65 , 1 (20 1 3) , 1 22 – 1 36 $\,$ research paper March 20 1 3

REMARKS ON COUPLED FIXED POINT THEOREMS IN CONE METRIC SPACES

Nguyen Van Luong , Nguyen Xuan Thuan , $K \cdot P \cdot R \cdot R - a_0$

Abstract. In this paper , we first show that some coupled fixed point theorems in cone metric spaces are proper consequences of relevant fixed point theorems . Then we give and prove some corresponding coupled fixed point theorems in partially ordered cone metric spaces . Some examples are also given to illustrate our work .

1. Introduction and preliminaries

The well - known Banach contraction principle is one of the pivotal results of analysis and has applications in a number of branches of mathematics . This prin - ciple has been extended and generalized in various directions for recent years by putting conditions on the mappings or on the spaces . Huang and Zhang in [1 6] introduced the notion of cone metric spaces , investigated the convergence in these spaces , introduced the notion of their completeness , and proved some fixed point theorems for contractive mappings on cone metric spaces . After that , many authors have fo cused on cone metric spaces and its topological properties , given and proved fixed point theorems in cone metric spaces (see [1-6 , $1\ 2-1\ 4$, $1\ 6-1\ 8$, 20-26 , 33-40 ,

42-43 and references therein).

Now we first recall some definitions and properties of cone metric spaces .

Definition 1 . $\ [\ 1\ 5\]$ Let E be a real Banach space . A subset P of E is called

a cone if and only if:

```
(a) P is closed, non-empty and P \neq \{\theta\},
(b) a, b \in \mathbb{R}, a, b \ge 0, x, y \in P imply that ax + by \in P,
```

 $(\mathbf{c})P\cap \Rightarrow notdef \mathbf{parenright} - \mathbf{notdef} notdef - equal \begin{array}{c} \{ \\ \theta \end{array} notdef - braceright^{\mathrm{period-element}} notdef - notdef - notdef - braceright^{\mathrm{period-element}} \\ \}$

ven a c ne , d fine a p rtialo dering \leq w th r spect t P b y $x \leq y$ i – f an d ly $G_{i-f}y$ $-x \in P$. W es all w ite \ll fo r $y-x \in ItP$ e , w e – h re ItP i – s — t e n – i terior

 $201\ 0$ AMS Subject Classification $\,:\,47$ H $\,10$, 54 H $\,25$

Keywords and phrases: Coupled fixed point; mixed monotone mapping; partially ordered set; cone metric space; compatible mappings.

of P. Also we shall use \prec to indicate that $x \leq y$ and $x \neq y$. The cone P in normed space E is called normal whenever there is a number k > 0 such that for all $x,y \in E, \theta \leq x \leq y$ implies $\parallel x \parallel \leq k \parallel y \parallel$. The least positive number k satisfying this norm inequality is called the normal constant of P. It is clear that $k \geq 1$. It is known that there exists ordered Banach space E with cone P which is not normal

butwith $IntP \neq \emptyset$.

Definition 2 . $\ [\ 1\ 6\]$ Let X be a non - empty set . Suppose that the mapping

$d: X \times X \to E$ satisfies:

(d 1) $\theta \le d(x,y)$ for all $x,y \in X$ and $d(x,y) = \theta$ if and only if x = y, (d 2)d(x,y) = d(y,x) for all $x,y \in X$, (d 3) $d(x,y) \le d(x,z) + d(z,y)$ for all $x,y,z \in X$. Then d is called a cone metric on X and (X,d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space . Definition 3 . $[\ 1\ 6\]$ Let (X,d) be a cone metric space . We say that a sequence

${x_n}$ inXis:

- (a) a Cauchy sequence if for every $c \in E$ with $0 \ll c$, there exists an N such that for all $n, m > N, d(x_n, x_m) \ll c$.
- (b) a convergent sequence if for every $c \in E$ with $0 \ll c$, there exists an N such that for all $n > N, d(x_n, x) \ll c$ for some fixed $x \in X$.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Let (X, d) be a cone metric space; then we have the following properties $(p \ 1)$ If E is a real Banach space with a cone P and $a \le ha$ where $a \in P$ and

$$h \in (0,1)$$
then $a = \theta$.

(p 2) if $\theta \le u \le c$ for each $\theta \le c$ then $u = \theta$. (p 3) if $u \le v$ and $v \ll w$ then $u \ll w$. (p 4) if $a \le b + c$ for each $\theta \le c$ then a = b. (p 5) if $c \in IntP, 0 \le a_n$ and $a_n \to \theta$ then there exists a K such that for all

 $\ll c.$ n > K, we have a_n

For the details about these properties see [21,24].

It is known that the sequence $\{x_n\}$ converges to $x \in X$ if $d(x_n, x) \to \theta$ as $n \to \infty$ and $\{x_n\}$ is a Cauchy sequence if $d(x_n, x_m) \to \theta$ as $n, m \to \infty$. In the case when the cone is not necessarily normal, the fact that $d(x_n, y_n) \to d(x, y)$ if $x_n \to x$ and $y_n \to y$ is not applicable.

DEFINITION 4. [3] Let $f, g: X \to X$ be two self - mappings on X. An element $x \in X$ is called a coincidence point of f and g if fx = gx. f and g are said to be weakly compatible if they commute at their coincidence points, that is gfx = fgx

Using the concept of weakly compatible mappings , many authors have studied the existence and uniqueness of common fixed points of self - mappings in cone metric spaces (see , for example , $\ [\ 3\ ,\ 22\ ,\ 23\]$ and references therein) . For our purpose , we

now state the result of Jungck et . al . [22].

Theorem 5. [22] Let (X,d) be a cone metric space, P a cone with non-empty in - t erior and mappings $f,g:X\to X$. Suppose that there exist non-negative constants

 $a_i, i = 1, 2, ..., 5$ satisfying $\sum_{i=1}^5 a_i < 1$ such that, for all $x, y \in X$,

$$d(fx, fy) \le a_1 d(gx, gy) + a_2 d(gx, fx) + a_3 d(gy, fy) + a_4 d(gx, fy) + a_5 d(gy, fx)$$
(1)

If $f(X) \subseteq g(X)$ and f(X) or g(X) is a complete subspace of X th en f and g have a unique co in cidence point in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

Recently , existence of fixed points for contraction type mappings in partial - ly ordered metric spaces has been considered in [7-11, 19, 27-32, 41] and references therein , where some applications to matrix equations , ordinary differential equa - tions , and integral equations has been presented . Bhashkar and Lakshmikantham [10] introduced the concept of a coupled fixed point of a mapping $F: X \times X \to X$ (a non - empty set) and established some coupled fixed point theorems in partially ordered complete metric spaces which can be used to discuss the existence and uniqueness of solution for periodic boundary value problems . Later , Lakshmikan - tham and \acute{C} iri $\acute{c}[27]$ proved coupled coincidence and coupled common fixed point results for nonlinear mappings $F: X \times X \to X$ and $g: X \to X$ satisfying cer - tain contractive conditions in partially ordered complete metric spaces . Using the concepts of coupled fixed point and coupled coincidence point , some authors have proved coupled (coincidence , fixed) point theorems in cone metric spaces (see [1 , 14, 25, 40, 42]) . Some of them are in non - ordered cone metric spaces .

DEFINITION 6 . [1 0] Let (X, \preceq) be a partially ordered set and $F: X \times X \to X$. The mapping F is said to have the mixed monotone property if F is monotone non -

The mapping F is said to have the mixed monotone property if F is monotone nor decreasing in x and F is monotone non - increasing in y, that is, for any $x, y \in X$,

$$x_1, x_2 \in X, x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y)$$

 $y_1, y_2 \in X, y_1 \leq y_2 \Rightarrow F(x, y_1) \succeq F(x, y_2).$

DEFINITION 7 . [1 0] An element $(x,y) \in X \times X$ is called a coupled fixed point of the mapping $F: X \times X \to X$ if x = f(x,y) and y = f(y,x).

DEFINITION 8 . [27] Let (X, \preceq) be a partially ordered set and $F: X \times X \to X, g: X \to X$ be two mappings . The mapping F is said to have the mixed g -monotone property if F is monotone g - non - decreasing in its first argument and F is monotone g - non - increasing in it s second argument , that is , for any $x, y \in X$,

$$x_1, x_2 \in X, gx1 \leq gx2 \Rightarrow F(x_1, y) \leq F(x_2, y)$$

 $y1, y2 \in X, gy1 \leq gy2 \Rightarrow F(x, y1) \succeq F(x, y2).$

Remarks on coupled fixed point theorems 1 25 Definition 9 . [27] An element $(x,y) \in X \times X$ is called

(1) a coupled coincidence point of the mapping $F: X \times X \to X$ and $g: X \to X$

if
$$gx = F(x, y)$$
 and $gy = F(y, x)$.

(2) — a coupled common fixed point of the mapping $F:X\times X\to X$ and $g:X\to X$

if
$$x = gx = F(x, y)$$
 and $y = gy = F(y, x)$.

Definition 1.0. [27] The mappings F and g where

 $F: X \times X \to X, g: X \to X$

are said to commute if F(gx, gy) = g(Fx, Fy) for all $x, y \in X$.

In [40] , Sabetghadam et al . proved the following coupled fixed point theorems .

THEOREM 1.1. [40] Let (X,d) be a cone metric space, P a cone with non-empty interior. Suppose that the mapping $F: X \times X \to X$ satisfies the following-contractive condition for all $x, y, u, v \in X$,

$$d(F(x,y), F(u,v)) \le kd(x,u) + ld(y,v), \tag{2}$$

where k, l are non - negative constants with k+l < 1. Then F has a unique coupled fixed point .

THEOREM 1 2 . [40] Let (X,d) be a cone metric space , P a cone with non - empty interior . Suppose that the mapping $F: X \times X \to X$ satisfies the following contractive condition for all $x, y, u, v \in X$,

$$d(F(x,y), F(u,v)) < kd(F(x,y), x) + ld(F(u,v), u),$$
(3)

where k, l are non - negative constants with k+l < 1. Then F has a unique coupled fixed point .

THEOREM 1 3. [40] Let (X,d) be a cone metric space, P a cone with non-empty interior. Suppose that the mapping $F: X \times X \to X$ satisfies the following contractive condition for all $x, y, u, v \in X$,

$$d(F(x,y), F(u,v)) < kd(F(x,y), u) + ld(F(u,v), x), \tag{4}$$

where k,l are non - negative constants with k+l < 1. Then F has a unique coupled fixed point .

Abbas et al . $[\ 1\]$ introduced the concept of w - compatible mappings and proved some coupled coincidence point theorems which generalized the results of Sabet - ghadam et al . $[\ 40\]$.

Definition 1.4. [1] The mappings F and g where

 $F:X\times X\to X, g:X\to X$

are said to be w - compatible if gF(x,y) = F(gy,gx) whenever gx = F(x,y) and

$$gy = F(y, x).$$

Theorem 15. [1] Let (X,d) be a cone metric space with a cone P having non-empty interior $F: X \times X \to X$ and $g: X \to X$ be mappings satisfying

$$d(F(x,y),F(u,v)) \le a_1 d(gx,gu) + a_2 d(F(x,y),gx) + a_3 d(gy,gv) + a_4 d(F(u,v),gu) + a_5 d(F(x,y),gu) + a_6 d(F(u,v),gx)$$
(5)

1.26 N.V. Luong, N.X. Thuan, K.P.R. Rao

for all $x, y, u, v \in X$, where $a_i, i = 1, 2, ..., 6$ are non-negative real numbers such that $\sum_{i=1}^6 a_i < 1$. If $F(X \times X) \subseteq g(X)$ and g(X) is a complete subspace of X

then F and g have a coupled co in cidence po int in X. Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point and common

coupled fixed point of F and g is of the form (u, u) for s ome $u \in X$.

In this paper , we first show that Theorem 1 5 is a real consequence of Theorem 5 and so are Theorems 1 1 , 1 2 and 1 3 . Then we give and prove some coupled fixed point results in partially ordered cone metric spaces that are relevant to Theorem 1 5 . The results unify and extend some recent results .

2. Main results

Lemma 1 6 . Let $F: X \times X \to X$ and $g: X \to X$ be w - compatible mappings .

If the mapping $f: X \to X$ is defined by fx = F(x,x) for all $x \in X$, then f and g are weakly compatible mappings.

Proof . Suppose that x is a coincidence point of f and g, that is , fx = gx. By the definition of f, we have F(x,x) = gx. Since F and g are weakly compatible , we have F(gx,gx) = gF(x,x). Therefore fgx = gfx, that is , f commute g at their coincidence point .

Theorem 1 5 is a consequence of Theorem 5.

Proof . Let $f: X \to X$ be the mapping defined by fx = F(x, x) for all $x \in X$. In (5), take x = y, u = v, we have

$$d(fx, fu) = d(F(x, y), F(u, v))$$

$$\leq a_1 d(gx, gu) + a_2 d(F(x, x), gx) + a_3 d(gx, gu)$$

$$+a_4 d(F(u, u), gu) + a_5 d(F(x, x), gu) + a_6 d(F(u, u), gx)$$

$$= a_1 d(gx, gu) + a_2 d(fx, gx) + a_3 d(gx, gu)$$

$$+a_4 d(fu, gu) + a_5 d(fx, gu) + a_6 d(fu, gx)$$

$$= (a_1 + a_3) d(gx, gu) + a_6 d(fu, gx)$$

$$+a_4 d(fu, gu) + a_5 d(fx, gu) + a_6 d(fu, gx).$$

Moreover, we have $f(X) \subseteq F(X \times X) \subseteq g(X), g(X)$ is a complete subspace of X. Applying Theorem 5, f and g have a coincidence point $x \in X$, that is , fx = gx. This implies that F(x,x) = gx, that is , (x,x) is coupled coincidence point of F and g. Since f and g are weakly compatible , x is unique and x = fx = gx, that is x = F(x,x) = gx. Therefore F and g have unique common coupled fixed point of

theform
$$(x, x)$$
.

The following example shows that Theorem $\,\,1\,\,5$ is a proper consequence of Theorem $\,5$.

Example 18. Let $X=\mathbb{R}$ with the cone metric d(x,y)=|x-y|, for all

 $x, y \in X$. Let $F: X \times X \to X$ be given by

$$F(x,y) = \{x^{x/4}, y, \text{ if }^{if} x^x = \neq y^y\}$$

and $g: X \to X$ be given by $gx = x, \forall x \in X$. Then F and g do not satisfy the condition (5) for all $x, y, u, v \in X$. Indeed, suppose (5) holds for all $x, y, u, v \in X$, take $x = 2u \neq 0, y = v = 0$, we have

$$|u| = |x - u| = d(F(x, y), F(u, v))$$

$$\leq a_1 d(gx, gu) + a_2 d(F(x, y), gx) + a_3 d(gy, gv)$$

$$+ a_4 d(F(u, v), gu) + a_5 d(F(x, y), gu) + a_6 d(F(u, v), gx)$$

$$= a_1 |x - u| + a_3 |u| + a_5 |x - u| + a_6 |u - x|$$

$$= (a_1 + a_3 + a_5 + a_6) |u|,$$

which is a contradiction.

However , if we define $f:X\to X$ by fx=F(x,x) for all $x\in X$ then f and g satisfy all the conditions of Theorem 5 . Applying Theorem 5 , we conclude that f and g have the unique common fixed point 0. Therefore , F and g have the common coupled fixed point (0,0).

We next give and prove some coupled fixed point results in partially ordered cone metric space for compatible mappings .

DEFINITION 1 9 . Let (X,d) be a cone metric space . The mappings F and g where $F:X\times X\to X,g:X\to X$ are said to be compatible if

$$\lim_{n\to\infty} d(gF(x_n,yn), F(gxn,gyn)) = \theta \text{ and } \lim_{n\to\infty} d(gF(yn,x_n), F(gyn,gxn)) = \theta,$$

where $\{x_n\}$ and $\{y_n\}$ are sequences in X such that

$$\lim_{n \to \infty} F(x_n, y_n) = \lim_{n \to \infty} gx_n = x \text{ and } \lim_{n \to \infty} F(y_n, x_n) = \lim_{n \to \infty} gy_n = y_n$$

for all $x, y \in X$ are satisfied.

It is easy to see that if F and g commute then they are compatible .

Theorem 2.0. Let (X,\preceq) be a partially ordered s e t and suppose there is a

metric d such that (X,d) is a complete cone metric space. Let $F: X \times X \to X$ and $g: X \to X$ be such F has the mixed g- monotone property and the re exist non-negative constants α, β, γ and λ satisfying $\alpha + \beta + 2\gamma + 2\lambda < 1$ such that

$$d(F(x,y), F(u,v)) \le \alpha d(gx, gu) + \beta d(gy, gv) + \gamma [d(F(x,y), gx) + d(F(u,v), gu)] + \lambda [d(F(x,y), gu) + d(F(u,v), gx)]$$
(6)

for all $x, y, u, v \in X$ with $gx \leq gu$ and $gy \succeq gv$. Further suppose that $F(X \times X) \subseteq g(X), g$ is continuous and g and F are compatible. Suppose e ither

(b) X has the following property

If $\{x_n\}$ is a non-decreasing s equence and $\lim_{n\to\infty} x_n = x$ the

(i) If $\{x_n\}$ is a non - decreasing s equence and $\lim_{n\to\infty} x_n = x$ then $gxn \leq gx$ for all n,

1.28 N.V. Luong, N.X. Thuan, K.P.R. Rao

(ii) If $\{yn\}$ is a non-increasing s equence and $\lim_{n\to\infty} yn = y$ then $gy \leq gyn$ for all n.

If the re exist $x_0, y_0 \in X$ such that $gx_0 \leq F(x_0, y_0)$ and $gy_0 \geq F(y_0, x_0)$ then F and g have a coupled coincidence point.

Proof . Let $x_0, y_0 \in X$ be such that $gx_0 \preceq F(x_0, y_0)$ and $gy_0 \succeq F(y_0, x_0)$.

Since $F(X \times X) \subseteq g(X)$, we construct sequences $\{x_n\}$ and $\{yn\}$ in X as follows $gxn + 1 = F(x_n, yn)$ and $gyn + 1 = F(yn, x_n)$, for all $n \ge 0$ (7)

We shall show that

$$gxn \leq gxn + 1, \text{forall } n \geq 0$$
 (8)

and

$$gyn \succeq gyn + 1, forall n \ge 0$$
 (9)

Since $gx0 ext{ } ext{$\leq$} F(x_0,y0)$ and $gy0 ext{$\geq$} F(y0,x_0)$ and as $gx1 = F(x_0,y0)$ and $gy1 = F(y0,x_0)$, we have $gx0 ext{$\leq$} gx1$ and $gy0 ext{$\geq$} gy1$. Thus (8) and (9) hold for n=0.

Suppose that (8) and (9) hold for some $n \ge 0$. Then, since $gxn \le gxn + 1$ and $gyn \ge gyn + 1$, and by the g-mixed monotone property of F, we have

$$gxn + 2 = F(x_{n+1}, yn + 1) \succeq F(x_n, yn + 1) \succeq F(x_n, yn) = gxn + 1$$
 (10)

and

$$gyn + 2 = F(yn + 1, x_{n+1}) \le F(yn, x_{n+1}) \le F(yn, x_n) = gyn + 1.$$
 (11)

Now from (10) and (11), we obtain

$$gxn + 1 \leq gxn + 2$$
 and $gyn + 1 \geq gyn + 2$

Thus by the mathematical induction we conclude that (8) and (9) hold for all $n \ge 0$. Since $gxn-1 \le gxn$ and $gyn-1 \ge gyn$, from (6) and (7) , we have

$$d(gxn, gxn + 1) = d(F(x_{n-1}, yn - 1), F(x_n, yn))$$

$$\leq \alpha d(gxn - 1, gxn) + \beta d(gyn - 1, gyn)$$

$$+\gamma [d(F(x_{n-1}, yn - 1), gxn - 1) + d(F(x_n, yn), gxn)]$$

$$+\lambda [d(F(x_{n-1}, yn - 1), gxn) + d(F(x_n, yn), gxn - 1)]$$

$$\leq \alpha d(gxn - 1, gxn) + \beta d(gyn - 1, gyn) + \gamma [d(gxn, gxn - 1) + d(gxn + 1, gxn)]$$

$$+\lambda d(gxn + 1, gxn - 1)$$

$$\leq \alpha d(gxn - 1, gxn) + \beta d(gyn - 1, gyn) + \gamma [d(gxn, gxn - 1) + d(gxn + 1, gxn)]$$

$$+\lambda [d(gxn + 1, gxn) + d(gxn, gxn - 1)] \quad (12)$$

Therefore,

$$d(gxn, gxn + 1) \le \alpha 1 + \gamma^{\gamma} + \lambda^{\lambda_d}(gxn - 1, gxn) + 1 - \beta_{\gamma} - \lambda^d(gyn - 1, gyn).$$
 (13)

Remarks on coupled fixed point theorems 1 29 Similarly , $gyn \leq gyn - 1$ and $gxn \geq gxn - 1$, from (6) and (7), and we have

$$d(gyn+1,gyn) = d(F(yn,x_n),F(yn-1,x_{n-1}))$$

$$\leq \alpha d(gyn,gyn-1) + \beta d(gxn,gxn-1)$$

$$+\gamma [d(F(yn,x_n),gyn) + d(F(yn-1,x_{n-1}),gyn-1)]$$

$$+\lambda [d(F(yn,x_n),gyn-1) + d(F(yn-1,x_{n-1}),gyn)]$$

$$\leq \alpha d(gyn,gyn-1) + \beta d(gxn,gxn-1) + \gamma [d(gyn+1,gyn) + d(gyn,gyn-1)]$$

$$+\lambda d(gyn+1,gyn-1)$$

$$\leq \alpha d(gyn,gyn-1) + \beta d(gxn,gxn-1) + \gamma [d(gyn+1,gyn) + d(gyn,gyn-1)]$$

$$+\lambda [d(gyn+1,gyn) + d(gyn,gyn-1)] \quad (14)$$

Therefore,

$$d(gyn, gyn + 1) \le \alpha 1 +_{-} \gamma^{\gamma} +_{-} \lambda^{\lambda_d}(gyn - 1, gyn) + 1 - \beta_{\gamma} - \lambda^d(gxn - 1, gxn).$$
 (15)
From (1 3) and (1 5) , we have

$$d(gxn, gxn + 1) + d(gyn, gyn + 1) \le \alpha + 1 - \beta \gamma^{+} \gamma_{-} + \lambda \lambda [d(gxn - 1, gxn) + d(gyn - 1, gyn)].$$

$$(16)$$

for all n. Set $k=\alpha+_{1-\gamma-}^{\beta+\gamma+\lambda}{}_{\lambda}<1;$ from (1 6) , we have

$$\begin{split} d(gxn, gxn + 1) + d(gyn, gyn + 1) &\leq k[d(gxn - 1, gxn) + d(gyn - 1, gyn)] \\ &\leq k^2[d(gxn - 2, gxn - 1) + d(gyn - 2, gyn - 1)] \end{split}$$

. . .

$$\leq k^n [d(gx0, gx1) + d(gy0, gy1)]$$

This implies

$$d(gxn, gxn + 1) \le k^n [d(gx0, gx1) + d(gy0, gy1)],$$

and

$$d(gyn, gyn + 1) \le k^n [d(gx0, gx1) + d(gy0, gy1)].$$

We shall show that $\{gxn\}$ and $\{gyn\}$ are Cauchy sequences. For m > n, we have

$$\begin{split} d(gxn,gxm) &\leq d(gxn,gxn+1) + \dots + d(gxm-1,gxm) \\ &\leq k^n [d(gx0,gx1) + d(gy0,gy1)] + \dots + k^{m-1} [d(gx0,gx1) + d(gy0,gy1)] \\ &\leq 1k_{-k}^n [d(gx0,gx1) + d(gy0,gy1)]. \end{split}$$

Let $\theta \ll c$ be given . Then there is a neighborhood of θ

$$N_{\delta}(\theta) = \{ y \in E : ||y|| < \delta \},$$

1 30 N. V. Luong, N. X. Thuan, K. P. R. Rao where $\delta > 0$, such that $c + N_{\delta}(\theta) \subseteq IntP$. Since k < 1, choose $N \in \mathbb{N}$ such that

$$||-1k_{-k}^n[d(gx0,gx1)+d(gy0,gy1)]|| < \delta.$$

Then

$$-1^{kn} k[d(qx0, qx1) + d(qy0, qy1)] \in N_{\delta}(\theta)$$

for all n > N. Hence

$$c-1^{k} k[d(gx0,gx1)+d(gy0,gy1)] \in c+N_{\delta}(\theta) \subseteq IntP.$$

Therefore,

$$1k_{-k}^{n}[d(gx0, gx1) + d(gy0, gy1)] \ll c,$$

for all n > N. This means,

$$d(gxn, gxm) \ll c$$
, forall $m > n > N$.

Hence we conclude that $\{gxn\}$ is a Cauchy sequence . Similarly , one can show that $\{gyn\}$ is also a Cauchy sequence . Since X is a complete cone metric space , there exist $x,y\in X$ such that

$$\lim_{n \to \infty} gxn = x \text{ and } \lim_{n \to \infty} gyn = y. \tag{17}$$

Thus

$$\lim_{n \to \infty} F(x_n, y_n) = \lim_{n \to \infty} gx_n = x \text{ and } \lim_{n \to \infty} F(y_n, x_n) = \lim_{n \to \infty} gy_n = y.$$
 (18)

Since F and g are compatible, from (18) we have

$$\lim_{n \to \infty} d(gF(x_n, yn), F(gxn, gyn)) = \theta$$
 (19)

and

$$\lim_{n \to \infty} d(gF(yn, x_n), F(gyn, gxn)) = \theta.$$
 (20)

Now, suppose that assumption (a) holds. Since F, g is continuous, by (18), $gF(x_n, yn) \to gx$ and $F(gxn, gyn) \to F(x, y)$ as $n \to \infty$. Let $\theta \ll c$ be given; there exists $k \in \mathbb{N}$, such that, for all n > k,

$$d(gx, gF(x_n, yn)) \ll c3$$
, $d(F(gxn, gyn), F(x, y)) \ll c3$
and $d(gF(x_n, yn), F(gxn, gyn)) \ll c3$

Therefore,

$$\begin{split} d(gx,F(x,y)) & \leq d(gx,gF(x_n,yn)) + d(gF(x_n,yn),F(gxn,gyn)) \\ & + d(F(gxn,gyn),F(x,y)) \quad \ll c \end{split}$$

Remarks on coupled fixed point theorems $1\ 3\ 1$ for all n>k. Since c is arbitrary , we get

$$d(gx, F(x, y)) \ll m^c, \forall m \in \mathbb{N}$$

Notice that $m^c \to \theta$ as $m \to \infty$, and we conclude that $m^c - d(gx, F(x, y)) \to -d(gx, F(x, y))$ as $m \to \infty$. Since P is closed, we get $-d(gx, F(x, y)) \in P$. Thus $d(gx, F(x, y)) \in P \cap \Rightarrow$) notdef -periodnotdef + n -notdef -no

$$\mathbf{m}_{\to \infty g} gxn^= xg = \mathbf{lm}_{\to \infty} gF^{\mathrm{parenleft-x}}n, y_n) = \mathbf{lm}_{\to \infty} Fg - parenleftxn \cdot gyn) \quad 1)$$

d

 $m_{\to \infty g}gyn = yg = lm_{\to \infty}gF^{parenleft-y}n, x_n) = lm_{\to \infty}Fg - parenleftyn, gxn^{\circ}.$ 2) eh ve

$$\begin{split} gx, F \text{parenleft} - \mathbf{x}, y)) &\leq dgx, ggxn + 1) + dgF \quad \text{parenleft} - \mathbf{x}n, y_n), F \quad x - parenleft, y)) \\ dgx, ggxn + 1) + dgF \quad \text{parenleft} - \mathbf{x}n, y_n), F \quad x - parenleft, y)) \\ dgx, ggxn + 1) + dF \quad \text{parenleft} - gxn \cdot gyn), F \quad x - parenleft, y)) \\ dgx, ggxn + 1) + \alpha(ggxn \cdot gx) + \beta(ggyn, gy) \\ \gamma d(F \quad \text{parenleft} - gxn \cdot gyn), ggxn^{)} + dF \quad x - parenleft, y), ggxn^{)}] \\ \lambda d(F \quad \text{parenleft} - gxn \cdot gyn), ggxn^{)} + dF \quad x - parenleft, y), ggxn^{)}] \\ \gamma d(F \quad \text{parenleft} - gxn \cdot gyn), ggxn^{)} + dF \quad x - parenleft, y), gx)] \\ \lambda d(F \quad \text{parenleft} - gxn \cdot gyn), gx) + dF \quad x - parenleft, y), gx) + dgx, ggxn^{)}]. \\ \mathbf{h} - \mathbf{i} \ \text{sim} \quad \mathbf{l} - \mathbf{p} \ \mathbf{e} \ \mathbf{s} \end{split}$$

$$gx, F parenleft - x, y)) \leq 11_{-\gamma - \lambda} (d(gx, ggxn + 1) + \alpha d(ggxn, gx) + \beta d(ggyn, gy) + \gamma d(F(gxn, gyn), ggxn) + \lambda [d(F(gxn, gyn), gx) + d(gx, ggxn)])$$

$$(23)$$

Let $\theta \ll c$. By (21), (22), there exist $n_0 \in \mathbb{N}$ such that

$$d(gx, ggxn) \ll 1 + {}^{c} \left({}^{1}_{\alpha} - + \gamma \beta - + \lambda^{\flat}_{\gamma +} 2\lambda, \quad d(ggyn, gy) \right) \ll 1 + {}^{c} \left({}^{1}_{\alpha} - + \gamma \beta - + \lambda^{\flat}_{\gamma +} 2\lambda, \right)$$
$$d(F(gxn, gyn), ggxn) \ll 1 + {}^{c} \left({}^{1}_{\alpha} - + \gamma \beta - + \lambda^{\flat}_{\gamma +} 2\lambda, \right)$$
$$\text{and} \quad d(F(gxn, gyn), gx) \ll 1 + {}^{c} \left({}^{1}_{\alpha} - + \gamma \beta - + \lambda^{\flat}_{\gamma +} 2\lambda, \right)$$

1 32 N. V. Luong , N. X. Thuan , K. P. R. Rao for all $n>n_0$. Thus , from (23), we have $d(gx,F(x,y))\ll c$ for all $n>n_0$.

Therefore,
$$gx = F(x, y)$$
.

Similarly , one can show that gy=F(y,x). Thus we have proved that F and g have a coupled coincidence point .

Corollary 2.1 . Let (X, \preceq) be a partially ordered s e t and suppose there is a

metric d such that (X,d) is a complete cone metric space. Let $F: X \times X \to X$ is such F has the mixed monotone property and there exist non - negative constants α, β, γ and λ satisfying $\alpha + \beta + 2\gamma + 2\lambda < 1$ such that

$$d(F(x,y), F(u,v)) \le \alpha d(x,u) + \beta d(y,v) + \gamma [d(F(x,y),x) + d(F(u,v),u)] + \lambda [d(F(x,y),u) + d(F(u,v),x)]$$
(24)

for all $x, y, u, v \in X$ with $x \leq u$ and $y \geq v$. Suppose e ither (a) F is continuous or

(b) X has the following property:

(i) if $\{x_n\}$ is a non-decreasing s equence and $\lim_{n\to\infty} x_n = x$ then $x_n \leq x$ for all n,

(ii) if $\{yn\}$ is a non - in creasing s equence and $\lim_{n\to\infty} yn = y$ th en $y \leq yn$ for all n.

If there exist $x_0, y_0 \in X$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$ then F has a coupled fixed po int.

Remark 2 2 . Theorems 2 . 2 and 2 . 3 in [1 4] , Theorems 2 . 1 and 2 . 2 in [1 0] are special cases of Corollary 22 .

THEOREM 23 . In addition to the hypotheses of Theorem 20 , suppose that for every (x,y), $(z,t) \in X \times X$ there exists a $(u,v) \in X \times X$ such that (gu,gv) is

comparable to (gx, gy) and (gz, gt). Then F and g have a unique coupled common fixed point.

Proof . Suppose (x,y) and (z,t) are coupled coincidence points of F and g, that is ,gx=F(x,y),gy=F(y,x),gz=F(z,t) and gt=F(t,z). We shall show that gx=gz and gy=gt. By the assumption , there exists $(u,v)\in X\times X$ that (gu,gv) is comparable to (gx,gy) and (gz,gt).

Since $F(X \times X) \subseteq g(X)$, we define sequences $\{u_n\}, \{v_n\}$ as follows

$$u_0 = u, v_0 = v, gun + 1 = F(u_n, v_n)$$
 and $gvn + 1 = F(v_n, u_n),$

for all n. Since (gu, gv) is comparable with (gx, gy), we may assume that $(gx, gy) \leq$

$$(gu, gv) = (gu0, gv0).$$

By using the mathematical induction, it is easy to prove that

$$(qx, qy) \prec (qun, qvn), \quad \text{forall} n.$$
 (25)

From (6) and (25) , we have

$$d(gx, gun + 1) = d(F(x, y), F(u_n, v_n))$$

$$\leq \alpha d(gx,gun) + \beta d(gy,gvn) + \gamma [d(F(x,y),gx) + d(F(u_n,v_n),gun)] \\ + \lambda [d(F(x,y),gun) + d(F(u_n,v_n),gx)] \\ + \lambda [d(gx,gun) + d(gun+1,gx)] \\ \leq \alpha d(gx,gun) + \beta d(gy,gvn) + \gamma [d(gun+1,gx) + d(gx,gun)] \\ + \lambda [d(gx,gun) + d(gun+1,gx)].$$

This implies

$$d(gx, gun + 1) \le \alpha 1 +_{-} \gamma^{\gamma} +_{-} \lambda^{\lambda_d}(gx, gun) + 1 - \beta_{\gamma} - \lambda^d(gy, gvn). \tag{26}$$

Similarly , from (6) and (25) , we also have

$$d(gy, gvn + 1) \le \alpha 1 + \gamma^{\gamma} + \lambda^{\lambda_d}(gy, gvn) + 1 - \beta_{\gamma} - \lambda^d(gx, gun). \tag{27}$$

Summing up (26) and (27), we obtain

$$d(gx, gun + 1) + d(gy, gvn + 1) \le \alpha + 1 - \beta \gamma^+ \gamma_- + \lambda \lambda [d(gx, gun) + d(gy, gvn)]$$

$$\le k^2 [d(gx, gun - 2) + d(gy, gvn - 2)]$$

. .

$$\leq k^{n+1}[d(gx, gu0) + d(gy, gv0)]$$

where $k = \alpha + \frac{\beta + \gamma + \lambda}{1 - \gamma - \lambda} < 1$. This implies

$$d(gx, gun + 1) \le k^{n+1} [d(gx, gu0) + d(gy, gv0)],$$

for all n. Let $\theta \quad \ll c$ be given . Then there is a neighborhood of θ

$$N_{\delta}(\theta) = \{ y \in E : ||y|| \le \delta \},\$$

where $\delta > 0$, such that $c + N_{\delta}(\theta) \subseteq IntP$. Since k < 1, there is an $N_1 \in \mathbb{N}$ such that

$$||-k^{n+1}[d(gx, gu0) + d(gy, gv0)]|| < \delta.$$

Then

$$-k^{n+1}[d(gx, gu0) + d(gy, gv0)] \in N_{\delta}(\theta).$$

for all $n > N_1$. Hence

$$c - k^{n+1}[d(gx, gu0) + d(gy, gv0)] \in c + N_{\delta}(\theta) \subseteq IntP.$$

Therefore,

$$k^{n+1}[d(qx, qu0) + d(qy, qv0)] \ll c,$$

for all $n>N_1$. That means $d(gx,gun+1)\ll c$, for all $n>N_1$. Thus, $gun\to gx$ as $n\to\infty$. Similarly, one can show that $gvn\to gy, gun\to gz$ and $gvn\to gt$ as $n\to\infty$. By the uniqueness of limits, we have gx=gz and gy=gt.

1.34 N.V. Luong, N.X. Thuan, K.P.R. Rao

Since gx = F(x,y) and gy = F(y,x), by the compatibility of F and g , it is easy to find that

$$ggx = gF(x, y) = F(gx, gy)$$
 and $ggy = gF(y, x) = F(gy, gx)$.

Denote gx = p and gy = q, then gp = F(p,q), gq = F(q,p). Thus (p,q) is a coupled coincidence of F and g. Hence gx = gp and gy = gq. Therefore,

$$p = gp = F(p,q)$$
 and $q = gq = F(q,p)$.

This means that (p,q) is a coupled common fixed point of F and g.

Suppose (a, b) is another coupled common fixed point of F and g. Then from the previous argument p = a and p = a an

We end the paper with a simple example which can be applied to Theorem 20 but not to Theorem 1 5 .

EXAMPLE 2 0 . Let $X=\mathbb{R}, E=C^1_{\mathbb{R}}[0,1]$ and $P=\{\phi\in E:\phi\geq 0\}$. Define $d:X\times X\to E$ by $d(x,y)=\mid x-y\mid \phi$ for all $x,y\in X$, where $\phi:[0,1]\to\mathbb{R}$ such that $\phi(t)=e^t$. It is clear that (X,d) is a complete cone metric space . On the set X, we consider the following order relation

$$x, y \in X$$
, $x \leq y$ \Leftrightarrow $x = y$ or $(x, y) = (0, 1)$.

Let $F: X \times X \to X$ be given by

$$F(x,y) = \begin{cases} 1, & \text{if } x, y \text{are comparable,} \\ 0, & \text{otherwise.} \end{cases}$$

and $g: X \to X$ be given by gx = x, for all $x \in X$ It is easy to see that all the conditions of Theorem 2 . 5 are satisfied with $\alpha, \beta, \gamma, \delta \geq 0$ and $\alpha + \beta + 2\gamma + 2\delta < 1$. Moreover , (1, 1) is a coupled coincidence point of F and g.

However , the condition (5) in Theorem 15 is not satisfied . In fact , suppose (5) holds . Take x=1,y=0,u=1/2 and v=0; we have

```
\phi = d(F(1,0), F(1/2,0))
= d(F(x,y), F(u,v))
\leq a_1 d(gx, gu) + a_2 d(F(x,y), gx) + a_3 d(gy, gv)
+ a_4 d(F(u,v), gu) + a_5 d(F(x,y), gu) + a_6 d(F(u,v), gx)
= a_1 d(g1, g1/2) + a_2 d(F(1,0), g1) + a_3 d(g0, g0)
+ a_4 d(F(1/2,0), g1/2) + a_5 d(F(1,0), g1/2) + a_6 d(F(1/2,0), g1)
= 1/2 a_1 \phi + 1/2 a_4 \phi + 1/2 a_5 \phi + a_6 \phi
< \phi,
```

which is a contradiction . Thus we cannot apply Theorem 1 5 to this example .

ACKNOWLEDGEMENT . The authors would like to thank the anonymous referee for his / her comments that helped us improve this article .

REFERENCES

- [1] M. Abbas, M. Ali Khan, S. Radenovi \acute{c} , Common coupled fixed point theorems in cone metric—spaces for w-compatible mappings—, Appl. Math. Comput. 217 (2010), 195–202.
- [2] M . Abbas , B . E . Rhoades , Fixed and periodic point results in cone metric spaces , Appl . Math . Lett . 22 (2009) , 5 1 1 5 1 5 .
- [3] M . Abbas , G . Jungck , Common fixed point results of noncommuting mappings without con tinuity in cone metric spaces , J . Math . Anal . Appl . 341 (2008) , 418-420 .
- [4] M. Abbas, B. E. Rhoades, T. Nazir, Common fixed points for four maps in cone metric spaces, Appl. Math. Comput. $\bf 2~16~(~2010~)$, 80-86.
- [5] I. Altun, B. Damjanovi \acute{c} , D. Djori \acute{c} , Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. 23 (2010), 310-316.
- [6] M . Arshad , A . Azam , P . Vetro , Some common fixed point results in cone metric spaces

Fixed Point Theory Appl . $\bf 2009$ (2009) Article ID 493965 , 1 1 pp .

 $[\ 7\]$ R . P . Agarwal , M . A . El - Gebeily , D . O ' Regan , Generalized contractions in partial ly ordered

 $metric\ spaces\$, Appl . Anal . 87 (2008) , $109-1\ 1\ 6$.

- [9] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010), 17 pages. Article ID 62 1469.
- [10] T . G . Bhashkar , V . Lakshmikantham , Fixed point theorems in partially ordered metric spaces and applications , Nonlinear Anal .65(2006), 825endash eight32.
- [$\bf 11$] B . S . Choudhury , A . Kundu , A coupled co incidence point result in partial ly ordered metric spaces for compatible mappings , Nonlinear Anal . $\bf 73$ ($\bf 2010$) , $\bf 2524-\bf 2531$.
- [12] C . Di Bari , P . Vetro $\ ,\phi-$ pairs and common fixed points in cone metric spaces $\$, Rend . Circ .

Mat . Palermo . **57** (2008) , 279 - 285 .

[13] C . Di Bari , P . Vetro , Weakly $~\phi-$ pairs and common fixed points in cone metric spaces ~ , Rend .

Circ . Mat . Palermo . 58 (2009) , 125 - 132 .

[14] H . S . Ding , L . Li , Coupled fixed point theorems in partial ly ordered cone metric spaces , Filo -

mat **2 5** (20 1 1), 1 37 - 149.

- $[\ {\bf 15}\]$ K . Deimling , Nonlinear Functional Analysis $\,$, Springer Verlag , 1 985 .
- $[\ 16\]\ L\ .\ G\ .\ Huang\ ,\ X\ .\ Zhang\ ,\ {\it Cone\ metric\ spaces\ and\ fixed\ point\ theorems\ of\ contractive\ mappings}$

J . Math . Anal . Appl . ${\bf 332} \ \ (\ 2007\)$, 1467-1475 .

- [17] R. H. Haghi, Sh. Rezapour, N. Shahzad, Some fixed point generalizations are not real gener alizations, Nonlinear Anal. 74 (201 1), 1 799 1803.
- [18] R . H . Haghi , Sh . Rezapour , Fixed points of multifunctions on regular cone metric spaces , Expo . Math . 2~8~ (2009) , 71-77 .
- $[\ 19\]\ J\ .\ Harjani\ ,\ B\ .\ Lopez\ ,\ K\ .\ Sadarangani\ ,\ \textit{Fixed point theorems for mixed monotone operators}$ and applications to integral equations \ , Nonlinear Anal .\ 74\ (\ 20\ 1\ 1\)\ ,\ 1\ 749-1\ 760\ .
- [20] D . I li \acute{c} , V . Rako \check{c} evi \acute{c} , Common fixed points for maps on cone metric space , J . Math . Anal . Appl . 341 (2008), 876 882 .
- [21] S. Jankovi \acute{c} , Z. Kadelburg, S. Radenovi \acute{c} , B. E. Rhoades, Assad Kirk type fixed point theorems for a pair of nonself mappings on cone metric spaces, Fixed Point Theory Appl. 2009

(2009),

Article ID 761086 , $1.6~\mathrm{pp}$.

 $[\ \mathbf{22}\]$ G . Jungck , S . Radenovi $\ \acute{c},\$ S . Radojevi $\ \acute{c},\$ V . Rako $\ \check{c}$ evi $\ \acute{c},\$

 $weakly\ compatible\ pairs\ of\ cone\ metric\ spaces\$, Fixed Point Theory Appl . 2009 (2009) , Article ID 643840 , 1 3 pp .

 $[~{\bf 23}~]~{\rm Z}$. Kadelburg , S . Radenovi $~\acute{c}_{,}$ B . Rosi $~\acute{c}_{,}$ Strict contractive conditions and common fixed point

theorems in cone metric spaces $\,$, Fixed Point Theory Appl . ${\bf 2}~{\bf 9}~$ (2009) , Article ID 173838 , $14~{\rm pp}$.

[24] Z . Kadelburg , S . Radenovi \acute{c} , V . Rako \check{c} evi \acute{c} , Remarks on " Qu asi c-hyphen ont r-a ct $o-i_n$ on a c o-n e me tr c-i

space " , Appl . Math . Lett . ${\bf 2}\ {\bf 2}\ (\ 2009\)$, 1 $647-1\ 679$.

```
N . V . Luong , N . X . Thuan , K . P . R . Rao
[25] E. Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces,
Comput. Math. Appl. 59 (2010), 3656 – 3668. [26] D. Klim, D. Wardowski, Dynamic
processes and fixed points of set - valued nonlinear contrac -
          tions in cone metric spaces \, , Nonlinear Anal . 
 {\bf 71}\, ( 2009 ) , 5 1 70 – 5 1 75 .
[ 27 ] V . Lakshmikantham , Lj \dot{C}_{\mathrm{iri\acute{c}}} Coupled fixed point theorems for nonlinear contractions in
partially ordered metric space, Nonlinear Anal. 70 (2009), 4341 – 4349. [28] N. V. Luong,
N. X. Thuan, Coupled fixed points in partially ordered metric spaces and appli-
cation, Nonlinear Anal. 74 ( 20\ 1\ 1 ), 983-992. [ 29 ] J. J. Nieto, R. L. Pouso, R. Rodr
\acute{i} guez - L \acute{o} pez , Fixed point theorems in ordered abstract s ets ,
Proc . Amer . Math . Soc . {f 135} ( 2007 ) , 2505-251 7 . [ {f 30} ] J . J . Nieto , R . Rodr \it i guez - L
ó pez, Contractive mapping theorems in partially ordered sets and
applications to ordinary differential equations, Order 22 (2005), 223 - 239. [31] D.O'Regan
, A . Petrusel , F i - x ed point theorems for generalized contractions in ordered metric
spaces , J. Math. Anal. Appl. 341 (2008), 1241-1252. [32] A. C. M. Ran, M. C. B
. Reurings , A fixed point theorem in partially ordered s ets and s ome
applications to matrix equations , Proc . Amer . Math . Soc . 1 32 (2004), 1435 – 1443 . [33]
S . Radenovi \acute{c}
                 Common fixed points under contractive conditions in cone metric spaces ,
Comput . Math . Appl . \mathbf{58} ( 2009 ) , 1 273-1 278 . [ \mathbf{34} ] S . Radenovi \stackrel{\leftarrow}{c} B . E . Rhoades ,
Fixed point theorem for two non - s elf mappings in cone metric
spaces , Comput . Math . Appl . 57 ( 2009 ) , 1\ 70\ 1 - 1\ 707 . [ 35 ] Sh . Rezapour , R . H .
{\it Haghi} , N . Shahzad , Some notes on fixed points of quasi - contraction
maps , Appl . Math . Lett . 2 3 (20 10) , 498 - 502 . [36] S . Rezapour , R . Hamlbarani ,
                             " Cone metric spaces and fixed point
Some notes on the paper
theorems of contractive mappings ", J. Math. Anal. Appl. 345 (2008), 719 - 724. [37] Sh
. Rezapour , H . Khandani , S . M . Vaezpour , Efficacy of cones on topological vector spaces
       and application to common fixed points of multifunctions , Rend . Circ . Mat . Palermo 59
( 20 10 ) , 185 – 1 97 . [ 38 ] Sh . Rezapour , R . H . Haghi ,
                                                                   Two results about fixed point of
multifunctions , Bull . Iranian
Math . Soc . 36 ( 20 10 ) , 279 - 287 . [ 39 ] Sh . Rezapour , R . H . Haghi , Fixed point of
multifunctions on cone metric spaces , Numer .
Funct . Anal . Opt .30(2009), 825endash - eight 32. [40] F . Sabetghadam , H . P . Masiha ,
A . H . Sanatpour , Some coupled fixed point theorems in cone
metric space , Fixed Point Theory Appl . 2009 ( 2009 ) , Article ID 1 25426 , 8 pp . [ 41 ] B .
Samet, Coupled fixed point theorems for a generalized Meir - Keeler contraction in partial ly
ordered\ metric\ spaces , Nonlinear Anal . 72 ( 20 10 ) , 4508-45 17 . [ \mathbf{42} ] W . Shatanawi ,
Partially ordered cone metric spaces and coupled fixed point results , Comput .
Math . Appl . 60 (2010), 2508 – 251 5 . [ 43 ] Wei - Shih Du , A note on cone metric fixed point
theory and its equivalence , Nonlinear Anal .
                                   72 (2009), 2259 – 2261.
( received 25 \cdot 5 \cdot 201 \cdot 1 ; in revised form 7 \cdot 1 \cdot 2 \cdot 201 \cdot 1 ; available online 1 \cdot 5 \cdot 3 \cdot 20 \cdot 1 \cdot 2 )
Nguyen Van Luong , Department of Natural Sciences , Hong Duc University , Thanh Hoa , Vietnam
E - mail : luongk 6\mathtt{a}-\mathtt{h} d 4@\mathtt{y}^{\mathtt{h}-\mathtt{a}} oo . com ,
                                                           luonghdu @ gmai l . com
Nguyen Xuan Thuan , Department of Natural Sciences , Hong Duc University , Thanh Hoa , Vietnam
E - mail: thu a-n-n x 7@ gmail. com K.P.R. Rao, Department of Applied
Mathematics, Acharya Nagarjuna Univertsity - Dr. M. R. Appa
Row Campus , Nuzvid - 52 1 20 1 , Krishna District , Andhra Pradesh , India
E - mail : kprrao 2004@y^{a-h} oo . com
```