DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER

RON M .ADIN¹ AND YUVAL ROICHMAN¹

ABSTRACT . For a permutation π in the symmetric group S_n let the total degree be its valency in the Hasse diagram of the strong Bruhat order on S_n , and let the down degree be the number of permutations which are covered by π in the strong Bruhat order . The maxima of the total degree and the down degree and their values at a random permutation are computed . Proofs involve variants of a classical theorem of Tur \acute{a} n from extremal graph theory .

. The Down, UP AND TOTAL DEGREES

Definition 1.1. For a permutation $\pi \in S_n$ let the down degree $d_{-}(\pi)$ be

the number of permutations in S_n which are covered by π in the strong Bruhat order. Let the up degree $d_+(\pi)$ be the number of permutations which cover π in this order. The to tal degree of π is the sum

$$d(\pi) := d_{-}(\pi) + d_{+}(\pi),$$

i . e . , the valency of π in the Hasse diagram of the strong Bruhat order

Explicitly , for $1 \le a < b \le n$ let $t_{a,b} = t_{b,a} \in S_n$ be the transposition interchanging a and b, and for $\pi \in S_n$ let

$$\ell(\pi) := \min\{k \mid \pi = s_{i_1} s_{i_2} \cdots s_{i_k}\}\$$

be the length of π with respect to the standard Coxeter generators

$$(1 \le i < n) \text{ of } S_n. \quad \text{Then}$$

$$d_-(\pi) = \#\{t_{a,b} \mid \ell(t_{a,b}\pi) = \ell(\pi) - 1\},$$

$$d_+(\pi) = \#\{t_{a,b} \mid \ell(t_{a,b}\pi) = \ell(\pi) + 1\},$$

$$d(\pi) = d_-(\pi) + d_+(\pi) = \#\{t_{a,b} \mid \ell(t_{a,b}\pi) = \ell(\pi) \pm 1\}.$$

 $1_{\rm Department}$ of Mathematics and Statistics , ~ Bar - Ilan University , ~ Ramat - Gan 52900 , Israel . Email : radin @ math . biu . ac . i 1 , yuvalr @ math . biu . ac . i 1 .

The Research of both authors was supported in part by the Israel Science Foundation , founded by the Israel Academy of Sciences and Humanities , and by the EC's IHRP Programme , within the Research Training Network "Algebraic Combinatorics in Europe ," grant HPRN - CT - 200 1 - 272 .

2 RON M . ADIN AND YUVAL ROICHMAN

For the general definitions and other properties of the weak and strong Bruhat orders see , e . g . , [9, Ex . 3.75] and $[2, \S\S2.1, 3.1]$.

We shall describe $\pi \in S_n$ by it s sequence of values $[\pi(1), ..., \pi(n)]$. **Observation** 1.2. π covers σ in the s trong Bruhat order on S_n if and only if there exist $1 \le i < k \le n$ such that

(1)
$$b := \pi(i) > \pi(k) =: a$$
.

(3) $\sigma = t_{a,b}\pi, \quad i.\ e., \pi = [..., b, ..., a, ...] \quad and \quad \sigma = [..., a, ..., b, ...].$ There is no $i < j < k \ su \ ch \ that \quad a < \pi(j) < b.$ Corollary 1.

$$d_{-}(\pi) = d_{-}(\pi^{-1}).$$

Example 1 . 4 . In $S_3, d_-[123] = 0, d_-[132] = d_-[213] = 1$, and $d_-[321] = d_-[231] = d_-[312] = 2$. On the other hand , d[321] = d[123] = 2 and

$$d[213] = d[132] = d[312] = d[231] = 3.$$

Remark 1.5. The classical descent number of a permutation π in the symmetric group S_n is the number of permutations in S_n which are covered by π in the (right) weak Bruhat order. Thus, the down degree may be considered as a "strong descent number"

Definition 1.6. For $\pi \in S_n$ denote

$$D_{-}(\pi) := \{ t_{a,b} \mid \ell(t_{a,b}\pi) = \ell(\pi) - 1 \},\,$$

the s trong descent s et of π . Example 1 . 7 . The strong descent set of $\pi = [7, 9, 5, 2, 3, 8, 4, 1, 6]$ is

$$D_{-}(\pi) = \{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,5}, t_{3,5}, t_{4,5}, t_{4,8}, t_{5,7}, t_{5,9}, t_{6,7}, t_{6,8}, t_{8,9}\}.$$

Remark 1 . 8 . Generalized pattern avoidance, involving strong descent

sets , was applied by Woo and Yong [$1\ 1$] to determine which Schubert varieties are Gorenstein .

Proposition 1.9. The strong descent s et $D_{-}(\pi)$ uniquely determines the permutation π .

Proof. By induction on n. The claim clearly holds for n = 1.

Let π be a permutation in S_n , and let $\bar{\pi} \in \tilde{S}_{n-1}$ be the permutation obtained by deleting the value n from π . Note that , by Observation 1 . 2 ,

$$D_{-}(\bar{\pi}) = D_{-}(\pi) \setminus \{t_{a,n} \mid 1 \le a < n\}.$$

By the induction hypothesis $\bar{\pi}$ is uniquely determined by this set. Hence it suffices to determine the position of n in π .

DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER Now, if $j := \pi^{-1}(n) < n$ then clearly $t_{\pi(j+1),n}$

Moreover,

by Observation 1.2, $t_{a,n} \in D_{-}(\pi) \implies a \geq \pi(j+1)$. Thus $D_{-}(\pi)$ determines

$$\bar{\pi}(j) = \pi(j+1) = \min\{a \mid t_{a,n} \in D_{-}(\pi)\},$$

and therefore determines j. Note that this set of a's is empty if and only if j = n. This completes the proof \Box MAXIMAL DOWN DEGREE

In this section we compute the maximal value of the down degree on S_n and find all the permutations achieving the maximum. We prove

Proposition 2.1. For every positive integer n

$$\max\{d_{-}(\pi) \mid \pi \in S_n\} = \lfloor n^2/4 \rfloor.$$

Remark 2.2. The same number appears as the order dimension of the strong Bruhat poset [7]. An upper bound on the maximal down degree for finite Coxeter groups appears in [4, Prop. 3.4].

For the proof of Proposition 2. 1 we need a classical theorem of Tur α

Definition 2.3. Let $r \leq n$ be positive integers. The Tur á ngraph $T_r(n)$ is the complete r-partite graph with n vertices and all parts as equal in s ize as possible , i . e . , each s iz e i s either $\lceil n/r \rceil$. Denote by $t_r(n)$ the number of edges of $T_r(n)$. Theorem 2 . 4 (TUR \acute{a} N 's THEOREM ; [10], Theorem 8]). |n/r| or

[10], [3, IV]

(1)Every graph of order n with more than $t_r(n)$ edges a complete subgraph of order r+1.

(2) $T_r(n)$ is the unique graph of order n with $t_r(n)$ edges that does

not contain a complete subgraph of order r+1. We shall apply the special case r=12 (due to Mantel)

of Tur \acute{a} n 's theorem to the following graph .

Definition 2.5. The s trong descent graph of $\pi \in S_n$, denoted $\Gamma_{-}(\pi)$,

is the undirected graph whose set of vertices is $\{1,...,n\}$ and whose set of edges is

$$\{\{a,b\} \mid t_{a,b} \in D_{-}(\pi)\}.$$

By definition, the number of edges in $\Gamma_{-}(\pi)$ equals $d_{-}(\pi)$. Remark 2 . 6 . Permutations for which the strong descent graph is con-nected are called *indecomposable*. Their enumeration was studied in [5]; see [6, pp. 7-8]. The number of components in $\Gamma_{-}(\pi)$ is equal to the number of global descents in πw_0 (where $w_0 := [n, n-1, ..., 1]$, which were introduced and studied in [1, Corollaries 6.3 and 6.4].

 $4\,$ $\,$ RON M . ADIN AND YUVAL ROICHMAN

Lemma 2.7. For every $\pi \in S_n$, the strong descent $\Gamma_{-}(\pi)$ graphtriangle - free . Proof . Assume that $\Gamma_{-}(\pi)$ contains a triangle. Then there exist $1 \leq$ $a < b < c \le n$ such that $t_{a,b}, t_{a,c}, t_{b,c} \in D_{-}(\pi)$. By Observation 1.2,

$$t_{a,b}, t_{b,c} \in D_{-}(\pi) \Longrightarrow \pi^{-1}(c) < \pi^{-1}(b) < \pi^{-1}(a) \Longrightarrow t_{a,c} \notin D_{-}(\pi).$$

This is a contradiction . \square Proof of Proposition 2.1. By Theorem 2.4 (1) together with Lemma 2.7,

forevery
$$\pi \in S_n$$

 $d_-(\pi) \le t_2(n) = \lfloor n^2/4 \rfloor$.

Equality holds s ince

$$d_{-}(\lfloor \lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, ..., n, 1, 2, ..., \lfloor n/2 \rfloor)) = \lfloor n^2/4 \rfloor.$$

Next we classify (and enumerate) the permutations which achieve the maximal down degree.

Lemma 2 . 8 . Let $\pi \in S_n$ be a permutation with maximal down degree.

Then π has no decreasing subsequence of length 4.

Proof. Assume that $\pi = [...d...c...b...a...]$ with d > c > b > $a \text{ and } \pi^{-1}(a) - \pi^{-1}(d) \text{ minimal } .$ Then $t_{a,b}, t_{b,c}, t_{c,d} \in D_{-}(\pi)$ but, by Observation 1.2, $t_{a,d} \notin D_{-}(\pi)$. It follows that $\Gamma_{-}(\pi)$ is not a complete bipartite graph, since $\{a,b\}$, $\{b,c\}$, and $\{c,d\}$ are edges but $\{a,d\}$ is not. By Lemma 2.7, combined with Theorem 2.4 (2), the number of $|n^2/4|$. \square

edges in $\Gamma_{-}(\pi)$ is less than

Proposition 2.9. For every positive integer n

$$\#\{\pi \in S_n \mid d_-(\pi) = \lfloor n^2/4 \rfloor\} = \begin{cases} n, & ifnisodd; \\ n/2, & ifniseven. \end{cases}$$

Each such permutation has the form

$$\pi = [t + m + 1, t + m + 2, ..., n, t + 1, t + 2, ..., t + m, 1, 2, ..., t],$$

 $where \quad m \in \quad \{\lfloor n/2 \rfloor, \lceil n/2 \rceil\} \quad \ and \quad 1 \quad \leq t \leq n-m. \quad \ Note \ that \quad t=n-m \ \left(\frac{n}{2} \right) + \frac{n}{2} = n-m$ for m) gives the same permutation as t = 0 (for n - m instead of m).

DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER

Proof. It is easy to verify the claim for $n \le 3$. Assume $n \ge 4$. Let $\pi \in S_n$ with $d_-(\pi) = \lfloor n^2/4 \rfloor$. By Theorem 2.4(2),

Let $\pi \in S_n$ with $d_-(\pi) = \lfloor n^2/4 \rfloor$. By Theorem 2.4(2), $\Gamma_-(\pi)$ is is omorphic to the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$. Since $n \geq 4$, each side of the graph contains at least two vertices. Let 1 = a < b be two vertices on one side, and c < d two vertices on the other side of the graph. Since $t_{b,c}, t_{b,d} \in D_-(\pi)$, there are three possible cases:

(1)
$$b < c$$
, and then $\pi = [...c...d...b...]$

(s ince $\pi = [...d...c...b...]$ contradicts $t_{b,d} \in D_{-}(\pi)$).

(2)
$$c < b < d$$
, and then $\pi = [...d...b...c...]$.
(3) $d < b$, and then $\pi = [...b...c...d...]$

(s ince $\pi = [...b...d...c...]$ contradicts $t_{b,c} \in D_{-}(\pi)$).

The same also holds for a=1 instead of b, but then cases 2 and 3 are impossible s ince a=1 < c. Thus necessarily c appears before d in π , and case 2 i s therefore impossible for any b on the same s ide as a=1. In other words: no vertex on the same s ide as a=1 i s intermediate, either in position (in π) or in value, to c and d.

Assume now that n is even. The vertices not on the side of 1 form

(in π) a block of length n/2 of numbers which are consecutive in value as in position. They also $_{
m form}$ an increasing subsequence π , s ince $\Gamma_{-}(\pi)$ is bipartite. The numbers preceding them are all larger in value, and are increasing; the numbers succeeding them are all smaller are increasing, and contain 1. is easy to check each permutation π of this form has maximal Finally, π is com-

pletely determined by the length $1 \le t \le n/2$ of the last increasing subsequence .

For n odd one obtains a similar classification, except that the length of the side not containing 1 is either $\lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$. This completes the proof . \square

3. Maximal Total Degree

Obviously, the maximal value of the total degree $d = d_- + d_+$ cannot exceed $\binom{n}{2}$, the total number of transpositions in S_n . This is s lightly better than the bound $2\lfloor n^2/4\rfloor$ obtainable from Proposition 2.1. The actual maximal value is smaller.

Theorem 3.1. For $n \ge 2$, the maximal to tal degree in the Hasse dia - gram of the s trong Bruhat order on S_n is

$$\lfloor n^2/4 \rfloor + n - 2.$$

In order to prove this result, associate with each permutation $\pi \in S_n$ a graph $\Gamma(\pi)$, whose s et of vertices i s $\{1,...,n\}$ and whose set of edges

$$\{\{a,b\} \mid \ell(t_{a,b}\pi) - \ell(\pi) = \pm 1\}.$$

many properties; e.g., it is This graph has K_5 - free edge - disj oint union of two triangle - free graphs on and the is the same set of vertices. However, these properties are not imply the above result. A property which does imply it enough to is the following bound on the minimal degree.

Lemma 3.2. There exists a vertex in $\Gamma(\pi)$ with degree at most

$$\lfloor n/2 \rfloor + 1.$$

Proof. Assume, on the contrary, that each vertex in $\Gamma(\pi)$ has at least |n/2| + 2 neighbors. This applies, in particular, the vertex $\pi(1)$. Being the first value of π , the neighborhood of $\pi(1)$ in $\Gamma(\pi)$, viewed as a subsequence of $[\pi(2),...,\pi(n)]$, consists of a shuffle of a decreasing sequence of numbers larger than $\pi(1)$ and an increasing of numbers smaller than $\pi(1)$. Let a be the r ightmost sequence neighbor of $\pi(1)$. The intersection of the neighborhood of a with neighborhood of $\pi(1)$ is of cardinality at most two. Thus the degree of a is at most

$$n - (|n/2| + 2) + 2 = \lceil n/2 \rceil \le |n/2| + 1,$$

which is a contradiction . \square

Proof of Theorem 3.1. First note that, by definition, total degree of $\pi \in S_n$ in the Hasse diagram of the strong Bruhat order i s equal to the number of edges in $\Gamma(\pi)$. We will prove that this number $e(\Gamma(\pi)) <$

 $\lfloor n^2/4 \rfloor + n - 2$, by induction on n. The claim is clearly true for n = 2. Assume that the claim holds for n-1, and let $\pi \in S_n$. Let a be a vertex of $\Gamma(\pi)$ with minimal degree, and let $\bar{\pi} \in S_{n-1}$ be the permutation obtained from π by deleting the value a(and decreasing by 1 all the values larger than a). Then

$$e(\Gamma(\bar{\pi})) \ge e(\Gamma(\pi) \setminus a),$$

where the latter is the number of edges in $\Gamma(\pi)$ which are not incident with the vertex a. By the induction hypothesis and Lemma 3.2,

$$e(\Gamma(\pi)) = e(\Gamma(\pi) \setminus a) + d(a) \le e(\Gamma(\bar{\pi})) + d(a)$$

$$\le \lfloor (n-1)^2/4 \rfloor + (n-1) - 2 + \lfloor n/2 \rfloor + 1$$

$$= \lfloor n^2/4 \rfloor + n - 2.$$

Equality holds s ince, letting $m := \lfloor n/2 \rfloor$,

$$e(\Gamma([m+1, m+2, ..., n, 1, 2, ..., m])) = \lfloor n^2/4 \rfloor + n - 2.$$

Theorem 3.3.

 $\#\{\pi \in S_n \mid d(\pi) = \lfloor n^2/4 \rfloor + n-2\} = braceex - bracee$

The extremal permutations have one of the following forms:

$$\pi_0 := [m+1, m+2, ..., n, 1, 2, ..., m] \quad (m \in \{ \lfloor n/2 \rfloor, \lceil n/2 \rceil \}),$$

and the permutations ob tained from π_0 by one or more of the following

operations:

$$\pi \mapsto \pi^r := [\pi(n), \pi(n-1), ..., \pi(2), \pi(1)] \quad (\text{reversing}\pi),$$

$$\pi \mapsto \pi^s := \pi \cdot t_{1,n} \quad (\text{interchanging}\pi(1) \text{and}\pi(n)),$$

 $\pi \mapsto \pi^t := t_{1,n} \cdot \pi$ (interchanging 1 and n in π).

Proof. It is not difficult to see that all the specified permutations are indeed extremal, and their number is as claimed (for all $n \ge 2$).

The claim that there are no other extremal permutations will be proved by induction on n. For small values of n(say $n \le 4$) this may be verified directly. Assume now that the claim holds for some $n \ge 4$,

and let $\pi \in S_{n+1}$ be extremal. Following the proof of Lemma 3. 2 , let a be a vertex of $\Gamma(\pi)$ with degree at most |(n+1)/2| + 1,which is either $\pi(1)$ or it s r ightmost neighbor. As in the proof of Theorem 3. 1, let $\bar{\pi} \in S_n$ be the permutation obtained from π by deleting the value a (and decreasing by 1 all the values larger than a). All the inequalities in the proof of Theorem 3. 1 must hold as equalities +1, and , namely : $e(\Gamma(\pi) \setminus a) = e(\Gamma(\bar{\pi})), d(a) = \lfloor (n+1)/2 \rfloor$ S_n . By the induction hypothesis $,\bar{\pi}$ must have one extremal in In all of them , $\{\bar{\pi}(1), \bar{\pi}(n)\} = \{m, m+1\} i$ of the prescribed forms. s an edge of $\Gamma(\bar{\pi})$. Therefore the corresponding edge $\{\pi(1), \pi(n+1)\}$ (or $\{\pi(2), \pi(n+1)\}\$ i f $a = \pi(1)$, or $\{\pi(1), \pi(n)\}\$ i f $a = \pi(n+1)$) is an edge of $\Gamma(\pi) \setminus a$, namely of $\Gamma(\pi)$. If $a \neq \pi(1), \pi(n+1)$ then $\pi(n+1)$ is the rightmost neighbor of $\pi(1)$, contradicting the choice of a. If $a = \pi(n+1)$ we may use the operation $\pi \mapsto \pi^r$. Thus we may assume from now on that $a = \pi(1)$.

Let N(a) denote the set of neighbors of a in $\Gamma(\pi)$. Assume first that

$$\bar{\pi} = \pi_0 = [m+1, m+2, ..., n, 1, 2, ..., m] \quad (m \in \{\lfloor n/2 \rfloor, \lceil n/2 \rceil\}).$$

Noting that $\lceil n/2 \rceil = \lfloor (n+1)/2 \rfloor$ and keeping in mind the decrease in certain values during the transition $\pi \mapsto \bar{\pi}$, we have the following cases: (1) a > m+1: in this case $1, ..., m \notin N(a)$, so that

$$d(a) \le n - m \le \lceil n/2 \rceil = \lfloor (n+1)/2 \rfloor < \lfloor (n+1)/2 \rfloor + 1.$$

8 RON M . ADIN AND YUVAL ROICHMAN

Thus π is not extremal.

(2) a < m: in this case m + 3, ..., n + 1, m + 1element - negations lash N(a), so that

$$d(a) \le 1 + (m-1) \le \lceil n/2 \rceil < \lceil (n+1)/2 \rceil + 1.$$

Again π is not extremal. (3) $a \in \{m, m+1\}$: in this case

$$d(a) = 1 + m \le |(n+1)/2| + 1,$$

with equality iff $m = \lfloor (n+1)/2 \rfloor$. This gives $\pi \in S_{n+1}$ of the required form (either π_0 or $\pi^s 0$).

A s imilar analysis for $\bar{\pi} = \pi^s 0$ gives extremal permutations only for $a \in \{m+1, m+2\}$ and d(a) = 3, so that n = 4 and $\bar{\pi} = [2413] \in S_4$. The permutations obtained are $\pi = [32514]$ and $\pi = [42513]$, which are

$$\pi^{rt}0, \pi^{rst}0 \in S_5$$
, respectively.

The other possible values of $\bar{\pi}$ are obtained by the $\pi \mapsto \pi^r$ and $\pi \mapsto \pi^t$ operations from the ones above, and yield analogous results. \square

4. EXPECTATION

In this subsection we prove an exact formula for the expectation of the down degree of a permutation in S_n . Theorem 4.1. For every positive integer n, the expected down degree of a random permutation in S_n is

$$E_{\pi \in S_n}[d_-(\pi)] = \sum_{n=1}^{i=2} \sum_{j=1}^{i=2} \sum_{j=1}^{k=2} \frac{1}{i \cdot (k-1)} = (n+1) \sum_{j=1}^{i=1} \frac{1}{i} - 2n.$$

It fo llows that

Corollary 4.2. $As \quad n \to \infty$,

$$E_{\pi \in S_n}[d_-(\pi)] = n \ln n + O(n)$$

and

$$E_{\pi \in S_n}[d(\pi)] = 2n \ln n + O(n).$$

To prove Theorem 4.1 we need some notation. For $\pi \in S_n$ and $2 \le i \le n$ let $\pi_{|i|}$ be the permutation obtained from π by omitting all letters which are larger than or equal to i. For example, if $\pi = 1$

then
$$\pi_{|9} = [6, 1, 4, 8, 3, 2, 5, 7], \pi_{|7} = [6, 1, 4, 3, 2, 5],$$

and $\pi_{|4} = [1, 3, 2].$

Also , denote by $\pi^{|j|}$ the suffix of length j of π . For example , if

$$\pi = [6,1,4,8,3,2,5,9,7] \text{then} \\ \pi^{|3} = [5,9,7] \text{and} \mid_{\pi}^{\mid} {}^{2}_{4} = [3,2].$$

DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER 9 Let $l.t.r.m.(\pi)$ be the number of left - to - r ight maxima in π :

$$l.t.r.m.(\pi) := \#\{i \mid \pi(i) = 1^{\max} \le j \le i\pi(j)\}$$

Lemma 4.3. For every $\pi \in S_n$, if $\pi^-|i1+1^{(i)}=j$ then

$$d_{-}(\pi_{|i+1}) - d_{-}(\pi_{|i}) = l.t.r.m.(|\pi_{i}|^{i-j}).$$

Proof of Theorem 4.1. Clearly, for every $\pi \in S_n$

$$d_{-}(\pi) = \sum [d_{-}(\pi_{|i+1}) - d_{-}(\pi_{|i})].$$

$$i = 2$$

Thus, by Lemma 4.3,

$$d_{-}(\pi) = \sum_{i=1}^{n} l.t.r.m.(|\frac{1}{\pi} i^{i-ji}),$$

$$i = 2$$

where ji is the position of i in $\pi_{|i+1}$, i. e. $., ji := \pi^-|i1+1(i)$.

Define a random variable X to be the down degree $d_{-}(\pi)$ of a random (uniformly distributed) permutation $\pi \in S_n$. Then, for each $2 \le i \le n$, $\pi_{|i+1}$ is a random (uniformly distributed) permutation in S_i , and

therefore $j=\pi^-|i1+1(i)|$ is uniformly distributed in $\{1,...,i\}$ and $|\frac{i-j}{\pi}\frac{i-j}{i+1}|$ is essentially a random (uniformly distributed) permutation in S_{i-j} (after monotonically renaming its values). Therefore, by linearity of the expectation,

$$E[X] = \sum_{n=1}^{i=2} \frac{1}{i} \sum_{i=1}^{j=1} E[X_{i-j}] = \sum_{n=1}^{i=2} \frac{1}{i} \sum_{i=1}^{t=0} E[X_t],$$
 (1)

where $X_t := l.t.r.m.(\sigma)$ for a random $\sigma \in S_t$. Recall from [9 , Corollary 1 . 3 . 8] that

$$\sum q^{l.t.r.m.(\sigma)} = \prod (q+k-1).$$

$$\sigma \in S_t \quad k=1$$

It follows that, for $t \geq 1$,

$$\begin{split} E[X_t] &= \frac{1}{t!} \sum_{\sigma \in S_t} l.t.r.m.(\sigma) = \frac{1}{t!} \quad (\frac{d}{dq} \sum_{\sigma \in S_t} q^{l.t.r.m.(\sigma)})|_{q=1} \\ &= \frac{1}{t!} \quad (\frac{d}{dq} \prod_{t=1}^{k=1} (q+k-1))|_{q=1} = \frac{1}{t!} \sum_{t=1}^{r=1} 1 \prod_{1 \le k \le t} k_t = \sum_{t=1}^{r=1} \frac{1}{r} \\ &\qquad k \ne r \end{split}$$

RON M . ADIN AND YUVAL ROICHMAN Of course $, E[X_0] = 0.$ Substituting these values into (1) gives

$$E[X] = \sum_{n=1}^{i=2} \sum_{i=1}^{t=1} \sum_{t=1}^{r=1} \frac{1}{i \cdot r}$$

and this is equivalent (with j = t + 1 and k = r + 1) to the first formula in the statement of the theorem.

The second formula may be obtained through the following manip -

ulations:

$$E[X] = \sum_{n=1}^{i=2} \sum_{j=2}^{j=2} \sum_{j=1}^{k=2} \frac{1}{i \cdot (k-1)} = \sum_{k \le_{2} \le j \le i \le} n \frac{1}{i \cdot (k-1)}$$

$$= \sum_{\le_{2} k \le i \le n} \frac{i - k + 1}{i \cdot (k-1)} = \sum_{\le_{2} k \le i \le n} (\frac{1}{k-1} - \frac{1}{i})$$

$$= \sum_{\le_{2} k \le n} \frac{n - k + 1}{k-1} - \sum_{\le_{2} i \le n} \frac{i - 1}{i}$$

$$= n \sum_{n=1}^{k=2} \frac{1}{k-1} - (n-1) - (n-1) + \sum_{n=1}^{i=2} \frac{1}{i}$$

$$= n \sum_{n=1}^{i=1} \frac{1}{i} - 2n + \sum_{n=1}^{i=1} \frac{1}{i}.$$

Proof of Corollary 4.2. Notice that

$$\sum_{n=1}^{i=1} \frac{1}{i} = \ln n + O(1).$$

(The next t erm in the asymptotic expansion is Euler 's constant .) st itute into Theorem 4 . 1 to obtain the desired result . \Box Down Degrees Definition 5.1. 5. Generalized For $\pi \in S_n$ and $1 \le r < n$ let

$$D_{-}^{(r)}(\pi) := \{t_{a,b} \mid \ell(\pi) > \ell(t_{a,b}\pi) > \ell(\pi) - 2r\}$$

the r- th s trong descent s et of π .

Define the $r-th \ down \ degree$ as

$$d_{-}^{(r)}(\pi) := \#D_{-}^{(r)}(\pi).$$

DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER 5.2. Example The first strong descent s et and down degree are those

studied in the previous section; namely $D_{-}^{(1)}(\pi) = D_{-}(\pi)$ and $d_{-}^{(1)}(\pi) = D_{-}(\pi)$

$$d_{-}(\pi)$$
.

The (n-1)- th strong descent s et is the set of *inversions*:

$$D_{-}^{(n-1)}(\pi) = \{t_{a,b} \mid a < b, \pi^{-1}(a) > \pi^{-1}(b)\}.$$

Thus

$$d_{-}^{(n-1)}(\pi) = inv(\pi),$$

the inversion number of π . Observation 5.3. For every $\pi \in S_n$ $\begin{array}{ll} and & 1 \leq a < b \leq n, t_{a,b} \in D_{-}^{(r)}(\pi) \\ if \ and & only \ if \quad \pi = \quad [...,b,...,a,...] \quad and \ there \qquad are \end{array}$

lessthan r letters

between the positions of b and a in π whose value is between a and

Example 5.4. Let $\pi = [7, 9, 5, 2, 3, 8, 4, 1, 6]$.

$$D_{-}^{(1)}(\pi) = \{t_{6,7}, t_{6,8}, t_{1,4}, t_{1,3}, t_{1,2}, t_{4,8}, t_{4,5}, t_{8,9}, t_{3,5}, t_{2,5}, t_{5,9}, t_{5,7}\}$$

and

$$D_{-}^{(2)}(\pi) = D_{-}^{(1)}(\pi) \cup \{t_{6.9}, t_{1.8}, t_{4.9}, t_{4.7}, t_{3.9}, t_{3.7}, t_{2.9}, t_{2.7}\}.$$

Corollary 5.5.For every $\pi \in S_n$ and 1 < r < n

$$d_{-}^{(r)}(\pi) = d_{-}^{(r)}(\pi^{-1}).$$

Proof. By Observation 5.3, $t_{a,b} \in D_{-}^{(r)}(\pi)$ if and only if $t_{\pi^{-1}(a),\pi} - 1_{(b)} \in$

$$D_{-}^{(r)}(\pi^{-1})$$
. \square

The r-th s trong des centDefinition 5.6. graph of denoted $\pi \in S_n,$ $\Gamma_{-}^{(r)}(\pi)$, is the graph whose set of vertices is $\{1,...,n\}$ and whose set of $\{\{a,b\} \mid t_{a,b} \in D_{-}^{(r)}(\pi)\}.$

The following lemma generalizes Lemma 2.7.

For every $\pi \in S_n$, the graph $\Gamma_{-}^{(r)}(\pi)$ Lemma 5 . 7 . contains no subgraph is omorphic to the complete graph K_{r+2} .

Assume that there is a subgraph in $\Gamma_{-}^{(r)}(\pi)$ isomorphic to K_{r+2} . Then there exists a decreasing subsequence

$$n \ge a_1 > a_2 > \dots > a_{r+2} \ge 1$$

such that for all $1 \le i < j \le r+2, t_{a_i,a_j}$ are r- th strong descents of π . In particular, for every $1 \le i < r+2, t_{a_i,a_{i+1}}$ are r- th strong descents of π . This implies that, for every $1 \le i < r+2, \ a_{i+1}$ appears to

r ight of a_i in π . Then, by Observation 5.3, $t_{a_1,a_{r+2}}$ is not an r- th Contradiction . \Box strong descent.

1 2 RON M . ADIN AND YUVAL ROICHMAN Corollary 5 . 8 . For every $1 \le r \le n$.

$$\max\{d_{-}^{(r)}(\pi) \mid \pi \in S_n\} \le t_{r+1}(n) \le \left(\begin{array}{c} r+1\\ 2 \end{array}\right) \left(\frac{n}{r+1}\right)2.$$

Proof. Combining Tur \acute{a} n's Theorem together with Lemma 5.7. \square Note that for r=1 and r=n-1 equality holds in Corollary 5 . 8 . Remark 5 . 9 . For every $\pi \in S_n$ let $\bar{\pi}$ be the permutation obtained from π by omitting the value n. If j is the position of n in π then

$$d_{-}^{(r)}(\pi) - d_{-}^{(r)}(\bar{\pi})$$

equals the number of (r-1)- th almost left - to - right minima in the (j-1)- th suffix of $\bar{\pi}$, s ee e . g . [8]. This observation may be applied to

calculate the expectation of $d_{-}^{(r)}(\pi)$.

Acknowledgements. The concept of strong descent graph came up during conversations with Francesco Brenti . It s name and certain other improvements were suggested by Christian Krattenthaler . Thanks also to Nathan Reading , Amitai Regev , Alexander Yong , and the anony - mous referees .

References

- [1] M . Aguiar and F . Sottile , Structure of the Malvenuto Reutenauer Hopf al gebra of permutations , a $-r\chi$ iv : math . CO / 203282 .
- $[\ 2\]$ $\,$ A . Bj \ddot{o} rner and F . Brenti , $Combinatorics\ of\ Coxeter\ Groups\,$, Graduate Texts in Mathematics 23 1 , Springer , New York , 2005 .
- $[\ 3\]$ B . Bollob á s , $Modern\ Graph\ Theory$, Graduate Texts in Mathematics 1 84 , Springer , New York , 1 998 .
- [4] F . Brenti , Upper and lower bounds for Kazhdan Lusztig polynomials , Europ . J . Combin . 1 9 (1 998) , 283-297 .
- $[\ 5\]$ L . Comtet , $\ Sur\ les$ coefficients de l'inverse de la série formelle $\sum n!t^n,$ Compt . Rend . Acad . Sci . Paris A B 275 (1 972) , A 569 A 572 .
- $[\ 6\]$ $\ I$. M . Gessel and R . P . Stanley , $\$ Alge braic Enumeration $\$, in : Handbook of Combinatorics , Vol . 2 , Eds . R . Graham et al . , M . I . T . Press , 1 995
- [7] N . Reading , Order dimension , s trong Bruhat order and lattice properties for posets , Order 1 9 (2002) , 73-1 0 .
- [8] A . Regev and Y . Roichman , Generalized s tatistics on S_n and pattern avoid ance , Europ . J . Combin . 26 (2005) , 29 57 .
- [9] R. P. Stanley, Enumerative Combinatorics, Vol. 1. Wadsworth and Brooks / Cole, Monterey, CA, 1986.
- [$1\ 0$] P . Tur á n , An extremal pro b lem in graph theory (Hungarian) , Mat . Fiz . Lapok 48 ($1\ 941$) , 436-452 .
- [1 1] A . Woo and A . Yong , When is a Schubert variety Gorenstein ?, Adv . in Math . (to appear) ; ar χ iv : math . AG / 409490 .