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Abstract . The paper presents some open problems associated to the nonlin -

ear conjugate gradient algorithms for unconstrained optimization . Mainly , these

problems refer to the initial direction , the conjugacy condition , the step length

computation , new formula for conjugate gradient parameter computation based

on function ’ s values , the influence of accuracy of line search procedure , how we

can take the problem ’ s structure on conjugate gradient algorithms , how we can

consider the second order information in these algorithms , what the most conve -

nient restart procedure is , what the best hybrid conjugate gradient algorithm is ,

scaled conjugate gradient algorithms , what the most suitable stopping criterion

in conjugate gradient algorithms is , etc .
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1. Introduction
The conjugate gradient method represents a major contribution to the panoply of methods
for solving large - scale unconstrained optimization problems . They are char -
acterized by low memory requirements and have strong lo cal and global convergence prop-
erties .  The popularity of these methods is remarkable partially due to their simplicity
both in their algebraic expression and in their implementation in com - puter codes , and
partially due to their efficiency in solving large - scale unconstrained optimization problems

The conjugate gradient method has been devised by Magnus Hestenes (1 906 —
1991 ) and Eduard Stiefel ( 1 909 — 1 978 ) in their seminal paper where an algorithm for
solving symmetric , positive - definite linear algebraic systems has been presented
[41]. After a relatively short period of stagnation , the paper by Reid [ 55 | brought
the conjugate gradient method as a main active area of research in unconstrained
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optimization . In 1 964 the method has been extended to nonlinear problems by
Fletcher and Reeves [ 35 ] , which is usually considered as the first nonlinear conjugate
gradient algorithm .  Since then a large number of variants of conjugate gradient algo-

rithms have been suggested . A survey on their definition including 40 nonlinear conjugate
gradient algorithms for unconstrained optimization is given by Andrei [ 1 3 ] . Even if the
conjugate gradient methods are now over 50 years old , they continue to be of a considerable
interest particularly due to their convergence properties , a very easy implementation effort
in computer programs and due to their efficiency in solving large - scale problems . For
general unconstrained optimization problem :

Inin f(z), (L.1)

where f : R — R is a continuously differentiable function , bounded from below , st arting
from an initial guess , a nonlinear conjugate gradient algorithm generates a sequence of
points {xy}, according to the following recurrence formula :

Tpt1 = T + apdy, (12)

where «ay, is the step length , usually obtained by the Wolfe line search ,

flar + owdy) — f(zr) < pongl di,
glerldk > Jg]{dka (1‘4)

with 0 < p < 1/2 <0 < 1, and the directions dj are computed as :

dk+1 = 79]43 =+ 1 + ﬂksk, do = 790 (15)

Here Sk is a scalar known as the conjugate gradient parameter ,gk = Vf(z) and s =
Trp+1—2k. Inthe followingyk = gk+1—gk. Different conjugate gradient algorithms
correspond to different choices for the parameter k. Therefore , a crucial element in any
conjugate gradient algorithm is the formula definition of Sk. Any conjugate gradient
algorithm has a very simple general structure as illustrated below .

Table 1 . The prototype of Conjugate Gradient Algorithm

Table ignored! ‘
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This is a prototype of the conjugate gradient algorithm , but some more sophisti -
cated variants are also known ( CONMIN [ 56 , 57 ], SCALCG [2-5], ASCALCG [12

I

ACGHES [19], ACGMSEC [11],CG DESCENT [ 39,40 ] ). These variants fo
cus on

parameter Sk computation and on the step length determination .

2. The open problems

In the following we shall present some open problems in conjugate gradient algo - rithms .
These problems refer to the initial direction selection , to the conjugacy condition , to

the step length computation , new formula for conjugate parameter computation based on
function ’ s values , the influence of accuracy of line search pro - cedure on the efficiency of
conjugate gradient algorithm , how we can consider the problem ’ s structure on conjugate
gradient algorithms , how we can take the second order information in these algorithms
, what the best restart procedure is , what the best hybrid conjugate gradient algorithm
is , scaled conjugate gradient algorithms , what the best stopping criterion in conjugate
gradient algorithms is , how these al - gorithms can be modified for solving simple bounded
optimization problems etc .

Problem 1 .  Why is th e initial s earch direction dy = —g0 critical ?

Crowder and Wolfe [ 28 | presented a 3 - dimensional strongly convex quadratic example
showing that if the initial search direction is not the steepest descent , then the
convergence rate of conjugate gradient is linear .  On the other hand , Beale [ 24 ]
showed that if

g9k +1
gt gk

yggk—&-l

do +
ya do

dpy1 = —gk+1+

dp (2.1)

then if dy # —g0, then conjugate directions are st ill obtained . This approach given
by (2. 1) allows a set of conjugate directions to be generated starting from any initial
direction dy. However , since dy remains in the formula for di,q along the iterations , it
may be undesirable [ 33 ] .

Later , Powell [ 53 | showed that if f(x) is a convex quadratic function , then using an
arbitrary initial search direction dy the solution is obtained at a linear rate of convergence
. Nazareth [ 47 ] suggested a conjugate gradient algorithm with a compli - cated three -
term recurrence for djy1 as

T k yT yk
yky dk;+ k—1

dpy1 = —yk +
* yTdy yl L dy s

dk—17 (22)

and dy = 0. In this form , apart from a scalar multiplier , the new direction given by
(2. 2) does not depend on the step length . He proved that if f(z) is a convex
quadratic , then for any step length «j, the search directions are conjugate relatively to the
Hessian of f. However , if dy # —g0, then dj can become zero away from the minimum .
Although interesting , this innovation has not been profitable in practice . An alternative
way of allowing an arbitrary initial direction dy for quadratic func - tions was suggested by
Allwright [ 1 ] who introduced a change of variable based on a factorization of the Hessian
of the function f. Observe that all these remarks address only to the convex quadratic
functions ; for the general nonlinear function we have
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no results on this problem .

Problem 2 . What is the best conjugacy condition 7

The conjugacy condition is expressed as yi dj+1 = 0. Recently , Dai and Liao [ 29 ]
introduced the new conjugacy condition y,{dlﬁ_l = ftsggk + 1, where ¢ > 0 is a scalar .
This is indeed very reasonable since in real computation the inexact line search is generally
used . However , this condition is very dependent on the nonnegative pa - rameter ¢, for
which we do not know any formula to choose in an optimal manner .

Problem 3 .  Why does th e s equence of s t ep length {ay} t end to vary in a totally
unpredictable manner and differ from 1 by two o rder of magnitude 7

Intensive numerical experiments with different variants of conjugate gradient algo - rithms
proved that the step length may differ from 1 up to two orders of magnitude , being larger
or smaller than 1 , depending on how the problem is scaled .  Moreover , the sizes of the
step length tend to vary in a totally unpredictable way .  This is in sharp contrast with the
Newton and quasi - Newton methods , as well as with the limited memory quasi - Newton

methods , which usually admit the unit step length for most of the iterations , thus
requiring only very few function evaluations for step length determination .  Numerical
experiments with the limited memory quasi

Newton method by Liu and Nocedal [ 45 | show that it is successful [10,21]. One

explanation of the efficiency of the limited memory quasi - Newton method is given by its
ability to accept unity step lengths along the iterations .

In an attempt to take the advantage of this behavior of conjugate gradient al -
gorithms Andrei [ 14, 1 5 ] suggested an acceleration procedure by modifying the step
length ay( computed by means of the Wolfe line search conditions ) through a posi - tive
parameter nk, in a multiplicative manner , like 21 = x5 + nk*k%k, in such a way as to
improve the reduction of the function ’ s values along the iterations . It is shown that the
acceleration scheme is linear convergent , but the reduction in function value is significantly
improved . Intensive numerical comparisons with different accelerated
conjugate gradient algorithms are documented in [ 1 0, 1 5] . An acceleration of the gra -
dient descent algorithm with backtracking for unconstrained optimization is given
in[9].

Problem 4 . What is th e influence of the accuracy of line s earch procedure on th e
performances of conjugate gradient algo rithms 7

For any unconstrained optimization algorithm one of the crucial elements is the stepsize
computation .  Many procedures have been suggested . In the exact lin e s earch
the step «ay is selected as :

oy = argmin f(zg + ady), (2.3)
a>0

where dj, is a descent direction . In some very special cases ( quadratic problems , for
example ) it is possible to compute the step «j analytically , but for the vast majority of
cases it is computed to approximately minimize f along the ray {zx + ady: a >0},
or at least to reduce f sufficiently . In practice the most used are the in exact proce - dures
. Alot of inexact line search procedures have been proposed :  Goldstein [ 37 | , Armijo
[23], Wolfe [6 1], Powell [ 52 ] , Dennis and Schnabel [ 32 ] , Potra and Shi [51 ],
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Lemar é chal [ 44 | , Mor é and Thuente [ 46 ] , Hager and Zhang [ 39 | , and many others .
The most used is based on the Wolfe line search conditions (1. 3 ) and (1. 4) .
An important contribution in understanding the behavior of Wolfe conditions was given by
Hager and Zhang [ 39 , 40 ] by introducing the approximate Wolfe conditions

(20 — Vg di > g’y 1di > ogi dy. (2.4)

The first inequality in ( 2 . 4 ) is an approximation to the first Wolfe condition (1. 3 ) .
When the iterates are near a lo cal optimum this approximation can be evaluated with
greater accuracy than the original condition , since the approximate Wolfe conditions

are expressed in terms of a derivative , not as the difference of function values . It is worth
saying that the first Wolfe condition ( 1 . 3 ) limits the accuracy of a conjugate gradient
algorithm to the order of the square root of the machine precision , while the approximate
Wolfe conditions ( 2 . 4 ) achieve accuracy on the order of the machine precision [ 39 | .

It seems that the higher accuracy of the step length , the faster convergence of a
conjugate gradient algorithm . For example the CG DESCENT algorithm by Hager
and Zhang which implement ( 2 . 4 ) is the fastest known conjugate gradient variant .

In this context another interesting open question is whether the non - monotone line
search [ 38 ] is more effective than the Wolfe line search .

Another open problem , more interesting , is to design conjugate gradient algo -
rithms without line search , the idea being to save computation . Such conjugate
gradient algorithms could be faster because there is no loss of accuracy related to
checking the Wolfe conditions .

Problem 5 . How can we us e the function values in Pk to generate new conjugate
gradient algorithms 7

This problem is taken from Yuan [ 63 ] . Generally , in conjugate gradient algorithms
the parameter Bk is computed using || gk ||, || gk+1 ||, || vk |, || s& ||, v} sk, gL gk+1, y}F gk+1
and sT gk + 1[6,13]. As we can see in the formula for 8k the difference f(zy) — f(wx11)
is not used at all . In [ 62 ] Yabe and Takano , using a result of Zhang , Deng and Chen
[ 66 ] , suggest the following formula for Sk

YT _ 91{+1(zk — tsg) (2.5)
k dgzk i '

where z;, = yk + 3wy, nk = 6(f(x) — f(xrs1)) + 3(gk + gk +1)T 55,0 > 0is a

s{uu
constant and uy € R™ satisfies sguk # 0; for example uy = si. In the same context based
on the modified secant condition of Zhang , Deng and Chen [ 66 | , with uy, = si, Andrei |
1 1] proposed the following formula for Sk

Bk = ( onk ) stgk+1 n ylgk+1 (2.6)
| se |l 2 yls +onk  ylsi+ ank

where § > 0 is a scalar parameter . Another possibility is presented by Yuan [ 63 | as

y yhgk+1
= R Fh+ Djar —dfgij2 @7
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Problem 6 . Can we take advantage of problem s tru cture to design more effective
nonlinear conjugate gradient algorithms 7

This problem was formulated by Nocedal [ 48 ] . When the problem is partially
separable ,i. e . it can be expressed as a sum of element functions , each of which
does have a large invariant subspace [ 26 | , can we formulate a partitioned updating of
parameter Sk to obtain a powerful conjugate gradient algorithm ?  This idea of decompo-
sition of partially separable functions in the context of large - scale optimiza -
tion was considered in quasi - Newton methods by Conn , Gould and Toint [ 27 ] .  The
advantage of this approach is that the information contained in the partially sepa - rable
description of the function is so detailed that it can be used in exploring the objective
function only along some relevant directions . The idea is to ignore some invariant
subspace of the function and only consider its complement .  The question is whether we
can use this type of invariant subspace information to design new formula for Gk.
Problem 7 . How can we consider th e s econd order information in conjugate gra -
dient algorithms 7

In [ 3, 4] Andrei suggested the following formula for Sk

T2 T
Bk = s, Vo f(zry1)gk+1— s, gk +1 (2.8)

SEV2 f(2ht1)Sk

Observe that if the line search is exact , then we get the Daniel method [ 3 1] .  The
salient point with this formula for Sk computation is the presence of the Hessian matrix

For large - scale problems , choices for the update parameter that do not require the
evaluation of the Hessian matrix are often preferred in practice to the methods that require
the Hessian .

A direct possibility to use the second order information given by the Hessian ma -
trix is to compute the Hessian / vector product V2 f(zx41)sk. However , our numerical
experiments proved that even though the Hessian is partially separable ( block diago -
nal ) or it is a multi - diagonal matrix , the Hessian / vector product V2 f(zy41)sk is time
consuming , especially for large - scale problems .  Besides , what happens when s; €
KerV2f(zgs1)? In an effort to use the Hessian in Sk Andrei [ 1 9 ] suggested a nonlin -
ear conjugate gradient algorithm in which the Hessian / vector product V2f(xjy1)sk is
approximated by finite differences :

Vf(xks1 + 9sk) — Vf(Te+1)

V2 f(2ky1)sk = 5

(2.9)

where

2y/Em (14 || @it )

6:
I's

(2.10)

5

and &,, is epsilon machine .

As we know , for quasi - Newton methods an approximation matrix By to the Hes - sian
V2 f (zx) is used and updated so that the new matrix By satisfies the secant condition
By 118, = yk. Therefore , as it is explained in [ 3 — 5 ] in order to have an algo - rithm for
solving large - scale problems we can assume that the pair (sg,yk) satisfies
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(Opr1yk — sp) gk +1

T
Yi Sk

Bk = (2.11)

where 041 is a parameter .  Birgin and Mart ¢ nez [ 25 | arrived at the same formula for
Bk, but using a geometric interpretation of quadratic function minimization .

Further in [ 1 1 ] we experienced another nonlinear conjugate gradient algorithm in
which the Hessian / vector product V2 f(zy,1)s, is approximated by the modified se -
cant condition introduced by Zhang , Deng and Chen [ 66 | and by Zhang and Xu [ 67 | ,
obtaining Sk asin (2.6 ) .

Problem 8 . What is the best s caled conjugate gradient algorithm 7
This is the preconditioning of conjugate gradient algorithms , which is a very active area .
Some authors suggested the search direction of the following form

diy1 = —Ory19k + 1+ BE°FE, (2.12)

where 611 is a positive scalar or a symmetric and positive definite matrix [ 2, 25 ] . The
formula (2. 12 ) is known as the scaled conjugate gradient algorithm .  Observe that
if 41 =1, then we get the classical conjugate gradient algorithms accord - ing to the
value of the scalar parameter Sk.  On the other hand , if Sk = 0, then

we get another class of algorithms according to the selection of the parameter 0. Consid-
ering Sk =0, there are two possibilities for i1 : a positive scalar or a positive
definite matrix . If 511 = 1, then we have the steepest descent algorithm .

If 011 = V2f(2141)" !, or an approximation of it , then we get the Newton or the quasi
- Newton algorithms , respectively .  Therefore , we see that in the general case , when
Or+1 # 0 is selected in a quasi - Newton manner , and Sk # 0, then (2. 1 2 ) repre -
sents a combination between the quasi - Newton and the conjugate gradient methods .
However , if 641 is a matrix containing some useful information about the inverse Hessian
of function f, we are better off using di+1 = —0r 19k + 1 since the addition of the term
Bk*k™(2.12) may prevent the direction dg,; from being a descent

direction unless the line search is sufficiently accurate .  In [2,25] 641 is selected as
the inverse of the Rayleigh quotient . Another selection based on the values of the
minimizing function in two successive points is presented in [2,5]. A diagonal Hessian
preconditioner is considered by Fessler and Booth [ 34 | . For linear conjugate gradient see
[43].

Problem 9 . Which is the best hybrid conjugate gradient algorithm 7
Hybrid conjugate gradient algorithms have been devised to use and combine the at - tractive
features of the classical conjugate gradient algorithms .  Touati - Ahmed and Storey [ 58

] , Hu and Storey [ 42 ] , Gilbert and Nocedal [ 36 ] suggested hybrid conjugate

gradient algorithms using projections of Fletcher - Reeves [ 35 ] , Polak - Ribi é re [ 49 | and
Polyak [ 50 ] conjugate gradient algorithms . Another source of hybrid conjugate gra - dient
algorithms is based on the concept of convex combination of classical conjugate gradient
algorithms .  Thusin [ 7, 8 , 20 ] Andrei introduced a new class of the hybrid conjugate
gradient algorithm based on a convex combination of Hestenes - Stiefel [ 41 ] and Dai -
Yuan [30 ] . In [ 1 6 ] other hybrid conjugate gradient algorithms are designed



326 N .A—mn drei

as convex combination of Polak - Ribi & re - Polyak [ 49 , 50 | , and Dai - Yuan [ 30 ] .
Gener - ally , the performance of the hybrid variants based on the concept of convex com -
bination is better than that of the constituents [17,18]. Some other variants are
considered in [ 64 , 65 ] . New nonlinear conjugate gradient formulas for unconstrained
optimization , including the global convergence of the corresponding algorithms are given
in [ 59, 60 ] . But , finding the best convex combination of the classical conjugate gradient
algorithms remains for further study .

Problem 10 . What is the most convenient restart procedure of conjugate gradient

algorithms?

In the early conjugate gradient algorithms , the restarting strategy was usually to restart
whenever k = n or k =n+ 1. When n is very large and the number of clusters of similar
eigenvalues of the Hessian is very small , this strategy can be very

inefficient . Powell [ 54 | has suggested restarting whenever

lgf gk +1]>02 gk +1] 2. (2.13)

On quadratic functions the left - hand side of ( 2. 1 3 ) is an indicator of the noncon
- j ugacy of the search directions and therefore a signal that the current cycle must be
terminated and another one must be started with negative of the current gradi - ent . It
is also desirable to restart if the direction is not effectively downhill . Powell suggested
restarting if

—1.2 | gk || 2 < dF gk < —0.8 || gk ||? (2.14)

is not satisfied . Another criterion for restarting the iterations in conjugate gradient algo-
rithms was designed by Birgin and Mart 7 nez [ 25 |

dii1gk +1> <1072 | st 2]l gk +1 2 - (2.15)

In (2. 15 ) when the angle between di+1 and —gk + 1 is not acute enough then rest
art the algorithm with —gk + 1. Clearly , more sophisticated restarting procedures can be
imagined , but which one is the best remains to be seen .
Problem 1 1. What is the most suitable crite rion for s topping the conjugate gradient
it erations 7
In infinite precision , a necessary condition for x* to be the exact minimizer of func - tion
fis Vf(z*) = 0. In an iterative and finite precision algorithm , we must modify
this condition as V f(z*) ~= 0. Although V f(z*) = 0 can also o ccur at a maximum or at
a saddle point , the line search strategy makes the convergence of the algo - rithm virtually
impossible to maxima or saddle points .  Therefore , V f(2*) = 0 is considered a necessary
and sufficient condition for z* to be a lo cal minimizer of f.

For linear conjugate gradient algorithms different stopping criteria were analyzed by
Arioli and Loghin [ 22 ] . For nonlinear conjugate gradient algorithms the following stopping
criteria were suggested



| Vf(@k) o< g5 (2.16)
arghde < ey | f(zrg) |, (2.17)
| Vf(zk) [loo< gg(14 | f(2k) 1), (2.18)
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| Vf (k) o< max{ey, 0 || Vf(z0) [} (2.19)
| Vf(xr) [|2< &g, (2.20)

where , for example e; = 10720 ¢, = 1076 and £y = 107'2. For large - scale problems

| Vf(zk) ||oo is more suitable to be used to stop the algorithm , but for small problems

it is better to use || Vf(zx) ||2 -

Problem 12 . Affine components of the gradient .

The Newton method has a very nice property . If any component functions of the
gradient V f(x) are affine , then each iterate generated by the Newton method will be a
solution of these components , since the affine model associated to the system

Vf(z) = 0 will always be exact for these functions . Is there an equivalent property for
conjugate gradient algorithms 7

Problem 13 . What is th e interre lationship between conjugate gradient and quasi -
Newton algorithms , in cluding here th e limited memory quasi - Newton algorithms 7
Both these algorithms have some maturity with very well est ablished theoretical results and
strong computational experience .  The question is that we don ’ t have any significant
progress in designing efficient and robust algorithms for large - scale problems using concepts
from both these two classes of algorithms .

Problem 14 . Can the nonlinear conjugate gradient algo rithms be extended to s o lve
s imple bounded constrained optimization 7

Consider the problem

min {£(z) |1 <o < ul, (2.21)

where [ and u are known vectors from R '~ How can we adapt the conjugate gradient

algorithms to solve equation (2.21)? A possible idea is to consider the techniques from
the interior point methods and devise a nonlinear conjugate gradient algorithm in which
the bounds on variables are not dealt with explicitly [ 48 ] .
Conclusion
For more than 50 years the conjugate gradient algorithms have been under an in - tensive
theoretical and computational analysis . Today , they represent an important component
of optimization algorithms . In this paper we have presented some inter - esting open prob-
lems concerning the design and implementation in computing codes of nonlinear conjugate
gradient algorithms .
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