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1. Introduction
A multiset ( mset , for short ) is an unordered collection of objects ( called the
elements ) in which , unlike a standard ( Cantorian ) set , elements are allowed to repeat . In

other words , an mset is a set to which elements may belong more than once , and hence it is a
non - Cantorian set . In this paper , we endeavour to present an overview of basics of multiset
and applications .

The term multiset , as Knuth ( [46], p . 36 ) notes , was first suggested by N . G . de Bruijn
in a private communication to him . Owing to its aptness , it has replaced
a variety of terms , viz . list , heap , bunch , bag , sample , weighted set , occurrence set , and
fireset  ( finitely repeated element set ) used in different contexts but
conveying synonimity with mset .

As mentioned earlier , elements are allowed to repeat in an mset ( finitely in most of the
known application areas , albeit in a theoretical development infinite multiplicities of elements
are also dealt with (see [11], [37], [51], [72]and[30],
in particular ) .

The number of copies ( ([1 7], P .5 ) prefers to call it ‘ multiples ’ ) of an element
appearing in an mset is called its multiplicity .  Moreover , multiple o ccurrences of an element
in an mset are treated without preference ( perhaps to retain the
force of classical concept of identity ) . We mention [ 64 | for an earliest extensive treatment of
indistinguishability of repeated elements without any preference ,
and [ 85 ] for an alternative treatment .
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The number of distinct elements in an mset M ( which need not be finite )
and their multiplicities j ointly determine its cardinality , denoted by C(M). In other words ,

the cardinality of an mset is the sum of multiplicities of all its elements .  An mset M is called
finite if the number of distinct elements in M
and their multiplicities are both finite , it is infinite otherwise .  Thus , an mset M is infinite if

either the number of elements in M is infinite or the multiplicity of one or more of its elements
is infinite ,i. e .C(M) > N,.
The root or support or carrier of an mset M, denoted by M*, is defined as

-
M*={xe M| M(x)>0}.

The elements of the root set of an mset are called the generators of that mset .
A considerable amount of efforts have also gone into the study of msets with
negative multiplicities (see [9],[36],[74],[72],[30],[84],[85], in particular ) .
2. Basics of Multiset

2.1. Representations of Multisets

2.1.1. Multiplicative form

Following Meyer and McRobbie [ 57 ] , the use of square brackets to represent an

mset has become almost standard . Thus , an mset containing one o ccurrence of a, two

occurrences of b, and three o ccurrences of ¢ is notationally written as
[[a,b,b,¢,¢c,c]] or [a,b,b,c,c,c] or [a,b,c]1,2,3 or [at, b2, c®] or [al, b2, c3], depend -
ing on one ’ s taste and convenience .

2.1.2. Linear form

Wildberger | 85 | puts forward a linear notation for multisets , which seems quite
innovative , especially when negative multiplicities ( integral as well as rational )
are to be dealt with . For example , the mset M = [a,b,c|1,2,3 can be written as

M = [a] + 2[b] + 3][c].

Similarly , a rational mset can be represented , for example ,

N = 3%[5] — 2'[18].

In order to accommodate negative multiplicities round brackets are used : (a) in an mset
stands for negative of a; for example ,

[2747 (5)1 (5)74] = [2} + 2[4] - 2[5]'

In the same place , the distinction between the terms ‘ element ’ and ‘ object ’ o ccurring in
an mset is made explicit as fallows :

Each individual o ccurrence of an object z in an mset A is called an element of A. Thus ,
in the linear notation of M above ; b, for example , is an object appearing twice , and every
occurrence of b is an element of M. It follows that the distinct elements of an mset are the
objects .  An object is an element if its multiplicity is unity .

Further , the following notations used in ( [85 ], pp . 5 — 6 ) to represent data structures of
set , ordered set , multiset and list , are quite instructive :
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A collection containing z,¥, z, ... is denoted by {zyz...} or {zyz ...} if
itisaset; {x,y,z...}if it is an ordered set ; [zyz....] = [xyz...] if it is a multiset ; and
[x,y,z2,..] if it is a list .

Note that a list is an ordered sequence of elements with repetitions allowed , whereas an mset
is a sequence with its ordering stripped off .
2.1.3. Multiset as a Sequence
A multiset can also be represented as a sequence in which the multiplicity of an element equals

the number of times the element o ccurs in the sequence , which is exactly Dedekind ’ s ¢ frequency
!/

— number The idea is to construct an mset as

a sequence ( a function with domain R, the set of natural numbers ) and ignore the ordering of
its elements , which can be done by taking all permutations of the domain of the sequence .
2.1.4. Multiset as a Family of Sets
A multiset can also be represented as a family of sets , which is altogether a generalization of the
idea of a sequence described above .  Thus , the family of
sets ' = {F;},i1 € I, where F; = F}, if i = j, which identifies a repeated element ,
represents an mset . Clearly , such a family F is a function : I — {F;|i € I},
which in turn , is a sequence if [ = N.
2.1.5. Multiset as a Numeric - valued function
Representation of an mset as a numeric - valued or cardinal - valued function abo - unds ,
especially in the application areas .  Formally , an mset is just a mapping from some ground
or generic or universal set into some set of numbers .  For example , an mset

A =[z,y,2]1,2,3 is a mapping from a ground set S to R, the set of natural
numbers with zero , defined by

1, if t=x
) 2, if t=y
a(t) = braceex — braceex — bracele ftmid — braceex — braceex — bracele ftbt 5 i ¢
, i =z
0, for alltheremainingt € S.

In general terms , for a given ground set S and a numeric set 7', we call a mapping

aset, ifT = {0, 1};

amultiset, if T" = N, thesetof inumbers;
asignedmultiset (or, hybrid /shadowset)ifT =
afuzzy (orhazy)setif T = [0, 1] C R, a2 — valu

braceex — braceex — bracele ftmid — braceex — braceex — bracele ftbt
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2.1.6. Multiset as a generalized characteristic function
Similar to the representation of a set by its characteristic function ( function
whose range is { 0, 1 } ) , a multiset or hybrid set is determined by its generalized
characteristic function ( whose range is the set of integers , positive , negative or
zero ) , see | 84 ] for details .
2.2. Operations under Mset
The monograph [ 46 | can be considered as the earliest reference describing intuitively prop-
erties of msets in a sufficient detail .  During the recent years , a good number of papers ( [ 5 1
1, [36] , [37], [8], [85],and others) have appeared . We endeavour to present
an overview of various approaches in this regard . We will adhere to function - approach and use
Dom (f), Ran (f) to denote the domain and range respectively of a given function f .
Definition 1 . Multiset
Let D = {1, 2, ...,xj,...} be aset . An mset A over D is a cardinal - valued
function ,i.e. A:D —NX={0,1,2,...} such that for 2 € Dom (A4) implies A(z)
is a cardinal and A(z) = ma(x) > 0, where m4(x) denotes the number of t imes an object x o
ccursin A, i. e. a counting function of A. The set D is called the ground or generic set of
the class of all msets containing objects from D.
An mset A can also be represented by the set of pairs as follows :

A:{<mA<.’171)7 :C1>,...,<mA(xj), J}j>,...}
or, A= {ma(x1).21,...,ma(z;).z;,..}.

)

Relatedly , an mset is called ¢ regular * or ‘ constant ’ if all it s objects occur with the same
multiplicity .  Also , an mset is called ‘ simple ’ if all its objects are the same , for example
,[%]3 is a simple mset containing x as its only object ( see [ 8] ) . Clearly , the root set of every
simple mset contains a single object .

Definition 2 . Dressed epsilon symbol | € +

The symbol € was first introduced by Singh and Singh [ 80 ] . For any object o ccurring
as an element of an mset A, 1. e. mg(x) >0, we write z €4 A,
where € ( dressed epsilon is a binary predicate intended to mean ¢ belongs to at least once ’ |

as € is ¢ belongs to only once ’ in the case of sets .  Thus ,m4(x) =0

A - implies

lmphesxekAmeansmelement SlaShA’x?ndx Eﬁ_ belongSA}cTiIrJnlee:tOA/Z:CbelongsThemsettOAfor@ﬂny7?§;s[t)ktimcsground/ hOWGVQI‘iSC
empty , denoted by @ or [ ], if mg(z) = 0 for all z € D.  Further , in order to make our

presentation concise , we shall follow some terminologies introduced in ([37],pp.212-21
3): (“A (x) denotes the number of copies of x , including x itself ,
belonging to Dom ( A )’ ) , which is exactly the Dedekind ’ s frequency number .
Definition 3 . Multisubsets ( or msubsets , for short )

Let A and B be two msets , A being an msubset or a submultiset of B, written as A C B
or BD A, if ma(z) <mp(z)forallz € D. Also,if ACB
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and A # B, then A is called a proper submset of B. An mset is called the parent in relation
to its msubsets .

It follows from the definition of multisets that A = B if and only if for € D, ma(z) = mp(z).
Also ,A = B — A* = B*, but the converse need not hold .
It is easy to see that C is antisymmetric ,i.e. AC Band BC A= A = B, and it is a partial
ordering on the class of msets defined on a given generic domain .  Clearly , & is a submset of
every mset .  Note that the terms ¢ element ’ and ¢ object ’ are being distinguished throughout
, and coincide if a generic set is in consideration . We wish to emphasize that introduction of €
greatly enhance the language of msets . For example , A C B stands for

VzVk(z €8 A — z €% B).

Relatedly , a‘whole’ msubset of a given mset contains all multiplicities of common elements
; while a ¢ full * msubset contains all objects of the parent mset , and accordingly , every mset
contains a unique full msubset , its root set . Clearly , for any two msets A and B, if A C B and
Dom(A) = Dom(B), then A is a full msubset of B.
Definition 4 . Similar msets
Two msets A and B are said to be ‘ cognate ’ or ‘ similar ’ if Va(z € A <=
x € B), where z is an object . Thus , similar msets have equal root sets but need not be equal
themselves .
Definition 5 . Ordered pair of two mset te r— m s
Ordered pair of two mset terms u and v, denoted by [u,v], can be defined as follows :
[u,v] = {u,v} if u # v, and [u,v] = {[u|2} if u = v.
Here , [u] is written as {u}, and (u,v) is actually the ordered pair set , where
Set (u) stands for u = @V VaVn(z €” u = n = 1), though z itself may be an
mset term , (see [ 8 ] pp . 42 — 44 , for details ) .
Definition 6 . Power multiset
In Cantorian spirit , the power multiset of a given mset A, denoted by g(A)
to distinguish it from the symbol p(A) used for power set of A, is the multiset
of all submultisets of A. For example , let A = [z,9]2,1 = [z, z,y]. Then ,

o(A) = [9, {z}, {=}, [2]2, {y} {z, y}, {2, 4}, [, 9]2, 1].

In this sense , C(p(A)) = 2°M for any mset A. However , as has been voiced
by many researchers in the area of msets and their applications (see [37],p. 213 and |
8], p.45, in particular ), there is no ‘ good ’ reason for admitting repeated elements
into a power multiset .  Hence , a power multiset needs to be

only an

calledp(A)a:power[¢’{$}set7[$] 27{y?{x’denotedz}i[xyy]g’l]pand(A).Accordinglyifsrﬁcec(pm))Az QCEZ’)y]Q,l;Which

implies that Cantor * s power set theorem : C(A) < C(p(A)) fails . However , for
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holds for power mset ( see [ 8], p . 45, for related

inherent difficulties if the mset in consideration is infinite ) .

Definition 7 . Union V), Intersection (Nn=
notdefnotdefnotdef o notdefnotdefnotdef — notdef — existentialnotdef 3 {notdef —
negationslash — notde fnegationslash —notde fnotde f — notde fnotdef —notdef —notdef U <

H—J o r(+) notdef — notde f }notde f

Let A and B be two msets over a given domain set D.
1. AU B is the mset defined by maup(x) = ma(x) Ump(z) = maximum (ma(z), mp(x)),
being the union of two numbers . That is , an object
z o ccurring a times in A and b times in B, o ccurs maximum (a,b) t imes in AU B, if such a
maximum exists ;  otherwise the minimum of (a, b) is taken , which always exists .
It follows that for any given mset x there exists an mset y which contains
elements of elements of x, where the multiplicity of an element z in y is the
maximum multiplicity of z as an element of elements of x along with the above
stipulation on the existence of such a maximum . We denote this fact by y = Uz Clearly
,Dom(Uz) = U{Dom(A), A € =} and that the multipliticity of z in y is the maximum of its
multiplicities as an element of elements of x, if it exists ;
otherwise , the minimum is taken .
For example , if A = [2344], B = [1433] then AU B = [123344].
Also , it follows that for a finite mset x, the maximum multiplicity of el -
ements of elements of = always exists . However , for certain infinite sets like x = {{y}, [v]2, [v]3...},
the maximum multiplicity of elements of elements of = does not exist , and hence Uz = {y}. It
is obvious by definition of the union that multiplicity of any y € x # @ is irrelevant to Ux, and
hence Uz = Ux*( see [ 8], pp . 48 — 49 , for details ) .
1sh — notde f — notde f — notde f — notde frnotde f—notde funion — sparenright —arowdbiiete —notaer POtdE fequal — notdefnotde fnotde f Ax — parenle ft,

.. . . . notd
= minimum (ma(x), mp(x)), being the intersecti noonef of two numbers .

That is , an object o ccurring a times in A and b t imes in B, o ccurs minimum (a, b) times
in AN = _notdef 1 — notdef — hnotdef — cpoenotdef — anotdef — wy — element — aexistential —
notde f —snotdef e i — existentials — notdef — notdef — negationslash — ts — braceleftuniversal —
notdef — periodnotde f

In general , for a given mset x, Dom(Nparenright — arrowdblright = Nnotde fnotde f proportional—
Do~motdef potde f —m (element — AParentight—notdef —existential p o1 ge £ — colon AJelement—negationslash—
notdef — notdefnotdef — negationslash — notdef — xnegationslash — notdef — braceright a
n — notdef — notdefnotde f — dz — unionelement — arrowdblle ftnotde f — intersection = estha
t them utp—licity ofzisthemini mumoft—im ultp—licite—i{saselm nt
notde f
m n tsof x.

For example , if A = [33344], B = [1433], then AN = notde f3notdef3notdef — four.notdef
Note that for any mset z, we have Narrowdblright — re flexsubsetunion — notde fnotdef — Tnotdefo
3. AlY B is the mset defined by myyB(z) = ma(x)+mp(z),

direct sum of two numbers .

That is , an object o ccurring a times in A and b times in B, o ccurs a + b t imes in A4 B.

For example , if A =11,1,2,2,4,4,4], B =11,2,3,3], then



AlYB=1,1,1,2,2,2,3,3,4,4,4].
Clearly, C(A L—Ij B) = C(AU B) + C(A N arrowdblright — parenright — periodnotde f

Note that if z be an infinite mset , then the multi"**®*/ pli*citotef y of some mset z € |{x

may not be finite .  In that case , the multiplicity of z in Uz is used .  For example ,
if x = {{z}, [#]2,[#]3,...} then Wz =Uzx = {z}(see ([8],p. 51, for details ) .
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4. Some Properties holding for mset operations
(see[46 ] p. 636;[8],p. 53, in particular ) .

AN = nmfief intersection — notde farrowdblright — notde fnotde f — notde frotdef

AN =intersection—notdef  o1de f — parenright — arrowdblrightequal — notdef — notdef — proportionalparenleft — no

def notdefo t— notdef, ot4eraexistential — notde fnotdef — Anotdef — notdef — negationslash — equal — negationslash — existentia

=
notdef cular ) | order

m

In fact , as it has been suggested recently (see [85],p. 9, in parti

to obtain a linear combination of msets , kA may be interpreted to denote
the sum of £ number of A s, where k is a natural number .

iv ) Identity laws : AU ¢ = A, AN = notdc)lef notde f anotde fphi — notde fequal — elementexistential — notde f Aexistential — notdef

AN sunion=notdef porde f — Cnotdef — parenright — proportional = not(def existential — notde fintersection—notde

The proof of all these identi? ties follows from the int®erpretati= on of U, N = notdefnotdef o
notdef tw onturaln umb—ersa mx—aimum,mnimumad (irect)s mrspec-
tivel —y.iseasyt —o setatlHsisstrongerthanbthUad N = notdefnotdefnotdef
notde f Inotde f —existentialnotde f Inegationslash—notde f —notde f {notde f —existentialnotde f¥Vnegationslash—
notde f —notde fnotde f —notde frnotde fUr N =  notdefnotdef o enotdef3heristential—notde fnotde fInotde f—
notde f —negationslash—comma{w — notdef — notdef h notde f —r e notde f —notde f —es — notdef — notdefnotde f —
notde fnotde fU d i — arrowdblleft s angbracketright—i—notdef r u— notdefnotdef,tes,angbracketrightmtdefmtdef_O
v e — notdefnotdef — 7potde ppnotde f — ot — notdef — hnotde fU and N = notde fnotde fnotdef o
notde f3existential — notdef notdef

reflexsubset — proportionalpetde sz — notdef € notdef — existentialnotde f3{negationslash — notde f — notde fnotd

It is promising to observe that multiset operations form a  “ e —notdef alm” [85],p.
9).
Definition 8 . Difference and complementation

Let A and B be two msets over D, and B C A, then my_p(z) = ma(z)— mannotdef —
parenle ftnotdef — x)notde f; ora 1 —Inotdef — notdef — notdefx € notdef — notdef.potaey  ti



. . I .
sUnotdef ometimesc a 1 —1 e dt hea rt hmeticd ifferenceo f B rom A. otet hate venif Bi

ssn otc ontainedi n A, t hi—s d efin t — i ionh oldsg ood .
tc anb es eenq uicklyt hats omeo ft hec onsequenceso ft hea foresaidd efin i —t ion red i —s
turbing ([37],p.214). Forexample,if A= [a,b]4,5;B= [a,b]2,3 then
A — B = [ab]2,2 C B, contradicting the classical law : (A — B)N = ¢notdefnotdef o
In order to define the complement , we follow Petrovsky [ 67 | :
Let & = {4, As, ...} be a family of multisets composed of the elements of the generic set D.
Then , the maximum multiset z is defined by m.(z) = maxA € S ma(z) for all x € D and all

Aegs.
Now , the complement of an mset A, denoted by 14_17 is defined as fallows :
A=7—-A={mg(x).x/mg(x) =m.(x) —ma(z), forallzeD}.

It is understood that some new operations like arithmetic multiplication , raising to the

arithmetic power , direct product , raising to the direct power , defined by Petrovsky , can
be gainfully exploited for further research .
Definition 9 . Functions between msets

The underlying assumption in defining a function between msets has been invariably not to
allow mapping of identical elements to non - identical elements
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and hence , it amounts to defining the function between their root sets , which is j ust the classical
definition of a function .
The function f: A — B is an inj ection iff
(i) f:A*— B*is an injection , and

(il) Vz(z € A" = ma(z) <mp(f(2))).

The function f : A — B is a surjection iff (i) f:A* — B* is a surjection , and

(ii) Vz(z € A" = ma(z) > mp(f(2))).

The function f: A — B is a bij ection iff (i) f: A* — B* is a bijection and

(il) Vz(z € A" = ma(z) = mp(f(2))).

For example , f : []3 — [z]10 is an inj ection , f : [z]5 — [y]4 is a surj ection , and
f ]z, y]6,2 — [x,y]3,4 is neither an inj ection nor a surj ection . For various
other details , see [ 8 | and [ 37 ] . Note that some of the consequences of the above
definitions are conflicting with some fundamental theorems of the classical set theory .
1. Having defined functions between msets as above , it can be proved that Cantor ’ s
theorem does not hold , there is no injection from

A — p(A),see([37])p.215).

2. Msets of equal cardinality need not have a bij ection between them . For example
., |a,b]1,2 and [a, b, c] both contain three elements , but there can be no bij ection between them
because the objects and their multiplicities are
different in the domain and the range of any such function . In other words , there is no
bijection between their root sets , viz ; f : {a,b} — {a, b, c} can not be a bij ection .

3. Schr 6 der — Bernstein theorem fails (see [37]),p.215]and ([8],p. 47).

LetA = [x1, 2, ...]2,4,6,...and B = [y0,y1,42,...]1, 3,5, ...

The function f: A* — B* defined as f(x,) = yn makes f: A — B an
inj ection so that A < B. The function g : B* — A* defined by g(yn) = x,41
makes g : B — A an inj ection so that B < A. But there cannot be a bij ection h : A — B —since
all multiplications in A are even and that in B are odd . Note that < is the standard dominance
relation .
Definition 10 . Multiset Ordering
It seems really surprising that the seminal work of Knuth ( [45],pp. 213 -
214,241 -242) , related to multiset orderings and their applications , has escaped the attention
of most of us until quite recently . According to Knuth :
“ Multiset py  dominates po  if both @1 and pe  contain the same number of e
lements and the K th largest e lement of 1 is greater than or equal to th e K
th largest e lement of pe forall K7 (p. 214 ).

A

“If a and b are multisets of m numbers each , we say that a < b iff aAb=a
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( equivalently ,a V Vb = b, the largest element of a is less than or equal to the
smallest of b). Thus AAb < aVVd(p.241).
“An n thle vel ¢ cas cade distribution ’is a multiset . . . 7 (p. 299 ).

However , [ 28 | is the earliest reference known to introducing multiset ordering and using it
for proving termination of programs and term rewriting systems . In fact , it has served as a
basis for host of orderings introduced in this context . We endeavour to outline the Dershowitz -
Manna multiset ordering as follows :

Let S be a set equipped with a partial ordering < ( irreflexive and transitive
relation or , equivalently , a transitive but not an equivalence relation ) . Let M(S)
be the set of all finite msets M on S, and let < be the associated ( induced by
<) mset ordering on M (S5). It is easy to see that each M is an mset with a
finite carrier , viz ;{z € S: M(x) # 0}.
The Dershowtiz - Manna Ordering :
M < N if there exist two msets X and Y in M(S) satisfying :

(i) {}=XcN,

(i) M=(N-X)+Y,

(iii) (VyeY)(3Fx e X)[y < z].
In other words, M < N if M is obtained from N by removing none or at least one
element ( those in X) from N, and replacing each such element = by zero or any finite number of
elements ( those in Y), each of which is strictly less than ( in the ordering <) one of the elements

x that have been removed . Informally , we say that M is smaller than N in this case . Similarly
, > on M(S) with (S,>) can be defined . For example , let S = ({0, 1,2, ...} = R), then under

the corresponding multiset ordering > over X, the mset [ 3 3 4 0] is greater than each of
the following msets :  [34],[32211140]and[333322]. The empty set { }is
smaller than any multiset . It is also easy to observe that : [Vy

> N. yeEN=TzxeMAz>y=M

For various ramifications of the Dershowitz - Manna Ordering , see [4 1 | and

[ 56 ] , in particular .
3. Applications

Over the years , besides sporadic evidence of the applications of mulisets in philosophy , Logic
, Linguistics and Physics , a good number of them witnessed in mathematics and computer science
, which have led to the formulation of a comprehensive theory of multisets .  In this section , a
modest attempt is made to present a comprehensive survey of various applications of multisets
which
is arranged under two major headings : Mathematics ( especially , combinatorial
and computational aspects ) and computer science , along with some overlapping results placed
appropriately .
3.1. Applications in Mathematics

An early elaborate reference is ( [ 46 |, pp . 441 — 466 ; 636 - 667 ) .  Some of the Knuth
" s findings are as follows :  The prime factoriz ation of an integer n > 0
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is a multiset N whose elements are primes , where mpcy = N.  Accordingly , as every positive
integer can be uniquely factored into primes , one can obtain a

bij ection between the positive integers and the finite msets of prime numbers .

For example , if n = 22.33.17, the corresponding mset is N = [2,2,3,3,3,17]. A simple algebra
of msets is also developed . The natural correspondence between

a monic polynomial over the complex numbers and the unique mset containing its roots exists .
That is , every monic polynomial f(z) over the complex numbers corresponds in a natural way
to the mset F of its roots .  Hence , if f(z) and ¢ (z) are the polynomials corresponding to the
finite msets F' and G of complex numbers , then F + G = f(2)g(2), F UG = lem(f(z2),9(2)),
and FN = gnotde fnotdef — cd

fparenleft — z), gz)).

Zeros and poles of meromorphic functions , invariants of matrices in canonical
form and invariants of finite Abelian groups do correspond to multiset represen -
t ations .  Generating functions and nonnegative integer coefficients correspond one - to - one
with msets of nonnegative integers .  Thus , if A and B are msets of nonnegative integers , and
if G(z) =) ,ca?2" and H(z) =, 52" be gen -
erating functions corresponding to A and B, then G(z) + H(z) corresponds to A o« B, etc .
Also , for msets A and B, the product of Dirichlet generating func - t ions g(z) = > 1,= and
H(z) =), cp ln- corresponds to the mset product

neA

AB.

Not much is known about the history of permutations of an mset .  Knuth ([45], pp . 22
— 34 ) in line with some early references cited by himself , expounds the area of permutations of
msets .

Goguen ([33],pp.-513-561), in course of developing a category — theoretic foundation
of fuzzy set theory , investigates properties of semiring sets , as in [ 30 | , along with various
applications to msets .  He also discusses usefulness of msets in the study of combinatorics and
formal languages . Chapin ([19]pp.619—-634;[20], pp. 255 — 267 ) , while formalizing
the theory of fuzzy sets and Boolean - lattice — valued sets , seems to have mset - model in mind .
The interpretation of the atomic formula € (x,y,2)a —is —s a “,_parenright€¢ — T 1slash —m F
N — onetwo — tyine—notdeff—nine—period—o6yT—notdef W — two — notdef — it — fourh — onee — dT — notdefg — De — bracke
embes—rhi—pstz”refl—ectssemialt—iy, (seesectin3de3, defi nt—ion
3,notdef—zero of 1) { sp ap e , ¢ period — f[  80]

7]). Mathematics of multisets proves a potential tool to study computing of Grobner Bases
and straightening laws in polynomial rings (see [1 5] and [ 3], in particular ) . Brink ( [1 7]
,pp . 1 =1 3) outlines an algebra of msets and shows that it could model relevant structures to
a great extent , yet falls short of DeMorgan

monoid .

Anderson [ 2] can be considered as the first sustained development of conbi - natorics of msets
, in particular . The area of concentration includes the study of sizes , numbers and properties
of ¢ chains ’ ( collections of pairwise C  comparable subsets ) and ¢ antichains ’ ( collections of
pairwise C comparable subsets ) in the subset and msubset lattices ( see [83],[73],[5],[2
1,22],[9], in particular ) . Martin
([56], pp. 37— 54 ) observes that many well - founded partial orderings of the set of finite
msets on a given set have appeared that played significant roles in the study of invariant theory



(see [ 62 ] and [ 3 1] for early references ) , ring theory ( see [ 3], and [ 68 ] for some recent
developments ) and the theory of partitions ( see [ 5],
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[54],[7]and[11] for various recent developments ) . It is also mentioned ( p . 37 ) that
msets can be gainfully exploited in the study of measure theory which , however , would require
tools of functional analysis , especially when the msets considered are infinite .

Singh and Singh [ 79 ] point out a fundamental problem . It is observed that
the best known efficient formula nH, ="t""! (., designed to compute the number of
combinations of n distinct objects taken r  at a time when objects may o ccur with repetitions
, includes terms of the type [a;],, for each i, that are also msubsets of an mset in which each
distinct element o ccurs unlimited
number of times ( hence , help determining the cardinality of the power set of
an mset ) , turns out to be unworkable and computationally inefficient even if adjusted to be
applicable , if the mset in consideration is finite or infinite , but with finite multiplicities . For
example , for a 6 — element mset o = [z,y, 2]1,2,3 the
number of all combinations of size —6( repetitions allowed and consequently [z]6
— like combinations included which is not an msubset of «) is 3y, =% Cs = 28 whereas the number
of 6— msubsets of « is only one and that is « itself . Also , besides discussing computational
inefficiency of Inclusion — Exclusion principle , the paper puts forward a reasonably efficient and
workable formula .

Petrovsky [ 66 ] outlines some very innovative mathematical applications of msets . An
axiomatic foundation for metrization of multiset spaces is developed . Poplin [ 68 ] develops a
multiset algebra ( Chapter 8 , pp . 58 — 1 29 ) in his Ph . D . thesis .  The thesis , titled
“ The semiring of multisets ” , explicates that msets provide a connection between eigen values
/ eigen vectors equations for the Max - Plus and the nonnegative real number systems . It is
shown that Max - Plus , Max - Times and the nonnegative real numbers can be viewed as a
special case of msets . The guiding factors for undertaking research in the area of mathematics
abound . For example , the (Max,+) algebra has been extensively used in discrete event systems
, transportation networks , parallel computations , project management , machine scheduling ,
to name a few (see [68 ] ,pp. 1—-2).

The interest in multisets and subsets of commutative monoids has increased
in the recent years ( see [ 24 ] for various deliberations ) .
Hegarty and Larson ( [38],pp. 1 - 25) study permutations 7 of the natural
numbers for which the numbers 7(n) — n belongs to a given ( multi ) subset M
of Z( the set of integers ) , for all n € S( a given subset of the set of natural
numbers ) .
3.2. Applications in Computer Science

References [ 45 | and [ 46 ] are the early known references to the applications of msets in
computer science . Knuth notes :

The t erminal s tring of a non - circular context free grammar form an mset thatis a set
if and only if the grammar is unambiguous ( [ 45 ], p . 636 ) .

He introduces multisets into algorithms that compute values of ™ where x is a real quantity
and n is a large positive integer ( [46 ], pp . 441 - 466 ) . Multisets and permutations of multisets
are applied in a variety of s earch and s o 1t procedures ( [ 45 ], p . 7 1 7 for various page
numbers ) .
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Eilenberg ( [ 30 ], chapter vi) describes a general theory of msets and applies it to automata
. Various semiring structures are exploited and also , extensions to the cases of msets and field
structures are studied . Shoesmith and Smiley ([ 78],
pp.66-69, 113-114, 164,211,224), while studying multiple — conclusion logic
, find the application of msets quite useful to account for “ arrays ” of formulae . Dersowitz and
Manna [ 28 | introduce mset ordering and ingeniously exploit it for proving termination of certain
programs , which has served a basis for many alternative and equivalent orderings subsequently
proposed to date . The major intent of this seminal work can be seen in the following : .

the mset ordering . . .  permits the use of relatively simple and intuitive termination functions
in otherwise difficult termination proofs 7 see [28].

Huet and Oppen [ 39 ], and Jouannuad and Lescanne [ 4 1 | introduced signif -
i cant refinements of Dersowitz - Manna mset ordering . In[41], it is shown that
the standard mset ordering is a maximal extension function . ([41],pp. 6 1 —62 ) also
provides an efficient implementation of Dersowitz — Manna mset ordering .

Peterson ( [65], pp . 237 — 240 ) shows that the very foundation of Petri net

theory , introduced by C . A . Petri in 1 962 , needs the use of msets ( see also , [ 34 ]

and[69]).

Mayer and McRobbie [ 57 ] find use of msets quite appropriate to account for how often a
premise is repeated in characterizing relevance aspect of an argument . Thistlewaite , McRobbie
and Meyer [ 82 | make use of algebra of msets developed in [ 57 ] in explicating automated theorem
proving for relevance logics , especially in the implementation while using the program KRIPKE
. They also
recognize that msets have been taken as datatypes in a number of programming languages [
82]p.26).

Bundy ([ 1 6], Chapter 1 3, pp . 225 — 240 ) exploits mset of numbers to illustrate the

definition - and - conjecture - formation program of Lenat . The work of Manna and Waldinger |
6 1] can be considered as a sustained exposition to substantiate the fact that mathematical logic
plays a fundamental role in the realm of the - oretical computer science .  Chapter II , pp . 505
— 527 of [ 6 1] is solely devoted to explicating fundamentals of msets . A theory of BAG is
developed by way of
introducing a novel binary primitive operation , O. : if an atom u has multiplicity
n > 0 in a bag x, then u has multiplicity n + 1 in the bag uOx..
Reisig [ 74] uses msets to define  “ e — notdef lation ets” .  nterestingly , xploiting
mathematical intent of the definition of msets as generalized ( integer - valued ) characteristic
functions given in [ 84 ] , the novel idea of “ e — notdef gativem ul—tipi—lcity” in an
mset is introduced ([74],p . 126 ; see [ 9] for a detailed exposition ) .  Reisig also outlines
the concept of  “ multirelations ” — an mset whose domain is the Cartesian product of a set
ofsorts ([74],pp.126—-131).

Yager ([86],pp. 23—-27; [87],pp. 441 —446 ), after developing an algebra of
msets , introduces the notion of  “ notdef —uzzy b—agr s ollows: “)-30(..to
eachele e — x — m in a fuzzy bag A is associated a multiset contail ning elements o real number
in the interval [0,!]) with multiplicities n( non - negative integers ) .  The number n indicates
the number of times the element = appears with membership grade a in the fuzzy bag A” (|
86],p . 33) . Yager notes that Zadeh fuzzy sets are special
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cases of fuzzy bags ( [86],p. 35 ).
Grzymala —Busse ([35], pp. 325-332) extends the notion of “ o — notdef ugh”
et ( introduced by Pawlak to rough mset ( see also , [58,59]) ) .
Martin [ 55 ] constructs a number of extension functions for mset orderings .
Also , Martin [ 56 | introduces various well - founded partial orderings of the set of all finite msets
whose elements are taken from a given set . Martin exploits the notion of cone in R™(n—
dimensional real space ) and provides a systematization of the construction and classification of
various well founded partial orderings underlying in proofs of program termination ( see [ 28 |, |
39],[41],etc.),in term rewriting systems (see [26 ], [42] , [63], [55], |
23], etc. ) , and computer algebra
(see[30],[15],[29],[68],etc. ).
Pratt ([69],pp. 33 -7 1), besides giving several arguments for the use of pom - s e ts
, specially showing how pomsets can be used to represent parallel processes
He also describes how Petri nets can be modelled as pomsets .
Gischer ([32] pp . 1 99 — 224 ) exploits the notion of a partial string and a partial
language introduced in [ 34 ] to show how pomsets can be used as a model of
concurrency .
Applications of msets in Logic Programming languages is found to over -
come “ computational inefficiency ” inherent in otherwise situation , especially in
solving a sweep of real - life problems where multiple o ccurrences of an identical element are
persistent . In fact , both the usual options , viz .  “ attaching different
levels ” or “ assigning numbers ” to account for multiplicity turn out to be compu -
tationally inefficient . Representation of msets in a logic programming language
can be effected , for example , by introducing a binary associative and commu -
tative function symbol o, which also admits a unit element . In a constraint
logic programming language , constraints are built up from mset operations and relations . Kizil-
tan ( [43 ], Chapter 7, pp . 1 65 — 202 ) has recently dealt with multi - set and strict multiset

ordering constraints .  Rule - based multiset programming paradigm is recently exploited to
study synthetic biology ( see [ 4 ], [ 24 ] and [ 47 ] for details ) . Basically , multisets are
interpreted to represent biological systems , such as molecules in a biochemical system . A

host of simulators for biological systems has been developed and found useful to several fields of
biology such

as biochemistry , microbiology , and evolutionary biology . For example , a system could be a
multiset [A4, A, B, B, C|], where A, B and C are elements that evolve by means of the application
of a set of rewriting rules ( say , of the biological systems ) viz . :

{{4,B} = {C},{C} — {A,B}}. If we choose the first rule to apply to the multiset in the
example , the multiset {4, B, C, C}isobtained (see[12], fordetails). The
interaction among elements in a multiset object space , which includes the environment , are like
chemical reactions and the evolution of multiset can mimic the biological evolution leading to
plausibility of DNA computing and programmable living machines ( see [ 47 | , for details ) .

The seminal work [ 28 | has dominated research in termination , especially in Term Rewrite
Systems ( TRS ) , during the last two decades or so .  Full surveys , particularly of division
orderings on structures such as strings , partitions or terms , given in [ 27 | and [8 1] [ 52 ],
provide a complete development of the topic
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with the help of Coq Proof Assistant .

As for the present , a typical method to prove termination of a particular TRS involves
finding a well - founded ordering or equivalently , finding a quantity which decreases at each
step of computation . A widely accepted outcome of research undertaken in this direction
dictates that the choice of ordering may have a surprising effect on efficiency ( see [ 55 , 56 ]
, and endeavours of the research group , University of St . Andrews , led by Martin e ¢ al
especially on classification of orderings ) .  In the course of time , Multiset Path Orderings (i .
e. Recursive
Path Orders with mulitset status only ) [ 25, 27 ] , Simplification Orders [ 53 ] and
[ 8 1], Lexicographic Path Orders [ 1 3 | , Decomposition Orders [4 1], etc . including
Higher - order Path Orderings , have been experimented ( see [1 8], [13],and[40]
for various details ) .

In [ 40 ], it is shown that a termination proof for a TRS using multiset path orderings yields

a primitive recursive bound on the length of derivations .  The striking point is that this result
holds for a great variety of path orderings , including AC — Path Orderings described in [ 14 ]
. [44], [49] and [48] if lexico -

graphic status is not incorporated . The reference [ 50 ] is a comprehensive work

on Termination , AC— Termination and Dependency Pairs ( introduced in [ 1] ) .

The study around finding bounds on derivation length does have an an - tecedent in associating
ordinals to proofs that computations terminate e la Tur - ing (1994 ) . This is now generally
known as Floyd ’ s method of analyzing program
correctness .  An ordinal technique ( including ordinal powers ) was exploited to prove termi-
nation of an example which calculates factorial by repeated addition . Ordinals enable us to link
termination proofs with classical proof and recursion theory .

The specification of an abstract data type ( ADT ) for msets has been studied
in([6],pp.1-29). Dovier, Policriti and Rossi ( [29 ], pp . 208 — 234 ) , after devel
- oping mathematics of msets , substantiate that msets are the fundamental data structures for
P systems . In fact , in computational sense , an mset is j ust a data structure , which
differs from a set in permitting repetition of some of its elements and that from a lis ¢ in being
unordered , and hence it turns out to be a suitable modelling tool for a large class of real -
life phenomena .  Ross and Stoyanovich [ 71 ], study cardinality bounded msets in Database
systems to over - come consistency and performance problems that conventional representations
in relational database suffered from .

Petrovsky ([ 67 ], pp . 174 —1 84 ) explores a new dimension .  He , after provid - ing
an extensive treatment of mset operations , discusses “ Cluster 7  analysis in mset spaces , and
demonstrates their application in augmenting Decision Sup - port System ( DSS ) . It is shown
that  “ a multi - aspect analysis of problem and structuring alternatives allow us to gain an
insight into the problem nature and find better decisions . “ -37 (... sugg ste dthe
toosf —orstruct rng a col e —1 ti objects represented by many qualitative attributes when
a lot of copies of ob - j ects or values of attributes describing them exist . . . . approach is
based on a theory of multiset metric spaces and indexes of difference / similarity between

1
multisets

A “o—notdef ugh” et pproacht o m — u lti — attributed ecisiona nalysiso f a — P wlaka nd
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Slowinski ([ 70 ], pp . 443 — 459 ) is a pioneering work in this direction .
4. Concluding remarks and some future directions

Multiset theory , owing to its multitudinal applications , has o ccupied a cen - tral place
among a number of non - classical ( nonstandard ) set theories developed during the last few
decades .

Category theory is emerging as a strong alternative :  Epsilons are replaced by *“ Arrows
7, but that time is not yet ripe . Currently , all efforts seem to point to discovering some
primitive theory of structures ( a pre - set theoretic ) to which all set theories can be alluded (
see [10],pp. 321-322, for details ) .

4.1. Some future directions
1. Pursuing the techniques followed in [ 82 ], an extension of the program KRIPKE can
be achieved by interpreting a multiset of formulae viz .,[A, B™, C™,...] as an ¢ Ordinal ’ tree viz

. |A.B m C"....], where A, B, C, ... stand for

“events " and A* for * Aoccurs ktimes’. ([76],p.114)
2. A reasonable expectation is that a set theory based on w — valued logic ( “ element —
parenrighty—T/ F c one — n2nine — notdef — hnine — ve_gixT—notdefa—fr — period — tu — fivesh —ero—notdet T — notdef
en€c€w)ad aml—ut—isettheory b sed onc assical
— alued 1 — ogic®quoteleft — parenleftz € ny ¢ n h ve o ly t wot uth v lues ) a e e uivalentth eories
v10],pp. 337 —338 ). See Skolem ( [ 77 ], Chapter 1 8 ) : €. . . it seems to
be possible to obtain a consistent set theory with an unrestricted axiom of comprehension if all
rational numbers > 0 and < 1 are allowed as truth values” (p . 69 ) .

o

3 Multiset as a model for Multi - Attribute objects ” is expected to play a

significant role in the area of mathematical modelling , Discovery of Intelligent systems , control
of Non - linear mechanical systems , just to mention a few ( see

[67]).
4.  Discovering competing simulators for biological systems seems to dom - inate the research
in biotechnology for a foreseeable future (see [12], [47], [24]
and[4]).
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