and ¢ < t3. Then

| T2 Y g(ta) — I g(ty) |

1 f2 a—2 _ h — 3 a—2 s)ds

—@|/0 (t2 — 5)*2g(s)ds / (ty — 5)°2g(s)ds]

- i| / (s — )7 2g(s)ds + / (b2 — 9772 — (11 — 5)*2)g(s)ds|

L 78042 S 801727 *8‘172 s s
< / (t (o) s + s [ =97 = = 91°2) 905 |
< Cilts— 1) | g [l +C / (tr — )22 = (t2 — 5)*~2)7ds]1 /a9 [

<Cilta—t)* 0 lg | p+01[/ ((tr =)D — (ty — 5) "D ds]1/qg |
0

< Ci(ta — 1) 23 il glp
O (1T e gy ) @D g g ||,

where C is a generic constant that depends only on « and p. Thus ,u’ € ACi..(0, 1].
Combining the preceding observations , we obtain that v € dom L. So ,{g € Z:

nZ%(§) =I%g(1)} C ImL.
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D>y € Im L, we have , by Theorem 2. 1 (b )and (3.2),

D>~ 1u(0) a1 _ D>~24(0)

D>~ 1y(0)
() Ma—1)

I9D%u(t) = u(t) — e

t*7% = u(t) — et

which ,  due to the boundary conditions (3.2), (3.3) together with (
3.4), implies that D%u satisfies nZ*D*u(§) = Z*D*u(1). Hence ,Im L C {g €
Z:nI%g(&) =

Z%g(1)}.Therefore, ImL = {g € Z : nI%g(§) = I%g(1)}.
Define@ : Z — Zby
Qg(t) = (nI*g(§) — Ig(1))t* ",

where
. I'(2«)
C D(a)(E>—1).
Then
Q%g(t) = k(NI Qg(&) — I°Qg(1))t* "
_oon [t o Lot o o
=t [ €= 9 Quos - s [ (=9 Quleydsee
_ n ¢ a—1_a— 1 ! a—1_a—
= w(ly [ €= - s [ st tan o)
_Ta) [ oam
- HF(QO{) (7]52 ' 1)Qg(t)
=Qy(t)
inview of (3.4 ). Therefore, @ : Z — Zisa continuous linear projector
with

Ker@Q = ImlL.

Let g € Z be written as g = (g — Qg) + Qg with g — Qg € Ker Q = Im L and
Qg € Im Q. Hence ,Z = Im L+ Im Q. Let g € Im LN Im @ and set g(t) = ct*~! to
obtain that

0=1ZI%(¢) —I%(1) = ;F(éZ; (g*~' —1) = E

which implies that ¢ = 0. Hence {0} = Im LN Im @ and so Z = Im L& Im Q. Note
that Ind L = dim ker L— codim Im L = 0; that is , L is a Fredholm mapping of index
zero . [

)

DefineP : X — Xby
Pu(t) = ——D* tu(0)t*1.

Since 0 < v —1 < 1,

DoOLu(t) = m%/0 (t — )1~ *u(s)ds.



Then

1

I(a)

/ (1 — 550 ds) o Pul)
= Pu(t).

P2u(t) = D (Pu)(0)t*?

11 d
“ TR —a) T @



6 N . KOSMATOV EJDE-2010 /135 We have that P : X — X is a continuous
linear projector . Note that ker P = {u €

X : D 'u(0) = 0}.Foru € X,

1
P - = Da—l
I Pul0= s | D u(0)|
and
| #7(Pu) 0= oo | D Mu(0) |
MNa—-1) '
Hence ,
| Pull= —— | D*1u(0) | (3.5)
o ') ’ '

Define Kp : Im L — dom LN ker P by

Kpg(t) =1%(t), te(0,1).
Forg € ImL,
LKpg(t) =DL%(t) = g(t)

by Theorem 2. 1 (a) . For u € dom LN ker P, we have D*~24(0) = 0 and D~ 1u(0) =
0 . Hence , by Theorem 2. 1 (b)),

KpLu(t) = IDu(t)
F(a) F(Ol -1
= u(t).

= u(t)

Thus ,

Kp = (L|domLNkerP)—1,
Furthermore , using ( P ) , we have
[ £27%(Kpg)" || 0 =" € (0,1]|t**(Kpg)'(1)]

< e O [ (=9 o) | ds

2—a t
F(ta_l)(/o (t— 5)(a*2)qu)1/qng Il»
= Tla) ((a—2)g+ 1)/a gl -

<™ e (0,1]

Similarly ,

| Kpg [l 0=t""€0,1]| Kpg(t) |

gwwenuﬁ@éa—$“WM$Ms

< tm e o, 1]%( /0 (t — 5)Dds)1 /gy |l
1 1

= @) (a—ngr e 19l




Hence

I Kpg < Allg llp,

(3.6)
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1 a—1
((a=1)g+1)Y7 ((a—2)qg+1)14

A= ! max{

(o) }. (3.7)

We introduce

QNu(t) = k(nT*Nu(€) — Z*Nu(1))t>*
13
= fi 0 [ €= 9 s u(e) ()

—/O (1= )%= f(s, u(s), o/ (s))ds)t>~1

and

KpoNu(t) = Kp(I —Q)Nu(t) = F(ﬁa)/o (t —8)* 1 (Nu(s) — QNu(s))ds.

Now we are in position to prove the existence results . We impose the condiitions (
H1) there exists a positive constant K such that w«w € dom L\
Ker L with

rr[lin] | D*7(t) |> KimpliesQNu(t) # 0on(0, 1];
tefo,1
(H2) thereexist 6, 3,t* 2y, p € LP[0,1] and a continuous nondecreasing function
¢ :[0,00) — [0,00) and o > 0 with the properties :
(a)

[(a)
14+ T(a)A’

(b) forall x>z

181+ 2y llp<

. K+ (1+T(@A) [ 8],

=y @06l F a2
P (o) (CHAA+T@M) 1o leayaysip: Plea-zoi PP 1140,

(¢) f:]0,1] x R? — Rsatisfies
| f(tzy) [<O(8) +B() [ [ +v() [y | +p)e(] = [);

(H3) there exists a constant B > 0 such that , for every ¢ € R satisfying | ¢ |> B
we have

(3.8)

sgn[c(nZuc(§) — Zuc(1))] # 0,
whereu,(t) = ct® .

Theorem 3 . 2. If the hypotheses (P ), (H1)-(H3) are satisfied, th
en th e boundary wvalue problem (3.1)- (3.4) has a s o lution .
Proof . Let Q1 = {u € dom L\ Ker L : Lu = ANwu for some X € (0,1)}. Applying
(H1), @QNu(t) = Oforallt € [0,1]. Hence there existsty € (0,1]
such that
| D*"L(to) |< K. By Theorem 2 . 1 with 8 = 1,

ID“u(ty) = D tu(to) — D> u(0) — D* 2u(0)ty*
= D> tu(ty) — D u(0)



since u € dom L. That is ,

to
D 1u(0) = D* tulty) — / D%u(s)ds,
0
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to
| D u(0) |<| D*ulto) | + / | D u(s) | ds
0

< K+ || Lu ||
<K+ || Nul,p -
By (3.5),
| Pufl= —— | D* " u(0) |< —— (K+ || Nu|,)
- T'(«@) I'(«) b/

Since (I — P)u € dom LN Ker P =Im Kp, forue Qy, || (I—Pu| <A Nul, by
(3.6)and (3.7). Also Pu€ Im P = Ker L C dom L and , therefore ,

1

lul < |Pul + ||<I—P>u||<i+<@

I'(a)
From ( H 2 ) and the previous inequality , it follows that

+A) [ Nullp -

2—a, /1 K 1
| ¢ u“0<m+(m

2y L p 27 [0+ 1l o llp o(ll w [ 0)

+M)o N+ 181 NIl w0

or

e 0« KAHQET@A) 18] A T@O I8l g
D(@) =L+ @A) [ta=2,T, " Ta) = L+ T(@4) [ ta =2,
p ET@N Il

[(a) = (L+T(@)A) [t =2, [lp

(3. 9) Combining the above inequality with

K 1
HUI|0<mH@H\)(II5||p+||BIIPIIIIUH0

Hl ey I p 27 0+ [ o llp &(ll w | 0))

we obtain

K+ (@+T@A)[[o]p
[(a) = (L+T(@A)( B || p+ [ ter =24 [|)

(1+T(@A) [[plp
L) = 1+ T(@A)([ B llp + || ta — 2, Hp)¢(|| u | 0),

for all uw € ;. Suppose that € is unbounded .  If {|| >=*u’ || 0 :u € Q;}isun -
bounded, then, by (3.9), sois{|lul0 :u € O} So, itsuffices
to consider the case that {|| || 0 :wu € Qy} is unbounded . Then , in view of ( 3.
8) , we arrive at a

contradiction . Therefore , 27 is bounded .

Set Oy ={u € ker L: Nu€ Im L}. Hence u. € ker L is given by u.(t) = ct* 1,
c€R.  Then (QN)(ct®"!) =0, since Nu € Im L = ker Q. It follows from ( H 3)
that || ue | = max {|| uc || 0, [ #*7%u; || 0} = max {| ¢ |,(a = 1) | ¢ [} =| ¢ |< B;
that is , 5 is bounded .

Define the isomorphism J : Im Q — ker L by Ju, = e, u.(t) = ct®~1 for ¢ € R.
Let Q3 = {u € ker L : =AJlu+ (1 = AN)QNu =0, X € [0,1]}, if sgn [e(nZu.(£)—
Zuc(1))] = —1. Then u € Q3 implies Ac = (1 — A)(nZuc(§) — Zue(1)). If A =1, then

Jull0<

+
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c=0and ,if A€ [0,1) and | ¢ |> B, then 0 < Ac® = (1 — X)e(nZuc(€) — Tu.(1)) <0,

which is a contradiction . Let Q3 = {u € ker L : A\J lu+ (1 = \)QNu =0, € [0,1]}
if sgn [e(nZuc(€) — Zu.(1))] =1, and we arrive at a contradiction , again . Thus ,

| we ||< B, forallu,. € Q3.

Let €2 be open and bounded such that U_; Q; C Q. Then the assumptions
(i)and (ii) of Theorem 2. 5 are fulfilled . It is a straightforward exercise to show
that

the mapping N is L— compact on €. Lemma 3 . 1 establishes that L is a Fredholm
mapping of index zero .

Define
H(u,A) = £MIdu+ (1 — A\)JQNu.
By the degree property of invariance under a homotopy , if u € ker L N 02, then deg
(JON | ker LNON, QN ker L,0) = deg (H(-,0),02N ker L,0)
=deg(H(-,1),2NkerL,0)

= deg (£ Id , QN ker L,0) # 0. Therefore , the assumption (111 ) of Theorem 2 . 5 is
fulfilled and the proof is completed .

g

Suppose that the hypothesis ( H2 ) isreplaced by (H2”)  there exist 6, 3,t*"2,t*"2p
L?[0,1] and a continuous nondecreasing
function ¢ : [0,00) — [0, 00) and y0 > 0 with the properties :

(a)
Ila)
14+ T(a)A’

(b) forallye[0,00) and ¢ € [0,1],

181+ 2y llp<

27 (y) < (1> y);
(c) forally>yo,

y K+ (1+T(@A) |6 p
Y=
I(a) = (L+T(@A)(| B 1| p+ [ ter = 24 [|)
L+ T(@A) [ t*2p | p 3(y);
T(a) = A+ T(a)A)([| B [ p+ [ ter = 24 [|p) 77
(d) f:1]0,1] x R? — Rsatisfies
| fta,y) |<6(8) + B@E) || +v() [y | +p@)o(] v |)-
Then we have the following existence criterion whose proof is analogous to that of
Theorem 3 . 2.
Theorem 3. 3. Ifthe hypotheses (P ), (H1),(H2’),(H3) are satisfied ,

then the
boundary valu e problem (3.1)- (3.4) has a s o lution .

+
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