$\textit{Electronic Journal of Differential Equations} \quad \text{, Vol. 20 1 0 (201 0), No. 1 35, pp. 1-10}$

.

ISSN:1.72 - 6691 . URL : http : / / ejde . math . txstate . edu or http : / / ej de . math . unt . edu

ftp ejde . math . txstate . edu

A BOUNDARY VALUE PROBLEM OF FRACTIONAL ORDER AT RESONANCE

NICKOLAI KOSMATOV

 $\label{eq:Abstract} Abstract \ . \qquad We establish solvability of a boundary value problem for a nonlinear differential equation of fractional order by means of the coincidence degree$

theory.

1. Introduction

This article is a study of the boundary value problem of fractional order with non - lo cal conditions

$$\mathcal{D}^{\alpha}u(t) = f(t, u(t), u'(t)), \quad \text{a.e.} t \in (0, 1),$$

 $\mathcal{D}_{0+}^{\alpha-2}u(0) = 0, \quad \eta u(\xi) = u(1),$

where $1 < \alpha < 2, 0 < \xi < 1$ and $\eta \xi^{\alpha-1} = 1$. It will be shown that , with the present choice of boundary conditions , the boundary value problem is at resonance . We apply a well - known degree theory theorem for coincidences due to Mawhin [1 6] .

The monographs [1 0 , 20 , 2 1 , 22] are commonly cited for the theory of fractional derivatives and integrals and applications to differential equations of fractional or - der . Contributions to the theory of initial and boundary value problems for non - linear differential equations of fractional order have been made by several authors including a recent monograph [1 3] and the papers [1 , 2 , 9 , 1 5 , 24] . Although an ap - plication of the coincidence degree theory to a fractional order problem is not known to the author , we can account for several results that have been devoted to both the - oretical developments [5 , 1 7 , 1 9] and applications [23] to various types of boundary

and initial value problems . A broad range of scenarios of resonant problems were studied in the framework of ordinary differential and difference equations [$1\ 7$] (more generally , dynamic equations on time scales [$3\ ,1\ 1$]) on bounded and unbounded [$1\ 2$]

domains with periodic [$1\ 8$] , non - lo cal boundary conditions [$4\ ,\, 6\ ,\, 7\ ,\, 8\ ,\, 23$] as well as

boundary value problems with impulses [14].

2. Technical preliminaries

We start out by introducing the reader to the fundamental tools of fractional calculus and the coincidence degree theory .

 $2000\ Mathematics\ Subject\ Classification$. $34\ A\ 34$, $34\ B\ 10$, $34\ B\ 1\ 5$.

Key words and phrases . Carath \acute{e} odory conditions ; resonance ; Riemann - Liouville derivative ; Riemann - Liouville integral . circlecopyrt-c2010 Texas State University - San Marcos . Submitted June 8 , 2010 . Published September 20 , 20 10 .

2 N. KOSMATOV EJDE - 2 0 1 0 / 1 3 5 The Riemann - Liouville fractional integral of order $\alpha > 0$ of a function $u \in L^p[0,1], 1 \le p < \infty$, is the integral

$$\mathcal{I}^{\alpha}u(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} u(s) ds. \tag{2.1}$$

The Riemann - Liouville fractional derivative of order $\alpha > 0, n = [\alpha] + 1$, is defined by

$$\mathcal{D}^{\alpha}u(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dtn} \int_0^t (t-s)^{n-\alpha-1} u(s) ds. \tag{2.2}$$

Let AC[0,1] denote the space of absolutely continuous functions on the interval $[\ 0\ ,\ 1\]$ and $ACn[0,1]=\{u\in AC[0,1]:u^{(n)}\in AC[0,1]\}, n=0,1,2,...$ We make use of several relationships between $(\ 2\ .\ 1\)$ and $(\ 2\ .\ 2\)$ that are stated in the next two theorems (see $[\ 1\ 0\ ,\ 20\ ,\ 22\]$) .

Theorem 2.1. (a) The equality $\mathcal{D}^{\alpha}\mathcal{I}^{\alpha}g = g$ holds for every $g \in L^{1}[0,1];$ (b) For $u \in L^{1}[0,1], n = [\alpha] + 1, \beta > 0$, if $\mathcal{I}^{n-\alpha}u \in ACn - 1[0,1]$, then

$$\mathcal{I}^{\beta}\mathcal{D}^{\alpha}u(t) = \mathcal{D}^{\alpha-\beta}u(t) - \sum_{n=1}^{k=0} \frac{t^{\beta-k-1}}{\Gamma(\beta-k)} \left(\frac{d^{n-k-1}}{dtn-k-1} \mathcal{I}^{n-\alpha}u\right)(0).$$

For $\alpha<0$, we introduce the notation $\mathcal{I}^{\alpha}=D$ $\stackrel{-\alpha}{\overset{-\alpha}{\int}}$ Theorem 2 . 2 . If $\beta,\alpha+\beta>0$ and $g\in L^1[0,1]$, then the equality

$$\mathcal{I}^{\alpha}\mathcal{I}^{\beta}g.=\mathcal{I}^{\alpha+\beta}g$$

Definition 2.3. Let X and Z be real normed spaces . A linear mapping L : dom $L \subset X \to Z$ is called a Fredholm mapping if the following two conditions hold :

(i) ker L has a finite dimension , and (i i) Im L is closed and has a finite codimension .

If L is a Fredholm mapping , its (Fredholm) index is the integer Ind $L=\dim\ker L-\operatorname{codim}\operatorname{Im} L.$

In this note we are concerned with a Fredholm mapping of index zero . From Definition 2 . 3 it follows that there exist continuous projectors $P: X \to X$ and

$$Q: Z \to Z$$
suchthat

 ${\rm Im}\ P=\ker L,\quad \ker Q={\rm Im}\ L,\quad X=\ker L\oplus \ker P,\quad Z={\rm Im}\ L\oplus {\rm Im}\ Q$ and that the mapping

$$L \mid \text{dom } L \cap \text{ker } P : \text{dom } L \cap \text{ker } P \to \text{Im } L$$

is one - to - one and onto . The inverse of $L \mid _{\mathrm{dom}} L \cap _{\mathrm{ker}} P$ we denote by K_P : Im $L \to \infty$

dom $L \cap \ker P$. The generalized inverse of L denoted by $K_{P,Q} : Z \to \operatorname{dom} L \cap \ker P$ is defined by $K_{P,Q} = K_P(I - Q)$.

If L is a Fredholm mapping of index zero, then, for every isomorphism J Im $Q \to \ker L$, the mapping $JQ + K_{P,Q} : Z \to \operatorname{dom} L$ is an isomorphism and, for

$$every u \in dom L,$$

$$(JQ + K_{P,Q})^{-1}u = (L + J^{-1}P)u.$$

Definition 2.4. Let $L: \text{dom } L \subset X \to Z$ be a Fredholm mapping E be a metric space, and $N: E \to Z$ be a mapping. We say that E is $E \to Z$ and E if E are continuous and compact on E. In addition,

we say , that N is L- completely continuous if it is L- compact on every bounded

$$E \subset X$$
.

The existence of a solution of the equation Lu=Nu will be shown using [1 6, Theorem IV . 1 3]. **Theorem 2.5.** Let $\Omega\subset X$ be open and bounded, L be a Fredholm mapping of index

zero and N be L- compact on Ω . Assume that the following conditions are satisfied .

- (i) $Lu \neq \lambda Nu$ for every $(u,\lambda) \in ((\text{dom } L \setminus \text{ker } L) \cap \partial \Omega) \times (0,1);$ (ii) $Nuelement - slash \text{ Im } L \text{ for e very } u \in \text{ker } L \cap \partial \Omega;$
- (ii i) $\deg (JQN \mid \ker L \cap \partial\Omega, \Omega \cap \ker L, 0) \neq 0$, with $Q: Z \to Z$ a continuous projector such that $\ker Q = \operatorname{Im} L$ and $J: \operatorname{Im} Q \to \ker L$ is an isomorphism.

Then the equation Lu = Nu has at least one s o lution in dom $L \cap \Omega$.

Suppose now that the function f satisfies the Carath \acute{e} odory conditions with respect to $L^p[0,1], p \geq 1$; that is , the following conditions hold :

- (C1) for each $z \in \mathbb{R}^n$, the mapping $t \mapsto f(t, z)$ is Lebesgue measurable;
- (C2) for a. e. $t \in [0,1]$, the mapping $z \mapsto f(t,z)$ is continuous on \mathbb{R}^n ;
- (C 3) for each r>0, there exists a nonnegative $\phi_r\in L^p[0,1]$ such that , for a . e .

 $t\in[0,1]$ and every z such that $\mid z\mid\leq r,$ we have $\mid f(t,z)\mid\leq\phi_r(t).$ 3 . Main results

Consider the differential equation

$$\mathcal{D}^{\alpha}u(t) = f(t, u(t), u'(t)), \quad \text{a.e.} t \in (0, 1), \tag{3.1}$$

of fractional order $1 < \alpha < 2$, subject to the boundary conditions

$$\mathcal{D}^{\alpha-2}u(0) = 0, (3.2)$$

$$\eta u(\xi) = u(1), \tag{3.3}$$

where $0 < \xi < 1$ and

$$\eta \xi^{\alpha - 1} = 1. \tag{3.4}$$

We let the following assumption stand throughout this article :

$$(P)p > \frac{1}{\alpha - 1}$$
 and $q = line - p_{p-1}$.

Let $AC_{loc}(0,1]$ be the space consisting of functions that are absolutely continuous on every interval $[a,1] \subset (0,1]$. We introduce the space

$$X_0 = \{u : u \in AC[0,1], u' \in AC_{loc}(0,1], \mathcal{D}^{\alpha}u \in L^p[0,1]\}.$$

Let

$$X = \{u \in C[0,1] \cap C^1(0,1] : \lim_{\to_t 0^+} t^{2-\alpha} u'(t) \text{exists} \}$$

with the weighted norm $\parallel u \parallel = \max \{ \parallel u \parallel 0, \parallel t^{2-\alpha}u' \parallel 0 \}$, where $\parallel \cdot \parallel 0$ is the max - norm and $\parallel t^{2-\alpha}v \parallel 0 = \sup_{t \in (0,1]} \mid t^{2-\alpha}v(t) \mid$. Let $Z = L^p[0,1]$ with the usual norm $\parallel \cdot \parallel_p$, where p satisfies (P). Define the mapping $L: \operatorname{dom} L \subset X \to Z$ with $\operatorname{dom} L = \{u \in X_0: u \text{ satisfies } (3 . 2) \text{ and } (3 . 3) \}$

and
$$Lu(t) = \mathcal{D}^{\alpha}u(t)$$
.

$$Nu(t) = f(t, u(t), u'(t)).$$

The mapping $L: \text{dom } L \subset X \to Z$ is a Fredholm mapping of index Lemma 3 . 1 . It is easy to see that ker $L = \{ct^{\alpha-1} : c \in \mathbb{R}\}$. We claim that zero . Proof .

$$\operatorname{Im} L = \{ g \in Z : \eta \mathcal{I}^{\alpha} g(\xi) = \mathcal{I}^{\alpha} g(1) \}.$$

$$\operatorname{Let} g \in Z \text{ and}$$

$$u(t) = \mathcal{I}^{\alpha} g(t) + ct^{\alpha - 1}, \quad c \in \mathbb{R}.$$

$$u(t) = \mathcal{I}^{\alpha} g(t) + ct^{\alpha-1}, \quad c \in \mathbb{R}.$$

Then $\mathcal{D}^{\alpha}u(t)=q(t)$, a. e. in (0,1). By Theorem 2.2,

$$\mathcal{D}^{\alpha-2}u(t) = \mathcal{I}^{2-\alpha}u(t)$$
$$= \mathcal{I}^{2-\alpha}\mathcal{I}^{\alpha}g(t) + c\mathcal{I}^{2-\alpha}(t^{\alpha-1})$$
$$= \mathcal{I}^{2}g(t) + c\Gamma(\alpha)t,$$

so that $\mathcal{D}^{\alpha-2}u(0)=0$. One can readily verify that , in view of (3.4), u satisfies (3.3) provided $\eta \mathcal{I}^{\alpha} g(\xi) = \mathcal{I}^{\alpha} g(1)$. It is obvious that $u \in AC[0,1]$. Then u' exists, for a . e $t \in (0,1]$, and by Theorem 2 . 2,

$$u'(t) = \mathcal{I}^{\alpha - 1}g(t) + c(\alpha - 1)t^{\alpha - 2}.$$

Moreover,

$$\lim_{t \to t^{0+}} t^{2-\alpha} u'(t) = c(\alpha - 1)$$

since

$$\lim_{t \to 0^+} t^{2-\alpha} \mid \mathcal{I}^{\alpha - 1} g(t) \mid \leq \lim_{t \to 0^+} \frac{t^{1/q} \parallel g \parallel_p}{\Gamma(\alpha - 1)((\alpha - 2)q + 1)^{1/q}} = 0.$$

Let $t_1, t_2 \in (0, 1)$ and $t_1 < t_2$. Then

$$\begin{split} |\mathcal{T}^{\alpha-1}g(t_2) - \mathcal{T}^{\alpha-1}g(t_1)| \\ &= \frac{1}{\Gamma(\alpha)} |\int_0^{t_2} (t_2 - s)^{\alpha-2} g(s) ds - \int_0^{t_1} (t_1 - s)^{\alpha-2} g(s) ds| \\ &= \frac{1}{\Gamma(\alpha)} |\int_{t_1}^{t_2} (t_2 - s)^{\alpha-2} g(s) ds + \int_0^{t_1} ((t_2 - s)^{\alpha-2} - (t_1 - s)^{\alpha-2}) g(s) ds| \\ &\leq \frac{1}{\Gamma(\alpha)} \int_{t_1}^{t_2} (t_2 - s)^{\alpha-2} |g(s)| ds + \frac{1}{\Gamma(\alpha)} \int_0^{t_1} ((t_1 - s)^{\alpha-2} - (t_2 - s)^{\alpha-2}) |g(s)| ds \\ &\leq C_1(t_2 - t_1)^{\alpha-2+\frac{1}{q}} \|g\|_p + C_1 [\int_0^{t_1} ((t_1 - s)^{\alpha-2} - (t_2 - s)^{\alpha-2})^q ds] 1/q_{\parallel}g\|_p \\ &\leq C_1(t_2 - t_1)^{\alpha-2+\frac{1}{q}} \|g\|_p + C_1 [\int_0^{t_1} ((t_1 - s)^{(\alpha-2)q} - (t_2 - s)^{(\alpha-2)q}) ds] 1/q_{\parallel}g\|_p \\ &\leq C_1(t_2 - t_1)^{\alpha-2+\frac{1}{q}} \|g\|_p + C_1 [\int_0^{t_1} ((t_1 - s)^{(\alpha-2)q} - (t_2 - s)^{(\alpha-2)q}) ds] 1/q_{\parallel}g\|_p \\ &+ C_1 (1_t^{(\alpha-2)q+1} - 2_t^{(\alpha-2)q+1} + (t_2 - t_1)^{(\alpha-2)q+1}) 1/q \|g\|_p, \end{split}$$

where C_1 is a generic constant that depends only on α and p. Thus, $u' \in AC_{loc}(0,1]$. Combining the preceding observations, we obtain that $u \in \text{dom } L$. So, $\{g \in Z :$

$$\eta \mathcal{I}^{\alpha} g(\xi) = \mathcal{I}^{\alpha} g(1) \} \subseteq \text{Im} L.$$

EJDE - 2 0 1 0 / 1 35 A BOUNDARY VALUE PROBLEM 5 Let $u \in \text{dom } L$. Then, for $\mathcal{D}^{\alpha}u \in \text{Im } L$, we have, by Theorem 2 . 1 (b) and (3 . 2),

$$\mathcal{I}^{\alpha}\mathcal{D}^{\alpha}u(t)=u(t)-\frac{\mathcal{D}^{\alpha-1}u(0)}{\Gamma(\alpha)}t^{\alpha-1}-\frac{\mathcal{D}^{\alpha-2}u(0)}{\Gamma(\alpha-1)}t^{\alpha-2}=u(t)-\frac{\mathcal{D}^{\alpha-1}u(0)}{\Gamma(\alpha)}t^{\alpha-1},$$

which , due to the boundary conditions (3.2), (3.3) together with (3.4), implies that $\mathcal{D}^{\alpha}u$ satisfies $\eta\mathcal{I}^{\alpha}\mathcal{D}^{\alpha}u(\xi)=\mathcal{I}^{\alpha}\mathcal{D}^{\alpha}u(1)$. Hence, Im $L\subseteq\{g\in Z:\eta\mathcal{I}^{\alpha}g(\xi)=1\}$

$$\mathcal{I}^{\alpha}g(1)$$
}. Therefore, $\mathrm{Im}L=\{g\in Z:\eta\mathcal{I}^{\alpha}g(\xi)=\mathcal{I}^{\alpha}g(1)\}$. Define $Q:Z o Z$ by
$$Qg(t)=\kappa(\eta\mathcal{I}^{\alpha}g(\xi)-\mathcal{I}^{\alpha}g(1))t^{\alpha-1},$$

where

$$\kappa = \frac{\Gamma(2\alpha)}{\Gamma(\alpha)(\xi^{\alpha} - 1)}$$

Then

$$\begin{split} Q^2g(t) &= \kappa(\eta\mathcal{I}^\alpha Qg(\xi) - \mathcal{I}^\alpha Qg(1))t^{\alpha-1} \\ &= \kappa(\frac{\eta}{\Gamma(\alpha)}\int_0^\xi (\xi-s)^{\alpha-1}Qg(s)ds - \frac{1}{\Gamma(\alpha)}\int_0^1 (1-s)^{\alpha-1}Qg(s)ds)t^{\alpha-1} \\ &= \kappa(\frac{\eta}{\Gamma(\alpha)}\int_0^\xi (\xi-s)^{\alpha-1}s^{\alpha-1}ds - \frac{1}{\Gamma(\alpha)}\int_0^1 (1-s)^{\alpha-1}s^{\alpha-1}ds)Qg(t) \\ &= \kappa\frac{\Gamma(\alpha)}{\Gamma(2\alpha)}(\eta\xi^{2\alpha-1} - 1)Qg(t) \\ &= Qg(t) \end{split}$$

in view of (3 . 4) . Therefore , $\ \ Q \ : \ Z \ \rightarrow \ Z$ is a continuous linear projector with

$$KerQ = ImL$$
.

Let $g \in Z$ be written as g = (g - Qg) + Qg with $g - Qg \in \text{Ker } Q = \text{Im } L$ and $Qg \in \text{Im } Q$. Hence Z = Im L + Im Q. Let $Q \in \text{Im } L \cap \text{Im } Q$ and set $Q(t) = ct^{\alpha - 1}$ to obtain that

$$0 = \gamma \mathcal{I}^{\alpha} g(\xi) - \mathcal{I}^{\alpha} g(1) = \frac{c\Gamma(\alpha)}{\Gamma(2\alpha)} (\eta \xi^{2\alpha - 1} - 1) = \frac{c}{\kappa},$$

which implies that c=0. Hence $\{0\}={\rm Im}\ L\cap {\rm Im}\ Q$ and so $Z={\rm Im}\ L\oplus {\rm Im}\ Q$. Note that Ind $L=\dim\ker L-{\rm codim}\ {\rm Im}\ L=0$; that is , L is a Fredholm mapping of index zero . \square

$$\mathrm{Define}P:X\to X\mathrm{by}$$

$$Pu(t)=\frac{1}{\Gamma(\alpha)}\mathcal{D}^{\alpha-1}u(0)t^{\alpha-1}.$$

Since $0 < \alpha - 1 < 1$,

$$\mathcal{D}^{\alpha-1}u(t) = \frac{1}{\Gamma(2-\alpha)} \frac{d}{dt} \int_0^t (t-s)^{1-\alpha} u(s) ds.$$

Then

$$\begin{split} P^2 u(t) &= \frac{1}{\Gamma(\alpha)} \mathcal{D}^{\alpha - 1}(Pu)(0) t^{\alpha - 1} \\ &= \frac{1}{\Gamma(2 - \alpha)} \frac{1}{\Gamma(\alpha)} \left(\frac{d}{dt} \int_0^t (t - s)^{1 - \alpha} s^{\alpha - 1} ds\right)|_{t = 0} Pu(t) \\ &= Pu(t). \end{split}$$

6 N . KOSMATOV EJDE - 2 0 1 0 / 1 3 5 We have that $P:X\to X$ is a continuous linear projector . Note that $\ker P=\{u\in X: x\in X: x\in$

$$X : \mathcal{D}^{\alpha-1}u(0) = 0$$
}. For $u \in X$,
 $\parallel Pu \parallel 0 = \frac{1}{\Gamma(\alpha)} \mid \mathcal{D}^{\alpha-1}u(0) \mid$

and

$$|| t^{2-\alpha}(Pu)' || 0 = \frac{1}{\Gamma(\alpha-1)} | \mathcal{D}^{\alpha-1}u(0) |.$$

Hence,

$$\parallel Pu \parallel = \frac{1}{\Gamma(\alpha)} \mid \mathcal{D}^{\alpha - 1}u(0) \mid . \tag{3.5}$$

Define $K_P : \text{Im } L \to \text{dom } L \cap \text{ker } P \text{ by}$

$$K_P g(t) = \mathcal{I}^{\alpha} g(t), \quad t \in (0, 1).$$

For $g \in \text{Im} L$,
 $LK_P g(t) = \mathcal{D}^{\alpha} \mathcal{I}^{\alpha} g(t) = g(t)$

by Theorem 2 . 1 (a) . For $u \in \text{dom } L \cap \ker P$, we have $\mathcal{D}^{\alpha-2}u(0) = 0$ and $\mathcal{D}^{\alpha-1}u(0) = 0$. Hence , by Theorem 2 . 1 (b) ,

$$K_P L u(t) = \mathcal{I}^{\alpha} \mathcal{D}^{\alpha} u(t)$$

$$= u(t) - \frac{\mathcal{D}^{\alpha - 1} u(0)}{\Gamma(\alpha)} t^{\alpha - 1} - \frac{\mathcal{D}^{\alpha - 2} u(0)}{\Gamma(\alpha - 1)} t^{\alpha - 2}$$

$$= u(t).$$

Thus,

$$K_P = (L \mid \text{dom}L \cap \ker P) - 1$$
.

Furthermore , using (P) , we have

$$|| t^{2-\alpha}(K_{P}g)' || 0 = t^{\max} \in (0,1] |t^{2-\alpha}(K_{P}g)'(t)|$$

$$\leq t^{\max} \in (0,1] \frac{t^{2-\alpha}}{\Gamma(\alpha-1)} \int_{0}^{t} (t-s)^{\alpha-2} |g(s)| ds$$

$$\leq t^{\max} \in (0,1] \frac{t^{2-\alpha}}{\Gamma(\alpha-1)} (\int_{0}^{t} (t-s)^{(\alpha-2)q} ds) 1/q_{\parallel}g \parallel_{p}$$

$$= \frac{\alpha-1}{\Gamma(\alpha)} \frac{1}{((\alpha-2)q+1)^{1/q}} ||g||_{p} .$$

Similarly,

$$\| K_{P}g \| 0 = t^{\max} \in [0,1] | K_{P}g(t) |$$

$$\leq t^{\max} \in [0,1] \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} | g(s) | ds$$

$$\leq t^{\max} \in [0,1] \frac{1}{\Gamma(\alpha)} (\int_{0}^{t} (t-s)^{(\alpha-1)q} ds) 1/q_{\parallel}g \parallel_{p}$$

$$= \frac{1}{\Gamma(\alpha)} \frac{1}{((\alpha-1)q+1)^{1/q}} \| g \|_{p}.$$

Hence

$$\parallel K_P g \parallel \leq \Lambda \parallel g \parallel_p, \tag{3.6}$$

$$\Lambda = \frac{1}{\Gamma(\alpha)} \max \{ \frac{1}{((\alpha - 1)q + 1)^{1/q}} \frac{\alpha - 1}{((\alpha - 2)q + 1)^{1/q}} \}.$$
 (3.7)

We introduce

$$QNu(t) = \kappa(\eta \mathcal{I}^{\alpha} Nu(\xi) - \mathcal{I}^{\alpha} Nu(1))t^{\alpha-1}$$

$$= \frac{\kappa}{\Gamma(\alpha)} (\eta \int_0^{\xi} (\xi - s)^{\alpha-1} f(s, u(s), u'(s)) ds$$

$$- \int_0^1 (1 - s)^{\alpha-1} f(s, u(s), u'(s)) ds)t^{\alpha-1}$$

and

$$K_{P,Q}Nu(t) = K_P(I-Q)Nu(t) = \frac{\kappa}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} (Nu(s) - QNu(s)) ds.$$

Now we are in position to prove the existence results . We impose the condiitions (H 1) there exists a positive constant K such that $u \in \text{dom } L \setminus \text{Ker } L$ with

$$\min_{t \in [0,1]} | \mathcal{D}^{\alpha-1}(t) | > K \text{implies} QNu(t) \neq 0 \text{on}(0,1];$$

(H 2) there exist $\delta, \beta, t^{\alpha-2}\gamma, \rho \in L^p[0,1]$ and a continuous nondecreasing function $\phi: [0,\infty) \to [0,\infty)$ and $x_0 > 0$ with the properties :

(a)
$$\parallel \beta \parallel p + \parallel t^{\alpha-2}\gamma \parallel_p < \frac{\Gamma(\alpha)}{1 + \Gamma(\alpha)\Lambda};$$
 (b) for all $x \ge x_0$

$$x \geq + \frac{K + (1 + \Gamma(\alpha)\Lambda) \parallel \delta \parallel_{p}}{\Gamma(\Gamma(\alpha)\Lambda) - (1 + (1(1 + \Gamma(\alpha)\Lambda) \parallel \rho \parallel_{\Gamma(\alpha)\Lambda)(\parallel\beta\parallel p} p + \parallel_{t\alpha-2\gamma\parallel} p\gamma) \parallel_{-p)\phi(x);}}$$

$$(c) \quad f : [0, 1] \times \mathbb{R}^{2} \to \mathbb{R}\text{satisfies}$$

$$\mid f(t, x, y) \mid \leq \delta(t) + \beta(t) \mid x \mid +\gamma(t) \mid y \mid +\rho(t)\phi(\mid x \mid);$$

$$(3.8)$$

(H 3) — there exists a constant B>0 such that , for every $c\in\mathbb{R}$ satisfying $\mid c\mid>B$ we have

$$\operatorname{sgn}[c(\eta \mathcal{I} u_c(\xi) - \mathcal{I} u_c(1))] \neq 0,$$

where $u_c(t) = ct^{\alpha - 1}$.

Theorem 3.2. If the hypotheses (P), (H1)-(H3) are satisfied, then the boundary value problem (3.1)-(3.4) has a so lution.

Proof. Let $\Omega_1 = \{u \in \text{dom } L \setminus \text{Ker } L : Lu = \lambda Nu \text{ for some } \lambda \in (0,1)\}$. Applying (H 1), QNu(t) = 0 for all $t \in [0,1]$. Hence there exists $t_0 \in (0,1]$ such that

 $\mid \mathcal{D}^{\alpha-1}(t_0) \mid \leq K$. By Theorem 2 . 1 with $\beta = 1$,

$$\mathcal{I}\mathcal{D}^{\alpha}u(t_0) = \mathcal{D}^{\alpha-1}u(t_0) - \mathcal{D}^{\alpha-1}u(0) - \mathcal{D}^{\alpha-2}u(0)t_0^{-1}$$
$$= \mathcal{D}^{\alpha-1}u(t_0) - \mathcal{D}^{\alpha-1}u(0)$$

since $u \in \text{dom } L$. That is ,

$$\mathcal{D}^{\alpha-1}u(0) = \mathcal{D}^{\alpha-1}u(t_0) - \int_0^{t_0} \mathcal{D}^{\alpha}u(s)ds,$$

$$|\mathcal{D}^{\alpha-1}u(0)| \leq |\mathcal{D}^{\alpha-1}u(t_0)| + \int_0^{t_0} |\mathcal{D}^{\alpha}u(s)| ds$$

$$\leq K + ||Lu||$$

$$< K + ||Nu||_p.$$

By (3.5),

$$||Pu|| = \frac{1}{\Gamma(\alpha)} |\mathcal{D}^{\alpha-1}u(0)| < \frac{1}{\Gamma(\alpha)} (K + ||Nu||_p).$$

Since $(I - P)u \in \text{dom } L \cap \text{ Ker } P = \text{Im } K_P$, for $u \in \Omega_1$, $\parallel (I - P)u \parallel < \Lambda \parallel Nu \parallel_p$ by (3.6) and (3.7). Also $Pu \in \text{Im } P = \text{Ker } L \subset \text{dom } L$ and , therefore,

$$\|u\| \le \|Pu\| + \|(I-P)u\| < \frac{K}{\Gamma(\alpha)} + (\frac{1}{\Gamma(\alpha)} + \Lambda) \|Nu\|_p$$

From (H2) and the previous inequality, it follows that

$$\| t^{2-\alpha}u' \| 0 < \frac{K}{\Gamma(\alpha)} + (\frac{1}{\Gamma(\alpha)} + \Lambda)(\| \delta \| p + \| \beta \| p \| \| u \| 0$$

$$+ \| t^{\alpha-2}\gamma \| p \| t^{2-\alpha}u' \| 0 + \| \rho \|_p \phi(\| u \| 0))$$

or

$$\parallel t^{2-\alpha}u' \parallel 0 < \frac{K + (1+\Gamma(\alpha)\Lambda) \parallel \delta \parallel p}{\Gamma(\alpha) - (1+\Gamma(\alpha)\Lambda) \parallel t\alpha - 2_{\gamma} \parallel_p} + \frac{(1+\Gamma(\alpha)\Lambda) \parallel \beta \parallel_p}{\Gamma(\alpha) - (1+\Gamma(\alpha)\Lambda) \parallel t\alpha - 2_{\gamma} \parallel_p} \parallel u \parallel 0 \\ + \frac{(1+\Gamma(\alpha)\Lambda) \parallel \rho \parallel_p}{\Gamma(\alpha) - (1+\Gamma(\alpha)\Lambda) \parallel t\alpha - 2_{\gamma} \parallel_p} \phi(\parallel u \parallel 0).$$

(3.9) Combining the above inequality with

$$\| u \| 0 < \frac{K}{\Gamma(\alpha)} + (\frac{1}{\Gamma(\alpha)} + \Lambda)(\| \delta \| p + \| \beta \| p \| \| u \| 0 + \| t^{\alpha-2}\gamma \| p \| t^{2-\alpha}u' \| 0 + \| \rho \|_p \phi(\| u \| 0))$$

we obtain

$$\begin{split} \parallel u \parallel 0 < \frac{K + (1 + \Gamma(\alpha)\Lambda) \parallel \delta \parallel p}{\Gamma(\alpha) - (1 + \Gamma(\alpha)\Lambda)(\parallel \beta \parallel p + \parallel t\alpha - 2_{\gamma} \parallel_p)} \\ + \frac{(1 + \Gamma(\alpha)\Lambda) \parallel \rho \parallel p}{\Gamma(\alpha) - (1 + \Gamma(\alpha)\Lambda)(\parallel \beta \parallel_p + \parallel t\alpha - 2_{\gamma} \parallel_p)} \phi(\parallel u \parallel 0), \end{split}$$

for all $u \in \Omega_1$. Suppose that Ω_1 is unbounded . If $\{ \parallel t^{2-\alpha}u' \parallel 0 : u \in \Omega_1 \}$ is unbounded , then , by (3 . 9) , so is $\{ \parallel u \parallel 0 : u \in \Omega_1 \}$. So , it suffices to consider the case that $\{ \parallel u \parallel 0 : u \in \Omega_1 \}$ is unbounded . Then , in view of (3 . 8) , we arrive at a

contradiction . Therefore $,\Omega_1$ is bounded .

Set $\Omega_2 = \{u \in \ker L : Nu \in \operatorname{Im} L\}$. Hence $u_c \in \ker L$ is given by $u_c(t) = ct^{\alpha-1}$, $c \in \mathbb{R}$. Then $(QN)(ct^{\alpha-1}) = 0$, since $Nu \in \operatorname{Im} L = \ker Q$. It follows from (H 3) that $\|u_c\| = \max \{\|u_c\| 0, \|t^{2-\alpha}u'_c\| 0\} = \max \{\|c\|, (\alpha-1)\|c\|\} = |c| \leq B$; that is Ω_2 is bounded .

Define the isomorphism $J: \text{Im } Q \to \text{ker } L \text{ by } Ju_c = u_c, u_c(t) = ct^{\alpha-1} \text{ for } c \in \mathbb{R}.$ Let $\Omega_3 = \{u \in \text{ker } L : -\lambda J^{-1}u + (1-\lambda)QNu = 0, \quad \lambda \in [0,1]\}, \text{ if sgn } [c(\eta \mathcal{I}u_c(\xi) - \mathcal{I}u_c(1))] = -1. \text{ Then } u \in \Omega_3 \text{ implies } \lambda c = (1-\lambda)(\eta \mathcal{I}u_c(\xi) - \mathcal{I}u_c(1)). \text{ If } \lambda = 1, \text{ then } 1 = 0.$ c=0 and , if $\lambda \in [0,1)$ and |c| > B, then $0 < \lambda c^2 = (1-\lambda)c(\eta \mathcal{I}u_c(\xi) - \mathcal{I}u_c(1)) < 0$, which is a contradiction . Let $\Omega_3 = \{u \in \ker L : \lambda J^{-1}u + (1-\lambda)QNu = 0, \lambda \in [0,1]\}$ if $\operatorname{sgn}\left[c(\eta \mathcal{I}u_c(\xi) - \mathcal{I}u_c(1))\right] = 1$, and we arrive at a contradiction , again . Thus ,

$$||u_c|| \le B$$
, forall $u_c \in \Omega_3$.

Let Ω be open and bounded such that $\bigcup_{i=1}^3 \overline{\Omega_i} \subset \Omega$. Then the assumptions (i) and (i i) of Theorem 2 . 5 are fulfilled . It is a straightforward exercise to show that

the mapping N is L- compact on $\Omega.$ Lemma 3 . 1 establishes that L is a Fredholm mapping of index zero .

Define

$$H(u, \lambda) = \pm \lambda \mathrm{Id}u + (1 - \lambda)JQNu.$$

By the degree property of invariance under a homotopy , if $u \in \ker L \cap \partial\Omega$, then deg $(JQN \mid \ker L \cap \partial\Omega, \Omega \cap \ker L, 0) = \deg (H(\cdot, 0), \Omega \cap \ker L, 0)$

$$= \deg(H(\cdot,1), \Omega \cap \ker L, 0)$$

= deg (± Id , $\Omega \cap$ ker L,0) \neq 0. Therefore , the assumption (i i i) of Theorem 2 . 5 is fulfilled and the proof is completed .

Suppose that the hypothesis (H 2) is replaced by (H 2 ') there exist $\delta, \beta, t^{\alpha-2}\gamma, t^{\alpha-2}\rho \in L^p[0,1]$ and a continuous nondecreasing

function $\phi:[0,\infty)\to[0,\infty)$ and y0>0 with the properties:

$$\|\beta \| p + \| t^{\alpha-2}\gamma \|_p < \frac{\Gamma(\alpha)}{1+\Gamma(\alpha)\Lambda};$$
(b) for all $y \in [0, \infty)$ and $t \in [0, 1]$,
$$t^{2-\alpha}\phi(y) \le \phi(t^{2-\alpha}y);$$
(c) for all $y \ge y0$,
$$y \ge \frac{K+(1+\Gamma(\alpha)\Lambda) \|\delta \|p}{\Gamma(\alpha)-(1+\Gamma(\alpha)\Lambda)(\|\beta \|p+\|t\alpha-2\gamma\|_p)}$$

$$+ \frac{(1+\Gamma(\alpha)\Lambda) \|t^{\alpha-2}\rho \|p}{\Gamma(\alpha)-(1+\Gamma(\alpha)\Lambda)(\|\beta \|p+\|t\alpha-2\gamma\|_p)}\phi(y);$$
(d) $f: [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ satisfies
$$|f(t,x,y)| \le \delta(t) + \beta(t) |x| + \gamma(t) |y| + \rho(t)\phi(|y|).$$

Then we have the following existence criterion whose proof is analogous to that of Theorem 3 . 2 .

Theorem 3.3. If the hypotheses (P), (H1), (H2'), (H3) are satisfied, then the

boundary value problem (3.1) - (3.4) has a so lution.

References

- [1] R . P . Agarwal , M . Benchohra , and B . A . Slimani ; Existence results for differential equations
- with fractional order and impulses , Mem . $Differential\ Equations\ Math$. Phys . $\bf 44\ (2008)$, 1 - 2 1 . [2] M . Benchohra , J . Henderson , S . K . Ntouyas , and A . Ou ahab ; Existence results for fractional
- order functional differential equations with infinite delay , J . Math . Anal . Appl . 338 (2008) , 1 340 1 350 .
- [3] P . Amster , P . De N \acute{a} poli , and J . P . Pinasco ; On Nirenberg type conditions for higher order systems on t ime scales , Comp . & Math . Appl . , 55 (2008) , 2762 2766 .

N . KOSMATOV EJDE - $2\ 0\ 1\ 0$ / $1\ 3\ 5$

[4] W . Feng , J . R . L . Webb ; Solvability of three point boundary value problem at resonance , Nonlinear Anal . $\bf 30$ (1 997) , 3227-3238 .

- [5] W . Ge and J . Ren ; An extension of Mawhin 's continuation theorem and its application to boundary value problems with a p- Laplacain , Nonlinear Anal . 58 (2004), 477 488 .
- [6] C . P . Gupta ; A second order $\,m-$ point boundary value problem at resonance , Nonlinear Anal . 24 (1995) , 1483 1489 .
- [7] G . Infante and M . Zima ; Positive solutions of multi point boundary value problems at reso nance , *Nonlinear Anal* . **69** (2008) , 2458 2465 .
- [8] E . R . Kaufmann ; A third order nonlocal boundary value problem at resonance , *Electron* . J . Qual . Theory Differ . Equ . , Spec . Ed . 1 (2009) , 1 - 1 1 .
- [9] E. R. Kaufmann and K. D. Yao; Existence of solutions for a nonlinear fractional order differential equation, Electron. J. Differ. Equ. 29 (2009), n. 71, 1–9. [10] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo; Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, 204, Elsevier. [11] N. Kosmatov; Multipoint boundary value problems on time scales at resonance, J. Math. Anal. Appl., 323 (2006), 253–266. [12] N. Kosmatov; Multipoint boundary value problems on an unbounded domain at resonance, Nonlinear Anal. 68 (2008), 2158–2171. [13] V. Lakshmikantham, S. Leela, and J. Vasundhara; Theory of Fractional Dynamic Systems, Cambridge Academic, Cambridge, UK, 2009. [14] Y. Liu, P. Yang, and W. Ge; Solutions of two-point BVPs at resonance for higher order impulsive differential equations, Nonlinear Anal. 60 (2005), 887–923. [15] G. M. Mophou and G. M. N' Gu é r é kata; Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum 79 (2009) 315-322. [16] J. Mawhin; Topological degree methods in nonlinear boundary value problems, in "NSF-CDMS Description of the conditions of the conditions of the conditions, in "NSF-CDMS Descriptions of the conditions of the co
- CBMS Regional Conference Series in Math No.40, Amer . Math . Soc . , Providence , RI , 1 979 . [17] J . Mawhin , Reduction and continuation theorems for Brouwer degree and applications to nonlinear difference equations , $Opuscula\ Math$. **28** (2008), 541-560 . [18] J . J . Nieto ; Impulsive resonance periodic problems of first order , Appl . Math . Lett . **1** 5 (2002), 489-493

[1 9] D . O 'Regan and M . Zima ; Leggett - Williams norm - type theorems for coincidences , Arch . Math . (Basel) 87 (2006) , 233 – 244 . [20] I . Podlubny ; Fractional Differential Equations , Mathematics in Sciences and Applications , Academic Press , New York , 1 999 . [2 1] J . Sabatier , O . P . Agrawal , and J . A . Tenreiro - Machado ; Advances in Fractional Calcu - lus : Theoretical Developments and Applications in Physics and Engineering , Springer , Theoretical Physics P

NICKOLAI KOSMATOV

Department of Mathematics and Statistics , University of Arkansas at Little Rock , $\,$ Little Rock , AR 722 4 - 1 0 99 , USA

E - $mail\ address$: nxkosmatov @ ualr . edu