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SOLVABILITY OF DEGENERATED PARABOLIC EQUATIONS
WITHOUT SIGN CONDITION AND THREE UNBOUNDED
NONLINEA R -1ITIES
YOUSSEF AKDIM , JAOUAD BENNOUNA , MOUNIR MEKKOUR
ABSTRACT . In this article , we study the problem

%b(m,u) —div(a(x,t,u, Du)) + H(z,t,u, Du) = f inQx]0, T,
b(x,u)(t =0) =b(x,up) in,
u=0 indQx]0,T|

in the framework of weighted Sobolev spaces , with b(x, ) unbounded function on . The main
contribution of our work is to prove the existence of a renor - malized solution without the sign
condition and the coercivity condition on H((ﬂ, t,u, Du) The critical growth condition on H is
with respect to Du and

no growth condition with respect to . The second term f belongs to Ll(Q),

andb(z,up) € L*(Q).

1. INTRODUCTION
Let © be a bounded open set of RY, p be a real number such that 2 < p < oo,
Q=0x[0,T] and w= A{wi(xr) : 0 <i < N} bea vector of weight
functions (1. e . , every component w;(x) is a measurable almost everywhere strictly
positive function on ), satisfying some integrability conditions ( see Section2 ).  And
let
Au= — div (a(x,t,u, Du)) be a Leray - Lions operator defined from the weighted

Sobolev space LP(0,T; W, P (2, w)) into its dual L¥' (0, T; W1 (Q, w*)).
Now , we consider the degenerated parabolic problem associated for the differen -
tial equation

b D)
Oblz,u) 4 0Hon (10,0, = inQ, (1.1)

ot
b(x,u)(t =0) = b(x,ug) onf

where b(z,u) is a unbounded function on u, H is a nonlinear lower order term .
Problem (1. 1) is studied in [ 2 ] with f € L? (0, T; W~ '"(Q, w*)) and under the
strong hypothesis relatively to H, more precisely they supposed that b(x,u) = u
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H satisfying the sign condition

H(z,t,5,6)s>0 (1.2)

and the growth condition of the form

| H(z,t,5,€) |<b(s)(Y_wi(x) | & [P +e(a, ). (1.3)
=1

In the case where the second membre f € L'(Q), (1.1) is studied in [ 3 ] .

It is our purpose to prove the existence of renormalized solution for (1. 1) in the
setting of the weighted Sobolev space without the sign condition (1. 2 ), and without
the following coercivity condition

N

| H(x,t,5,€) |> B wi(z) [ & [P for|s|>7, (1.4)
i=1

our growth condition on H is simpler than ( 1. 3 ) it is a growth with respect to Du
and no growth condition with respect to u( see assumption ( H 3 ) below ) , the
second term f belongs to L'(Q). Note that our paper generalizes [ 2 ,3]. The
case H(x,t,u, Du) = div (¢(u)) is studied by Redwane in the classical Sobolev spaces
W1P(Q) and in Orlicz spaces ; see [15,16] .

The notion of renormalized solution was introduced by Diperna and Lions [ 8 | in
their study of the Boltzmann equation . This notion was then adapted to an elliptic

/

version of (1. 1) by Boccardo et al [ 5] when the right hand side is in W=17(€),
by Rakotoson [ 1 4 ] when the right hand side is in L!(£2), and finally by Dal Maso ,
Murat , Orsina and Prignet [ 7] for the case of right hand side is general measure data

Our article can be see as a continuation of [ 4 | in the case where b(z,u) = u,
a(z,t,s, &) is independent of s and H = 0. The plan of the article is as follows . In
Section 2 we give some preliminaries and the definition of weighted Sobolev spaces . In
Section 3 we make precise all the assumptions on b, a, H, f, b(x, ug). In section 4 we give
some technical results . In Section 5 we give the definition of a renormalized solution of
(1. 1) and we est ablish the existence of such a solution ( Theorem 5. 3 ) . Section 6
is devoted to an example which illustrates our abstract result , and finally an appendix
in section 7 .

2. PRELIMINARIES
Let ©Q be a bounded open set of RY,p be a real number such that 2 < p < co and
w = {w;(x),0 <i < N} be a vector of weight functions ;i . e . , every component
w;(x) is a measurable function which is strictly positive a . e . in Q. Further , we

suppose in all our considerations that , there exits
—ro

ro > max (N,p) such that w/°" € L{ (Q), (2.1)




wp—lz

w; € Llloc(Q)a

€ Li.(Q),

loc
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by W1P(Q,w) the space of real - valued functions
u € LP(Q2,wp) such that the derivatives in the sense of distributions fulfill

ou
8%1'

Which is a Banach space under the norm

e LP(Qw;) fori=1,...,N.

lul g = 10 P woede+ Y [ 15 P sy (24)

Condition ( 2 . 2 ) implies that C§°(2) is a space of W1P(Q,w) and consequently ,
we can introduce the subspace V = W, ?(Q,w) of WhP(Q,w) as the closure of C§°(€2)
with respect to the norm ( 2. 4 ).  Moreover , condition ( 2 . 3 ) implies that
WLe(Q, w) as well as W, ?(Q, w) are reflexive Banach spaces .

We recall that the dual space of weighted Sobolev spaces WO1 P(Q,w) is equivalent
to Wflp:(Q,w*), where w* = {w*i = liyP- i = 0,...,N} and where p’ is the
conjugate of p; i . e.,p’:p%l(see[l 1]).

3 7. BASIC ASSUMPTIONS
Assumption (H1) . For 2 < p < oo, we assume that the expression

=X du(z) ,
Il v = |1 5wty (31)

is a norm defined on V which is equivalent to the norm ( 2. 4 ) , and there exists a
weight function o on € such that ,

o€ LYQ) ando! e LY(9).

We assume also the Hardy inequality ,

P odx c > du(z) P w;(v)dx
(f, 1) oo < e [ 15570 P w@any (5:2)

holds for every u € V with a constant ¢ > 0 independent of w, and moreover , the
imbedding

WLP(Q,w) —— LP(Q,0), (3.3)

expressed by the inequality (3. 2 ) is compact . Notice that (V, ||| - ||| V) is a uniformly
convex ( and thus reflexive ) Banach space .

Remark 3 . 1. If we assume that wo(z) = 1 and in addition the integrability con -
dition : There exists v e]% + oo[ﬂ[p—il + oo[ such that

N
w™vie LY(Q) and wN-—1° €Ll () foralli=1,..,N. (3.4) Notice

_ loc

that the assumptions (2. 2 ) and ( 3. 4 ) imply

ou
6.131‘

Il lll= G5 | 5 P wi(w)da)1 /p, (3.5)



which is a norm defined on W, "*(€,w) and its equivalent to ( 2 . 4 ) and that , the
imbedding

Wy P (2, w) — LP(Q), (3.6)
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is compact for all 1 < ¢ <pjif pr < N(v+1) and forall ¢ > 1if pr > N(v + 1)
where pl = ;%5 and pj is the Sobolev conjugate of pl;see [1 0, pp30-31].
Assumption (H 2 ) .

b: QxR — R isa Carath é odory function . (3. 7 ) such that for every
x € Q,b(z,.) is a strictly increasing C'— function with b(z,0) = 0.
Next , for any k > 0, there exists A\;, > 0 and functions Ay, € L'(Q) and By, € LP(Q)
such that

Ob(x, s)
0s

Ak

IN

< Ap(z) and |Dg(

for almost every x € 2, for every s such that | s |< k, we denote by Dx(ab(gi’s)) the
gradient of % defined in the sense of distributions . For i =1,..., N

)

N
| ai(x,t,5,€) |< Bliy/P(@)[k(z,t) + /7 | s [V7 + 3" 15,/7 (2) | & P71, (3.9)
j=1

fora.e. (z,t) €Q,all (5,6) € R x RY, some function k(z,t) € LPI(Q) and 8 > 0.
Here 0 and g areasin (H 1) .

la(z,t,5,&) — ala,t,s,m)](E —n) >0 forall(,n) € RN x RY, (3.10)
N
a(z,t,s5,€).6>a> w | €| P (3.11)
=1

Where « is a strictly positive constant .

Assumption ( H 3 ) . Furthermore , let H(z,t,5,£) : Qx [0,T] x RxRY — R be a
Carath ¢ odory function such that for a . e (z,t) € Q and for all s € R, & € RV, the
growth condition

N
| H(x,t,5,€) |< y(2,t) + g(s) Y wi(x) | & [P (3.12)
1=1
is satisfied , where g : R — R¥ is a continuous positive positive function that belongs

to LY(R), while y(x,t) belongs to L*(Q).
We recall that , for £ > 1 and s in R, the truncation is defined as

s if|s|<k
T3 =
k(s) k—— i s[> k.
s |
4. SOME TECHNICAL RESULTS

Characterization of the t ime mollification of a function u. To deal with time
derivative , we introduce a time mollification of a function w belonging to a
some weighted Lebesgue space . Thus we define for all 4 > 0 and all (,t) € Q,



Uy = ,u/ (z,s)exp(u(s —t))ds

oo

wheret(x, s) = u(z, S)X(OaT).(S)
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(1) If vw € LP(Q,w;) then u, is measurable in Q and

ouy,
ot
| wp || Lp(Q,wi) <[ || Lp(Q,w;)

= p(u — uy)and,

(2)1If ueWyP(Q,w), then Uy — uin Wy P(Q,w) as p— oco.
(3)If un—uin WyP(Q,w), then (un), — u, in Wy P(Q,w).

Some weighted embedding and compactness results . In this section we es -
tablish some embedding and compactness results in weighted Sobolev spaces , some trace
results , Aubin ’ s and Simon ’ s results [ 1 7] . Let V = Wy ?(Q,w), H = L2(,0)
and let V* = W~ with (2 < p < o0). Let X = LP(0,T; Wy (Q,w)). The
dual space of X is X* = L¥' (0,7, V*) where P+ ; = 1 and denoting the space
W,(0,T,V,H) = {v e X :v € X*} endowed with the norm

lull Wy = Jul X+ o || Xx,

which is a Banach space . Here u’ stands for the generalized derivative of u;i. e . ,

T T
/ u' (t)p(t)dt = —/ u(t)¢'(t)dt forallp € C3°(0,T).
0 0

Lemma4.2 ([18]). ( 1) The evolution triple V C H C V* is satisfied .
( 2 ) The imbedding WI}(O,T, V,H) C C(0,T,H) is continuous .
(8 ) The imbedding W, (0,T,V,H) C LP(Q,0) is compact .
Lemma 4. 3 ([2]). Let g € L"(Q,7) and le t gn € L"(Q,~), with
| gn || Lr(Q,y) < C, 1 <r <oco. If gn(x) = g(z) a. ein Q, then gn — g in
L"(Q,v) where n — oo.
Lemma4 .4 ([2]). Assume that

Ov, Ly
E = Op +Bn inD (Q)

where a, and [, are bounded respectively in X* and in L' (Q). If w, is bounded
in LP(0,T; Wol’p(Q,w))7 then v, — win LI (Q,0). Further v, — v s trongly in
LYQ)

wheren — 0.

Lemma 4.5 ([2]). Assume that (H1) and (H2) are satisfied and le t
(un) be a
s equence in LP(0,T; Wy (Q,w)) such that w, — u weakly in LP(0,T; Wy (Q,w))
and

/ [a(x,t, up, Duy) — a(z, t,u, Du)|[Du,, — Duldzdt — 0. (4.1)
Q

Then,u, — winLP(0,T; Wy (Q, w)).

Definition 4 . 6 . A monotone map T : D(T) — X* is called maximal monotone
if its graph

G(T)={(u,T(u)) € X x X* forallu € D(T)}



is not a proper subset of any monotone set in X x X*. Let us consider the operator %
which induces a linear map L from the subset D(L) = {v € X : v/ € X*,0(0) =0 } of
X into X* by

(Lu,v) X :/0 (W' (t),v(t) V¥ we D(L),veX

Lemma 4.7([18]). L is a closed linear mazimal monotone map .
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In our study we deal with mappings of the form F' = L+ S where L is a given linear

densely defined maximal monotone map from D(L) C X to X* and S is a bounded

demicontinuous map of monotone type from X to X*.

Definition 4 . 8. A mapping S is called pseudo - monotone with u,, — u, Lu,, = Lu

and lim,, o sup (S(uy), u, —u) < 0, we have

le sup(S(un),u, —u) =0
andS(u,) = S(u)asn — oco.

5. MAIN RESULTS Consider the problem

b(x,ug) € L'(Q), feLN(Q)
Ob(z,u)
ot

—div(a(x,t,u, Du)) + H(z,t,u, Du) = f inQ (5.1)

u=0 ondNx]0, T,
b(xz,u)(t =0) = b(z,up) onfd.
Definition 5. 1. Let f € L(Q) and b(x,ug) € L*(Q). A real - valued function u
defined on @ is a renormalized solution of problem 5 . 1 if
Tr(u) € LP(0,T; Wy P (Q,w))  for all k> 0 and
b(z,u) € L>(0,T; LY (2));, (5.2)

/ a(z,t,u, Du)Dudzdt — 0 asm — +o0; (5.3)
{m<|u|<m+1}
aBS(I‘,U)_ . S’ (u)a(x u
AL adlvg,u,Dé))qu ;t,uH(’wP PMDu)S’(u) (5.4)
+ S//(u)a (m

= fS'(u) inD'(Q);
for all functions S € W2°°(R) which is piecewise C' and such that S’ has a compact
support in R, where Bg(z,z) = [; %S’(r)dr and

Bg(z,u)(t =0) = Bg(z,ug) inf. (5.5)

Remark 5. 2. Equation ( 5. 4) is formally obtained through pointwise multipli-
cationof (5.1) by S (u). However, whilea(z,t,u,Du) and H(z,t,u, Du)
does not in general make sense in (5. 1), all the terms in (5. 1) have a meaning in
D'(Q). Indeed , if M is such that suppS’ C [—M, M], the following identifications are
madein (5.4 ):
e S(u) belongs to L*°(Q) since S is a bounded function .

o S'(u)a(x,t,u, Du) identifies with S’(u)a(z,t, T (u), DTar(w)) a.e. in Q.
Since | Th(u)| <M a.e. in@ and S (u)€ L*(Q), we obtain from (3.9 ) and
(5.2) that

N
S'(w)a(z, t, Tas (u), DThs (w) € [ ] L7(Q, w"i)
=1

S"(u)a(x, t, u, Du) DuidentifieswithS” (u)a(x, t, Tas (w), DTas(w)) DT (u)



and

S"(u)a(z,t, Tar(w), DTas(u)) DTar(u) € LHQ).
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o S'(u)H(z,t,u, Du) identifies with S’ (u)H (x,t, Tps(u), DTa(uw)) a . ein Q. Since
| Tar(u) [<K M a. ein @ and S'(u) € L*™(Q), we obtain from (3. 9)and (3.12)
that

S'(w)H (z,t,Tas(u), DTy (u)) € L'(Q).
e S'(u)fbelongstoL(Q).
The above considerations show that (5. 4 ) holds in D’(Q) and that
0Bgs(x,u)
ot
Due to the properties of S and (5.4), 858—(:) e LV (0,T; W‘l’p’(Q7w*i)) + LY(Q),

which implies that S(u) € C°([0,T]; L*(£2)) so that the initial condition ( 5. 5 ) makes
sense , since , due to the properties of S( increasing ) and (6. 1), we have

€ L' (0, T W1 pig w*i)) + L1(Q).

|Bs(z,7) — Bs(z,r")| < Ag(x)|S(r) — S(r'")| forallr,r’ € R. (5.6)

Theorem 5 . 3. Let f€ LYQ) and b(x,ug) € L*(Q). Assume that (H1)-(H
3)hold.
Then , there emists at least one renormalized s o lution w of problem (5. 1) (in
the
s ense of Definition 5. 1) .

The proof of this theorem is done in four steps .
Step 1: Approximate problem and a priori estimates . For n > 0,
let us define the following approximation of b, H, f and wuy;

bp(z,7) = bz, T, (1)) + %r forn > 0, (5.7)

In view of (5.7),b, is a Carath é odory function and satisfies ( 6 . 1) , there exist
An > 0 and functions 4,, € L'(Q) and B,, € LP(Q) such that

Oby (z, 3) Oby(, s) )
< ——=< V<
An < 9 = An(z) and |D.( 95 | < B,(z)
a.e.in,seR.
Hy(a,t,5.6) = — b2 _g

1+%|H(x,t,s,£)|

Note that €2, is a sequence of compacts covering the bounded open set Q and x€, is
its characteristic function .
fn€L”P(Q), and f,—f a.e.in @ and strongly in L'(Q) as n — +oo,
(5.8)

uon € D(Q), || bu(,uon) || L' <l bz, uo) || L', (5.9)

bu(z,u0n) — b(z,u0) a . e. in Q and strongly in L'(Q). (5.10) Let us now
consider the approximate problem :

Oby, (2, up)

5 — div(a(, t,u" n=Dugn)in) + (g "oy xts un0 Dun) = fo inD'(Q),

(5.11)
by (2, un(t = 0)) = by (x, ugy).



Note that H,(z,t, s, &) satisfies the following conditions

| Ho(2,t,5,8) |< H(z,t,5,§) and [ Hy(z,t,5,§) |< n.
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Forallu, v € LP(0,T; Wy (Q,w)),
|/ H,(x,t,u, Du)vdzdt|
Q

< (/Q | Hy(x,t,u, Du) |7 qudxdt)l/Q’(/Q | v [" odzdt)1/q

T
<n / ( / A da)1 gl || La(@, o)

n

<Cy v HLp(O,T;WO Lp'(Q,w))

Moreover , since f, € L¥ (0,T; W‘l’p,(Q,w*)), proving existence of a weak solution
U, € LP(0,T; Wy (2, w)) of (5. 11)is an easy task (seee.g. [13],[2]).

Let o € LP(0,T; Wy P (Q,w)) N L®(Q) with ¢ > 0, choosing v = exp (G(uy))p as
test function in 5 . 1 1 where G(s) = [~ %dr( the function g appearsin (3.12)).
We have

Oby, (2, Uy,
/Qatexp(G(un))cpdxdt—l—/Qa(m,t,un,Dun)D(eXp(G(un))Lp)dxdt

- / Ho (2, 4, D) exp(Gun) pdadt + / Fuexp(Glun))pdadt.
Q Q

In view of (3. 12), we obtain

/ bn (2, un) exp(G(uy))pdzdt
0 ot

+/ a(x, t, tp, Duy ) Dud) | exp(G(uy,))pdadt
Q

+ | a(z,t, up, Duy) exp(G(uy,))Dodxdt

i=1

Ouy,
| o) 315 s exp(G () pdadt
N

J
J

S/’y(x,t)exp(G(un))cpdxdt+
Q 81‘1-

+/ frnexp(G(uy))pdzdt.
Q

By (3.11), we obtain
/ Wexp(G(un))wdazdt —|—/ a(x,t, uy, Duy,) exp(G(uy,))Dedzdt
Q Q
< [ Aty explGlun)edudt + [ fuexp(Glun) oo,
Q Q

(5.12)
for all ¢ € LP(0, T} Wol’p(ﬂ, w))NL>®(Q), o > 0. On the other hand , taking v = exp
(—G(up))e as test function in (5. 11 ) we deduce , asin (5. 12 ), that

/Wexp(—G(un))godxdt—i-/ a(x, t, Uy, Duy,) exp(—G(uy,))Dedxdt
Q Q

—&—/Q'y(amt) exp(—G(uy,))edzdt
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> / fo exp(~Gun))pdadt, (5.13)
Q

for all p € LP(0,T; Wy (Q,w)) N L®(Q),¢ > 0. Let ¢ = Ty (un)Tx(0,7), for every
7€[0,T],in (5. 12) we have ,

/QBZ(JE,U,L(T))eXp(G(un))dm+/ a(z,t,un, Duy,) exp(G(uy,)) DTy (u,) T dadt

-

< [ 9o t) exp(Gilua) Tilun) it + /Q Ju exD(G 1)) Ti () * dadt

-

+ / By (x, ugyp )dz,
Q

(5. 14) where By (z,7) = [ Ty ()2 "gi’s)ds. Due to this definition , we have

0< / BY (2, uon)da < k:/ b2, uon) | da < k|| b, uo) || LAQ) (5.15)
Q Q

Using this inequality , By (z, u,) > 0 and G(u,) < M we deduce

s

/ a(x,t, Up, DTy (un) ) DTy (un) T exp(G(uy,))dzdt

-

N 72 A3 o o o ) 10
< kexp(——— (lwon | L)+ 1 fu Il LH@)+ Iy | LH(Q)+ || bn(, uon) || L7 (£2))
S Clk.
Thanks to (3. 11 ), we have
=1 +
a/ Zwﬂm)\%?exp(G(u@)dmdt < k. (5.16)
QT N i
We deduce that
/ Zwl 9Ty (un) ™ Pdxdt < ck. (5.17)
Q Zq

Similarly to (5. 1 7)), we take ¢ = Ty (u,) " x(0,7) in (5. 1 3 ) we deduce that

6T n
/ ’“(” )" \Pdudt < cok (5.18)
Q
where ¢ is a positive constant . Combining (5. 17 ) and (5. 1 8 ) we conclude that

T () 10, mwir () S K- (5.19)



We deduce from the above inequality , (5. 14 ) and (5. 15 ), that

/QBZ(x,un)d:v < k(I f I LYQ)+ | b, uo) || L'(2)) = Ck. (5.20)

Then , Ty, (u,) is bounded in LP(0, T; Wy (Q,w)), and Ti(u,) — v in the space
Lr(0,T; Wol’p(Q,w)), and by the compact imbedding ( 3. 6 ) gives

Ti(u,) = vg  strongly in LP(Q,0) and a . e . in Q.
Let £ > 0 be large enough and Bpr be a ball of 2, we have

kmeas({| un |> k} N Br x [0,T])
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T
= / / | Ti(uy) | dadt
0 J{lun|>k}NBr
T
§/ / | Ti(uy,) | dxdt
0 JBg

T
g(/Q|Tk(un) e adwdt)l/p(/ /BRapdxdt)l/p
< Tep / Z ) 2L u”)l”d dt)1/p

< ek,

which implies

meas({| u, |> k} N Br x [0,T]) < i

So , we have

(meas({|u

lim 7 |> k)N Bg x[0,T])) = 0.

—>+00

Now we turn to prove the almost every convergence of u,, and b, (z,u,). Consider
now a function non decreasing gk € C*(R) such that gk(s) =sfor [s| < % and
gk(s) =k for | s |> k. Multiplying the approximate equation by gj (b, (z,u,)), we
obtain

Ogk(bn(z,un))

oy — div(a(z, t,un, Duy) g, (bn(z,u,)))

—|—a,(x’17Un, un) ;it( TL( TL)) (%
L g S

+H,, (1, U, Dty ) gy, (by (2, up))

Du, (5.21)

in the sense of distributions , which implies that
gk(bn (2, uy,)) is bounded in LP(0, T; Wy (Q,w)), (5.22)
W is bounded in X* + L(Q), (5.23) independent of n as long as k < n.
Due to Definition (3. 7 ) and (5. 7) of by, it is
clear that

{1 bn(z,un) [< K} C{] un |[< K"}

as long as k < n and k* is a constant independent of n. As a first consequence we
have

Dk (b (z,up)) = g}c(x,bMu@)DAW)DTk*(un) a.ein@Q (5.24) as
long as k < n. Secondly , the following estimate holds

Oy (2, Thor ()

)

, by, (z, 5)”
< gk I Zoo(@(] mane(D(P420 ),

|95 (bn (¢, ) Dar (
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(5. 24 ) we then obtain ( 5. 22 ) . To show that ( 5. 23 ) holds ,
due to (5. 2 1) we obtain

Dgkbn(e, 1) _ i o b, D g b, 0)

ot
—a(m,t,un,Dun)gg(bn(un))Dm(W) (5.25)
+H, (2, £, tn, Dt ) g1, (0n (2, Un)) + frgh (bn (@, un)).
Since support of g,  and support of g;/ are both included in  [—k,k], w, may be
replaced by Ty« (uy,) in each of these terms .  As a consequence , each term on the

right - hand side of ( 5 . 25 ) is bounded either in L' (0, T; W~ "/(, w*)) or in L*(Q).
Hence lemma 4 . 4 allows us to conclude that gk(b,(z,u,)) is compact in L? (Q,0).
Thus , for a subsequence , it also converges in measure and almost every where in @, due
to the choice of gk, we conclude that for each k, the sequence Ty (b, (z,u,)) converges

almost everywhere in Q( since we have , for every A > 0,)

meas({|bn (z, upn) — by (z, upm)| > A} N Br x [0,T))
< meas({| b, (z,un) |> k} N Br x [0,T]) + meas({| b (z,um) |> k} N Br x [0,T)])
+meas({[gh(bn(z, un)) — gk (bm (2, um))| > A}).

Let € > 0, then there exist k(¢) > 0 such that

meas({|b,(x, upn) — by (x,um)| > A} NBr x [0,T]) <e

for all n,m > ng(k(e), A, R). This proves that (b, (z,uy)) is a Cauchy sequence
in measure in Br X [0, 7], thus converges almost everywhere to some measurable
function v. Then for a subsequence denoted again u,,,

Up > u  a.e.in@, (5.26)by(x,uy) = blz,u) a.e.in@Q. (5.27)
We can deduce from ( 5. 19 ) that

Tk (un) = Tk (u) weaklyinLP(0,T; Wol’p(Q,w)) (5.28)
and then , the compact imbedding ( 3 . 3 ) gives

Ti(up) = Tp(u) strongly in L9(Q,0) and a . e . in . Which implies , by using
(3.9), forallk > 0 that there exists a function hy €

N
H LPI(Q7 w™1), suchthat
i=1
N
a(x,t, Ty (un), DTk (un)) = hi WeaklyinHLp/(Q,w*i). (5.29)
=1

We now establish that b(z, u) belongs to L>(0,T; L'(Q2)). Using (5.26) and
passing to the limit - inf in ( 5. 20 ) as n tends to +0o0, we obtain that

%/QBk(wau)(T)dfﬂ <USILHQ+ o || LY =€,

for almost any 7 in  (0,7). Due to the definition of Bg(z,s) and the fact that
%Bk (z,u) converges pointwise to b(z,u), as k tends to +o00, shows that b(x,u)



belongtoL> (0, T; L*(Q)).
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Let wuy, be a s o lution of the approxzimate pro blem (5.11). Then
lim lim sup/ a(x,t, Uy, Duy)Dupdxdt =0 (5.30)

Proof . Considering the function ¢ = Tl(un T (tn))” == am(uy)in (5. 13)
this function is admissible since ¢ € LP(0, T; Wy ?(Q, w)) and ¢ > 0. Then , we have

/ Mam(un)dxdt+/ a(z,t, Uy, Duy, ) Duyal, (u,)dzdt
@ Ot {~(m+1)<un<-m}

nexp(—G(uy))am (uy, )dzd
o D)
g/Qv(x,t)exp(—G(un))am(un)dazdt.

Which , by setting B (z,7) = [; W&m(s)d& gives

/B,T(m,un)(T)dm—i—/ a(z,t, u,, Duy, ) Dupal, (uy,)dxdt
Q {—(m+1)<u,<—m}
+/ frnexp(—G(up))otm (uy)dadt
Q

S/Q’y(a:,t)exp(—G(un))ozm(un)dxdt—|—/QBrT(x,uon)dx.

Since Bl (x,uy)(T") > 0 and by Lebesgue ’ s theorem , we have

lim lim frnexp(—G(up))otm (uy)dzdt = 0. (5.31)

m—00 N—00
Q

Similarly , since v € L*(f), we obtain

lim lim [ yexp(—G(un))om (uy)dzdt = 0. (5.32)

m—00 N—00
Q

We conclude that

a(x, t, uy, Duy)Duydxdt = 0. (5.33)

lim lim sup/

On the other hand , let ¢ = Ty(up — Ton(uy))™  as test functionin - (5. 12
) and reasoning as in the proof of ( 5. 33 ) we deduce that

lim lim Sup/ a(x,t, Uy, Duy)Duydxdt = 0. (5.34)
Thus ( 5. 30 ) follows from (5. 33 ) and (5.34). O
Step 2: Almost everywhere convergence of the gradients . This
step is devoted to introduce for k& > 0 fixed a time regularization of the function T} (u) in
order to perform the monotonicity method .  This kind of regularization has been first

introduced by R . Landes ( see Lemma 6 and proposition 3 , p . 230 , and proposition
4, ,p.231,in[12]).
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Let i € D(Q) be asequence which converge strongly to ug in L'(£2).  Set
wi, = (T(u)), + e *Ty(vi) where (Tj(u)), is the mollification with respect to time
of Ty, (u). Note that ¢, is a smooth function having the following properties :

Oy,

ot

= (T(w) —wy,),  ply(0) = Ti(i),  |ply <k, (5.35)
i, = Ti(u)  inLP(0,T; Wy P(Q,w)), (5.36)

as p — 0o. We introduce the following function of one real :
- cif < <
hn (5) = { 0f +1—s ifi[s[H2m+ 17" +1

m+1l+4+s if—(m+1)<s<-m

wherem > k.

Let ¢ = (Ti(un) — ) hon(1tn) € LP(0, T WEP(9,w)) 1 L(Q) and > 0, then
we take this function in ( 5. 1 2 ) , we obtain
Oby, (x, uy, i
/ O] (0 )) (Do) — (1)
{Tk(un)_iwu 20}
+f (e, s D) DT (1) = 0l (1)l
{Tk(un)fiwu ZO}
_ / exp(G(un))a(z, £t Ditn) Dit (Te (i) — w') Fdwdt  (5.37)
{m<u,<m+1}
< / v(z, t) exp(G(un)) (T (un) — wL)Jrhm(un)da:dt
Q
b [ B exp(Glun))(T(ua) i) o ().
Q
Observe that
/ exp(G (up))a(z, t, tn, Duy) Dy (Tx (uy) — wL)"’dxdt
{m<u, <m+1}

< 2k/ a(z, t, un, Duy,) Duy,dxdt.
{m<u,<m+1}

Thanks to ( 5. 30 ) the third integral tend to zero as n and m tend to infinity , and
by Lebesgue ’ s theorem , we deduce that the right hand side converge to zero as n, m
and p tend to infinity . Since
(Th(un) = w)) oy (un) = (Ti(u) — w},) P hy(u)  weakly + in L®(Q), as n — oo,
and (Ty(u) — w,) Thp(u) =0 weakly  in L>(Q) as p — oo,
Let g;(n, m, u,4)l = 1, ...,n various functions tend to zero as n, m, i and p tend to infinity

The definition of the sequence w?y makes it possible to establish the following
lemma , which will be proved in the Appendix .
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14 ] For k >0 we have

/ bn (2, un) exp(G(un)) (Te(tn) — 1)) P (un )dazdt > e(n, m, p,0)
{Teun)—pi, 200 O

(5. 38) On the other hand , the second term of left hand side of ( 5. 37 ) reads
as follows

/ a(x, t, Up, Dun)D(Tx(uy) — wi)hm(un)d:cdt
{Tk (un)—pi, 20}

/ a(a:, t, Tk(“n)v DTk(un))D(Tk(un) - /J’zu)hm(un)dxdt
{Tk(un)_#zﬂzoalunlék}

—/ a(x,t, uy, Dun)Dwahm(un)dazdt.
{Tk (un) =iy 20, un| 2k}

Since m > k, hy, (uy) = 0 on {| u, |[> m+ 1}, One has

/ a(x, t, tpn, Duyn ) D (T (un) — wi)hm(un)dxdt

{Tk (un) —pi, 20}

= / a(x,t, Ty (un), DTk (un))D(Tk (uy) — wZ)hm(un)dxdt
{Tk(un)_ﬂi 20}

—/ a(x, t, Tyt (un), DTm+1(un))Dwahm(un)d9:dt
{Te (un) —pi, 20, un| 2k}

=Ji+Js
(5. 39 ) In the following we pass to the limit in (5. 39 ) : first we let n tend
to 400, then p and finally m, tend to +oo.  Since a(z,t, Trt1(tn), DTmt1(un)) is

bounded in
Hgil LPI(Q, w*i), we have that

a(@,t, Trn1(un), DT t1 (W) P (Un) X {un |5k} = P Pon (W)X {Juf > 1)

strongly in Hiil Lpl(Q, w*i) as n tends to infinity , it follows that

Jo = / hmethm(u)X“ubk}dxdt +¢e(n)
{T (un)—pi, >0}

_ / B (DT (1), — €= DTy () by () g 0 [ > bt + ().
(T (un)— s, 20}
Bylettingu — +o0,

Jo = / R DT (w)dxdt + £(n, p).
{Tk(un)_ﬂiu ZO}
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39 ) one can easily show that

/ a(z,t, Tk (un), DTk (upn)) D(Tx (un) — wZ)hm(un)dxdt
{Tk (un)—pi, 20}

[ @t Talun). DTe(un)) (o, Ti (), DTi(w)
{Tk(u”)fzw“>0}
X [DTg () — DTg (w)] b (ur, ) dzdt

+/ a(x,t, Ty (un), DTy (w)) (DT, (un) — DTk (w)) A (uy, )dzdt
{Tk(Un)—MLZO}
+/ a(z,t, T (un), DTk (un)) DTk (w) hyy (uy, ) dadt
{Tk (un)—pi, >0}

- / a2, 1, T (ttn), DT (1)) D o ()t
{T% (un)—pi, >0}
=K+ Ko+ K3+ K.
(5. 40 ) We shall go to the limit as n and ;4 — +occ in the three integrals of the
right - hand side . Starting with K5, we have by letting n — +o0,
Ky =¢(n). (5.41)
About K3, we have by letting n — +o0 and using (5. 29 ) ,
Ky = / he DT () (w) g | > K}dadt + £(n)
{T (un)—pi, >0}
Bylettingu — +o0,
K; = / hi DTy, (w)dzdt 4+ e(n, p).  (5.42)
{Tk(un)fﬂiu 20}

For K4 we can write
K, = — / hie Dw}, hon (u)dadt + (n),
{Tk(un)fﬂzu >0}

Bylettingu — 400,

Ky = _/ hi DTy (w)dzdt + e(n, ). (5.43)
{Tk(un)_iw“ >0}

We then conclude that
/ a(z,t, Tk (un), DTk (upn))D(Tx (uy) — wa)hm(un)dxdt
{Tx (un)—pi, >0}

= / [a(x,t, Tk (un), DTk (un)) — a(z, t, Ti(un), DTk (u))]
{Tx (un)—pi, >0}

X [DTy (un,) — DTk (w) b (un ) dzdt 4+ €(n, p).
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we have

/ v [a(x, t, T (un), DTk (un)) — a(x, t, T (uy), DTk (u))]
{T (un)—pi, 20}

X [DTy (upn) — DTk (u)]dzdt

= / ) [a(‘rvthk(un)vDTk(un)) _a‘(xvta Tk(un)vDTk(u))]
{T (un)—pi, 20}

x+a(x, t, Ti(un), DT/S}w

[Dka?;]]z)(un)—w7

DTNy (4n)) (DT () — DTie(w)) (5.44)
X (1 = hp(uy,))dzdt
- / a(z,t, Ti(un), DTy () (DT (un) — DT (u))
{Tie () =iy, >0}

X (1 = by (uy))dxdt.

Since hp(up) = 1 im{Ju,| < mpand {Ju,| < &k} < {Jun| <
m} for m large enough , we deduce from ( 5. 44 ) that

/{T . >0}[a(m,t,Tk(un),DTk(un)) —a(z,t, Tk (uy), DTk (u))]

) [DTh () — DTy ()] dadt

= / v [a(x,t, Tk (un), DTk (un)) — a(z, t, Tk (uy), DTk (u))]
{Tk (un)—pi, >0}

X[DTy(un) — DTy (w)] b (ur,)dadt

+/ a(z,t, Ty (un), DTy (u)) DT (u) (1 — by (uy))dzdt.
{Th (un) =1, 20, [un| >k}

It is easy to see that the last terms of the last equality tend to zero as n — +o00, which
implies

/ 4@, Tk(un), DT(un)) — (@, t, Ti(un), DTi(u)]
{Tx (un)—pi, >0}

X [DTy(up) — DTy (w)]dzdt

-/ 4@, T(un), DTi(un)) — a(,t, Ti(un), DTi(w)]
{Tk(un)_lﬂ >0}

X [DT4(un) = DTy ()] (1)t + (n)

Combining (5.38),(5.40),(5.41),(5.42),(5.43)and (5. 44), we
obtain

/ 4 [a(x,t, Tk (upn), DTk (un)) — a(z, t, Tk (uy), DTk (u))] (5.45)
{Tk (un)—iw, >0}

i X [DTy(un) — DTk (u)]dzdt < e(n, u, m)

Passing to the limit in ( 5. 45 ) as n and m tend to infinity , we obtain

lim [a(x,t, Ty (un), DT (un)) — a(z, ¢, Ti(un), DTk (u))] (5.46)

0 J{ T (un ) —p, >0}

X [DT(un) — DTk (w)]dzdt = 0.
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© = (Ti(un) — w},) P (up) in (5. 13 ), we deduce as in
(5.46 ) that

lim [a(x, t, Tk (un), DTk (un)) — a(z, t, Ti(un), DTk (u))] (5.47)

00 STy (up ) —pi, <O}

X [DTy (un) — DTy (u)]dzdt = 0.

Combining (5. 46 ) and ( 5. 47 ) , we conclude

lim [ [a(z,t, Tk(un), DTg(un)) — a(z, t, Ti (un), DTk (w))] (5.48)

n—oQ Q

X [DTy(up) — DTy (u)]dzdt = 0.

Which , by lemma (4. 5 ), implies
Ty (un) = Tr(u)  strongly in LP(0,T; Wy P(Q,w)) for all k. (5.49) Now , observe
that for every o > 0,

meas{(x,t) € Q x [0,T] :| Du,, — Du |> o}
< meas{(z,t) € Q x [0,T] :| Duy, |> k}
+meas{(z,t) € A x [0,T] :| u |> k}
+meas{(z,t) € Q x [0,T] : | DTy (un) — DTx(u)| > o}
then as a consequence of (5. 49 ) we have that Du, converges to Du in measure and

therefore , always reasoning for a subsequence ,
Du, - Du a.e.in@Q. (5.50) Which implies

N
a(x,t, T (un), DTk (un)) — a(x,t, Ty (u), DTk (u)) inH L (Q, w*i). (5.51)

1=1
Step 3 : Equi - integrability of the nonlinearity sequence . We shall now
prove that H,(z,t,u,, Du,) — H(x,t,u, Du) strongly in L'(Q) by using Vitali ’ s theo
-rem . Since H,(z,t,un,Du,) — H(z,t,u,Du) a.e. in@Q, Consider

a function

ph(s) =[5 9(v)x{u>nydv, take © = ph(un) = [ g(s)X{s>n}ds as test function in
(5.12), we obtain

To + / a(x, i, un, Dun)Dung(un)X{un>h}dwdt
Q

gl L'R)’

<([ " 95X ey ds) exp U 1 M@+ | fa |l ZHQ)),

r Oby, (x,s)
0s

where B} (z,r) = ph(s)ds, which implies , since B} (x,r) > 0,

/ a(x,t, un, Duy) Dung(tn )X {Un > h}dzdt
Q

e’} 1 )
([ s e 5 2@ 11 21Q) + [ B vt

Q
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have

= ou >
glun | = [Pdzdt < g(s)ds.
/{ O / (s)

N

Since g € L' (R), we have

=0.

lim sup/ g(un)
h—0c0 neN {un>h}
Similarly , let ¢ = f;) 9(8)X{s<—nyds as a test function in (5. 13 ), we conclude that

i=1

lim sup/ g(un) Zwl|aun [Pdzdt = 0.
{un<—h} N

h—00 neN

Consequently ,

i=1

Ju
lim sup/ g(uny w;| —|Pdxdt = 0,
—h+00 neN {|un|>h} ( )§ | 31‘1 ‘

which , for A large enough , implies

=1

/Qg(un) ZN: 8%

i=1

ouy,
/{|un|<h} 2 Iz

N

i=1

s/ng(un))ZwﬁT’me vt + 1.

~ o0x;
Thenby (5.49) and Vitali’stheorem, we candeduce that g(uy,) va:l wJ% p
converges to g(u) va 1 w2| - |P strongly in L' (Q). Consequently , using (3. 12), we
conclude that

H,(z,t,upn, Duy) — H(z,t,u, Du) stronglyinL'(Q). (5.52)
Step 4 . In this step we prove that u satisfies (5. 3), (5. 4)and (5. 5)
. Lemma 5. 6 . The limit w of the approzimate s o lution wu, of (5. 11)
satisfies
lim a(x,t,u, Du)Dudzdt = 0.

Tmt0 Jim< ul<m+1}

Proof . Note that for any fixed m > 0,
/ a(z, t, un, Duy,)Duy,
{m<|uy|<m+1}
a(x, t,un, Dup) (DT a1 (un) — DT (uy))

a(x,t, Tmt1(un), DTy (un)) DT 1 (ur)

©\@\

— /Q a(x,t, T (uyn), DTy (un)) DTy (uy)-
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49 ) , one is alloed to pass to the limit as n — 400 for
fixed m > 0, and to obtain

lim a(x,t, uy, Duy,) Duydadt
7t S m< un |[<m+1}
= Quln, T prTe NPT () e gy (5.53)

a(z, m(u),

S t,Tm (u)

:/ a(z, t,u, Du) Dudzdt.
{mg\u”|§m+1}

Taking the limit as m — 400 in ( 5. 53 ) and using the estimate ( 5. 30 ) show that
u satisfies ( 5. 4 ) and the proof is complete . [

Now , we show that u satisfies (5. 4 )and (5. 5). Let S be a function in
W12 (R) such that S has a compact support .  Let M be a positive real number such
that support of (S') is a subset of [—M, M]. Pointwise multiplication of the approximate
equation (5. 11 ) by S'(uy) leads to

8Bg (JJ, ’U,n) _div [S" (un)a(un,
ot (u m,

Dun)Dug)] + 8" (tn)a(un, Duy, ) Duy, (5.54)
+/S(Un)H n

=[S (un) nD'(Q).

Passing to the limit , as n tends to 400, we have

e Since S is bounded and continuous ,u,, — v a . e. in () implies that
Bi(z,uy)
converges to Bg(z,u) a . e . in @ and L* weak — . Then
% converges to % in D'(Q) as n tends to +o0.

e Since supp (S’) C [-M, M], we have for n > M,
S (Un)an (U, Duy) = S (un)a(Tar(un), DTar(uyn))  a. e. in Q.
The pointwise convergence of u,tou and (5. 51 ) as n tends to +oo and the bounded
character of S’ permit us to conclude that

N
S’ (wn)an (tn, Duyp) — S"(w)a(Tar(u), DTas(uw)) inHLp’(Q,w*i), (5.55)
1=1

as n tends to +oo. S'(u)a(Tar(u), DTar(u)) has been denoted by S’(u)a(u, Du) in
equation (5.4 ).
e Regarding the ‘ energy ’ term , we have
S"(un)a(tn, Duyp)Duy = S" (wn)a(Tar(un), DTn(un))DTp(u,) a . e. in Q.
The pointwise convergence of S’ (uy,)toS’(u) and (5. 51 ) as n tends to 400 and the
bounded character of S” permit us to conclude that

S" ()@ (U, D) Dy, — S” (w)a(Tas (w), DTar(u))DTar(u)  weakly inL*(Q).

(5.56)
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Recall that

S"(w)a(Tar(w), DTh(w)) DTy (u) = S”( )a(u7 w)Du a.e.inQ.
e Since supp (S’) C [-M,M], by (5. 52 ), we have
S’ (wn)Hp (2, t, Uy, Duy) — S’ (u)H (2, t,u, Du) stronglyinL*(Q), (5.57)

as n tends to +oo.

eDueto(5.8)and (up, > uwa.ein Q), we have

S"(up) fn — S"(u)f  strongly in L'(Q) as n — +oo.
As a consequence of the above convergence result , we are in a position to pass to the
limit as n tends to 400 in equation (5. 54 ) and to conclude that u satisfies (5. 4 ) .
It remains to show that Bg(z,u) satisfies the initial condition (5. 5 ) . To this end ,
firstly remark that , S being bounded , Bg(x, u,,) is bounded in L*>(Q).  Secondly , (
5. 54 ) and the above considerations on the behavior of the terms of this equation

show that W is bounded in L'(Q) + L¥ (0, T; W~/ (2, w*)). As a con -
sequence , an Aubin ’ s type lemma ( see ,e. g, [1 7] ) implies that Bg(z, u,) lies in
a

compact set of C°([0, 7], L'(€2)). It follows that on the one hand , Bé(x, u,)(t =
0) = BZ(x,ung) converges to Bg(x,u)(t = 0) strongly in L'(2). On the other hand ,
the smoothness of S implies that

Bg(z,u)(t =0) = Bg(z,ug) in{Q.

As a conclusion , steps 1 — 5 complete the proof of theorem 5. 3. 6. EXAMPLE
Let us consider the special case

blz,r) =o(z) | s]|1® 2
and ¢ : Q@ —]1, +oo[ with g(z) < — | 2 |> +2. Then b : Q@ x R — R is a Carath ¢é odory
function , Such that for every x € Q,b(z,.) is a strictly increasing C''— function with
b(z,0) = 0. Next , for any k > 0, there exist Ay > 0 and functions A; € L'(Q) and

By, € LP(2)suchthat

ob(x, s) ob(x, s) )
M S 5= S Aw(@), [Da(—5— | < Bi(z), (6.1)
N
H(z,t,s,&) = psin(s)exp(s Zwl )& P, peR, (6.2)
1=1

ai(z,t,s,d) = w;i(z) | d; [P~ sgn(d;), i=1,..,N, (6.3)

with w;(z), (i=1,...,N), a weight function strictly positive ,z € Q. Then , we can
consider the Hardy inequality in the form

/|u VP o dx)l/p<c/\Du P w(x)dz)1/p

It is easy to show that the a;(¢,z, s, d) are Caratheodory functions satisfying the
growth condition ( 3 . 9 ) and the coercivity (3. 1 1) .  On the order hand the
mono - tonicity condition is verified . In fact ,

N

> (ai(x,t,d) — alx,t,d'))(d; — d})
1=1



EJDE-2011/03 RENORMALIZED SOLUTIONS 21

N-1
=w(z) Y (| di [P7" sgn(ds)— | di [P~ sgn(d)))(di — d}) >0,
i=1

for almost all z € Q and for all d,d’ € RY. This last inequality can not be strict ,
since for d # d’, since w >0a . e. in Q.

While the Carath é odory function H(z,t,s,§) satisfies the condition (3. 12 )
indeed

N N
| H(z,t,5,€) |<| p|exp(s™ sz )1 &i P sz )& fP
i1=1 1=1

where g(s) =| p | exp (572 is a function positive continuous which belongs to L*(R).
Note that H(z,t,s,&) does not satisfy the sign condition (1 . 2 ) and the coercivity
condition (1. 4).

In particular , let us use special weight function , w, expressed in terms of the distance
to the bounded 9Q. Denote d(z) = dist (z,00) and set w(z) = d*(x),

o(x) = d"*(x).

Finally , the hypotheses of Theorem 5 . 3 are satisfied . Therefore , for all f € L'(Q),
the problem

b(z,u) € L0, T); LY (Q));  Ti(u) € LP(0, T; WEP(Q,w)),
=1

ou ou . Ou
lim L xdt = 0;
—m+00 {7rL§|u\§m+1} ;|8$Z| 8xz)8zz:
Bs(a:,r)—/ 29) 615V,
0 60'

/Bg(a? u(T))gp(T)dm—/ Bs(x,u)g—fdscdt

=1
/S’ )i (z Z|a“ = 1egn( %) 9% gras
N

8331 (‘3@- ox;

i=1

ou au ou
//
/QS E ‘3:172 )5‘3% pdxdt

N

+/pS’(u)sm u) exp(u sz
Q

:/ fS'(u)gad:z:dtJr/Bs(x,uo)gp(())d:v,
Q Q
BS(Ivu)(t = O) = B5($, UO) iIlQ,

for all p € C§°(Q) and S € WH*°(R) with " € C§°(R), has at least one renor - malised
solution .

“dxdt
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7. APPENDIX Proof of Lemma 5 . & . ( see also [ 1 5] ) Integration by parts
and the use of the prop -

erties of (w)!, yield

T
I/ Oonl: )y 10, exp(C ) (T (utn) — i) dvdt
0 HeeTh(un)—iu, >0} ot

T
_ / / Oul@ytn) 0y VT () exp(Glun)), dadt (7.1)
0 J{xe;Ty(un)—pni, >0} ot

T
ab’n )y “'n 3
—/ / Mhm(un)exp(G(un))wldmdt
0 Jzeomi(un)-pi,z0p Ot
=17+ ",

We denote
" Oby (,
nater) = [ 2 ()T (s) explG(s) s,
0

Bl (x,r) = /OT Whm(s) exp(G(s))ds.

By a standard argument we can write the first term on the right - hand side of ( 7. 1
) as

= /{ Ty (utn) — ity > O} BY, 4 (2, )| Ty
z€EQ;

{zeQ;

3

i (n ) (
™

Oy (x, Trn (un))
0s

for n > m with supp h,, C [-m;m]. Passing to the limitin (7. 2 ) as n — 400, we
deduce that

T) = iy (T) = 0} By, (@, Ty (u)(T)) ez (7.2)
(0) = 412, (0) = 0} By, 1. (&, T (1 )(0) )

We observe that

O Ton () L)y

fim (1) = ( 0s n

Jizea: k(u)(T) =i, (T k(z
n_ ; —iw )>0} o s T (w(T))) da
I =_ /{wEQ‘ TTk . (u)(O)*%(O)Bmzo} Bm7k(m7Tm(u0))d1 + e(n). (7.3)

where By, i(2,7) = [ abgs"s) hin(8)Tk(s) exp (G(s))ds. Passing to the limit in ( 7. 3)

as 1 — 400 and u — 400, we have

I = /Q[Bwk(a:, w(T)) — By i (x,up)|dz + £(n, i, 0). (7.4)
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hand side of ( 7. 1) can be written as

T
L= —/ / _ Whm(un) eXp(G(un))dewdt
{20/ Ty (un) i, >0}

— [ Taln) — = 0} B (ol
{zeQ;

! j Ol
/ / T (un) — g, > 0} B (2, un) 8t“ dzdt (7.5)
0 {z€q;
— _/{ N T (un ) (T) — i (T) > 0} B™ (¢, T (un (T))) il (T') da:
+/ T () (0) = 13, (0) = O}BJ, (, wgn )1l (0)
{zeQ
T
+u/0 /{ o Ti(un) — py > 0} By (2, un) (T (1) — w!,)dadt.

By passing to the limit as n tends to infinity in ( 7. 5 ) , we obtain

{zeQ
T
+M/{ e Tilw) = i 2 O}/O Bo (2, u)(Ty (u) — w),)dzdt + e(n),

where B, =/ ab(w S)h (s) exp (G(s))ds.  Therefore , passing to the limit , in
i and p, in the first terms on the right - hand side of the last equality , we deduce that

[Br (z,u(T) (T (u(T))— w(T) =B (z,up)w iy (0)dx .
{z € Qi Th(u) =y, = O}IIQ[Bmu Ty ﬁ;‘ <(z,)u0)T( byt "zt

(7.6)

The second term on the right - hand side of ( 7. 5 ) can be rewritten as

/ /{ ca — fty = 0} B (2, ) (Ty,(u) — wy,)dwdt
T
- M/o /{xeﬂ; Ti(u) — py > 0} P @) — By (a0, Tho(w))) (T (u) — w!,)dawdt
T
+M/ Tie(u) — gt > 0} B @1y (1)) — Bm(x,wz)(Tk(u) - wi)dmdt (7.7)
0 {ze;
W/ /{ ca; =ty 2 0} Bon (w0, (T (1) — pi, ) davdlt

=J1+ Jo + J3,
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Ji = u/ / — py > Osu > kY B y) — By (2, k) (k — w!,)dwdt
{zeQ;
+M/ / — gl > 0;u < =k} P @y) — B (2, —k)) (—k — wi)dxdt
{zeQ;
> 0.

(7.8) As By(z,2) is non - decreasing for z and —k < p!, < k, it follows that

Jo > 0. (7.9)
Moreover ,
T . . .
Jomp [ Tatw) =y = 0} Bl (T () — o
0 {zeQ;
_= B(z, w:t)a(éLt)dedt 7.10
T T Jmens w200 5 i,(T))da (7.10)
{we & Tp(w)(T)—pi, (T)>0}
[ T)(0) = s 0) 2 0)-Br s (0))d,
{ze;

where -B(, z) = [ Bm(z,7)dr.  Also pi, — Tp(u) a. e. inQ asiand u tends to

+o00 and | ufu |< k. Then Lebegue ’ s convergence theorem shows that

J3:/Q(

Inviewof (7.6 )-(7.11), one has

B(x, Tk (u(T))) — 7B($7Tk(’ll0)))d$ +e(n, p,1). (7.11)

I;%H > 4 T (u(T')))—B(z,Tk(uo)))dz+ (uo)ldz .

Bum (= L 1),
Seme w(T))Ti (w(T)) = By (u0) T =™ #

(7.12)

B(x,

As a consequence of (7.1),(7.4)and (7.12), wededuce that

/ Ti(u) — piy > O}Whm(un) exp(G(un)) (T (un) — w!)ddt >
{(z,t)eQx(0,T);

> /Q By (2, u(T)) = By s (i, )| da

_ /Q B (2, w(T)) To(u(T)) — Bon (2, 10) T (o)) d

+/Q<

(7.13) Observe that for any z € R and for almost every x € ), we have

B(m, Tk(u(T))) — 7B(z’Tk(u0)))dx + E(’I’L7 M, Z)

-B3,Ti(2)) = Bi(x,2)Tk(2) — By r(, 2).
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Ty (2)
-B Ti(2)) = / B (x,r)dr
0

— [ / B 0) . (0) exp(Glo) o T (2

— /Tk(Z) r%hm(r) exp(G(r))dr (7.14)
0 r

Ty (2) .7
— T(2) / B T) ) expl )

Ti(z) ob(x,r
—/ Tk (r)%hm(r) exp(G(r))dr
0 T
=Ty (2) B (z, Tk(2)) — B ik (z, Tk(2)).
This is due to the fact that for | r |< k, we have

-B, T (r)) = Te(r) By (z,7) — B g (2, 7),

and if r > k we have

B k(x,7)

k r
_ / %hm(a)aexp(G(a))da+k / %{;")hmw)em(a(o))da,
_Tk(T)Bm($7r)

k T
= —k:/o Whm(a) exp(G(o))do — k/k %hm(o) exp(G(o))do,

and

Whm(a) exp(G(o))odo.

k k
-B(, k) = k/o 8b(;a’a) ho (o) exp(G(o))do — k;/o

The case r < —k is similar to the previous one . This conclude the proof . [
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