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A GENERALIZATION OF FIXED POINT THEOREMS
IN S— METRIC SPACES
Shaban Sedghi , Nabi Shobe and Abdelkrim Aliouche

Abstract . In this paper , we introduce S— metric spaces and give some of their properties

Also we prove a fixed point theorem for a self - mapping on a complete S— metric space .
1. Introduction

Metric spaces are very important in mathematics and applied sciences .  So , some
authors have tried to give generalizations of metric spaces in several ways . For

example , G @ hler [ 3 ] and Dhage [ 2 ] introduced the concepts of 2 - metric spaces
and

D— metric spaces , respectively , but some authors pointed out that these attempts

are not valid (see [6 -10]) .
Mustafa and Sims [ 4 | introduced a new structure of generalized metric spaces
which are called G— metric spaces as a generalization of metric spaces (X,d) to
develop and introduce a new fixed point theory for various mappings in this new
structure .  Some authors [ 1, 5, 1 3 ] have proved some fixed point theorems in
these
spaces .
Recently , Sedghi et al . [ 1 2] have introduced D*— metric spaces which is a prob -
able modification of the definition of D— metric spaces introduced by Dhage [ 2 |
and
proved some basic properties in D*— metric spaces , (see [11,12]).

In the present paper , we introduce the concept of S— metric spaces and give some of
their properties .  Then a common fixed point theorem for a self - mapping on complete
S— metric spaces is given .

We begin with the following definitions :

DEFINITION 1 . 1. [4] Let X be a nonempty set and G : X x X x X — [0,00)

be a function satisfying the following conditions for all z,y, z,a € X,

G(z,y,z) =0ifx =y = z, (G1)

(G2 0<G(z,z,y) for all z,y € X with x # v,
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Fixed point theorems in .S— metric spaces 259 ( G 3) G(x,x,y) < G(m,y,z) for all
z,y,z € X with z # y,

G(‘r’ywz) = G(.’E,Z,y) = G(yvzam) =5 (G4)

(G5 G(z,y,2) <G(z,a,a)+ G(a,y,z) for all z,y,z,a € X.
Then the function G is called a generalized metric or a G— metric on X and the

pair
(X, Q) is called a G— metric space .
We can find some examples and basic properties of G— metric spaces in Mustafa
and Sims [ 4] .
DEFINITION 1 . 2 [12] Let X be a nonempty set . A generalized metric ( or
D*—

metric ) on X is a function :  D* : X3 — R* that satisfies the following conditions

foreachx, y, z,a € X.
(1) D*(w,y,z) =20,

(2) D*(z,y,z)=0ifandonlyif x =y =2, (3) D*(z,y,z) = D*(p{z,y, 2}), (
symmetry ) , where p is a permutation function ,

The pair (X, D*) is called a generalized metric ( or D*— metric ) space . Immediate
examples of such functions are :

(a)D*(x,y, 2) = max{d(z,y),d(y, 2),d(z,2)},
(b)D*(z,y, 2) = d(z,y) + d(y,z) + d(2, 7).

Here , d is the ordinary metric on X. (¢ ) If X = R"™ then we define

D,y 2) =lle+y -2z [+ |le+z=2y|[+[ly+2z-2z]].
(d)If X =R" then we define

D*(,CC, Y, Z) = {Omax{xa Y, Z} OtherWiseffxzyzza
REMARK 1.3. It is easy to see that every G— metric is a D*— metric , but
in
general the converse does not hold , see the following example .
ExaMPLE 1 . 4 . If X =R, we define

D*(z,y,2)=|lz+y—2z|+|z+2—-2y|+|y+z—22].

Tt is easy to see that (R, D*) is a D*— metric , but it is not G— metric . Set
T =35,
y = —5 and z = 0 then G(z,z,y) < G(z,y, z) does not hold .
Now , we introduce the concept of S— metric spaces which modifies D— metric
and G— metric spaces .
2. S - metric spaces
We begin with the following definition .
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DEFINITION 2 . 1 . Let X be a nonempty set .  An S— metric on X is a
function
S : X3 — [0,00) that satisfies the following conditions , for each x,y,z,a € X,

S(z,y,2) >0, (1)

(2) S<x7ya Z) = 0 lf and Only lf r=9y=z,

S(z,y,2) < S(z,x,a) + S(y,y,a) + S(z,2,a) (3)

The pair (X, 5) is called an S— metric space .
Immediate examples of such S— metric spaces are :

(1) Let X =R™and | -] a norm on X, then
Sy, 2) =lly+z=-2z| + Jy—=z]|

isan S—metricon X. (2) Let X =R"™and|| -| anormon X, then S(z,y,z) =|
r—z| +|ly—=z]|isan

S — metriconX.

(3) Let X be a nonempty set ,d is ordinary metric on X, then S(x,y,z) = d(x, z)+
d(y,z) is an S— metric on X.
REMARK 2 . 2 . It is easy to see that every D*— metric is S— metric , but in
general the converse is not true , see the following example .
EXAMPLE 2 . 3 . Let X =R and || | anorm on X, then
S(x,y,2) =y +2—
2z || + || y—z || is S— metric on X, but it is not D*— metric because it is not symmetric

EXAMPLE 2. 4. [ intuitive geometric example for S— metric | Let
X = R? d
is an ordinary metric on X, therefore , S(z,y,z) =d(z,y)+d(z,2)+d(y,z) is
an S— metric on X. If we connect the points x,y, z by a line , we have a triangle and
if we choose a point a mediating this triangle then the inequality S(z,y, z) <
S(z,z,a) + S(y,y,a) + S(z, z,a) holds . In fact

S(x’yv Z) = d(x,y) + d(aj7 Z) + d(yr Z)
<d(z,a)+d(a,y) + d(z,a) + d(a,z) + d(y,a) + d(a, z)
= S(z,x,a) + S(y,y,a) + S(z, z,a).

LEMMA 2 . 5. In an S— metric space , we have S(x,z,y) = S(y,y,x). Proof .
By the third condition of S— metric , we get

Sz, x,y) < S(w,w,x) + 5, 2,2) + S(y,y,2) = S(y, y, ) (1)

and similarly

S(y,y,x) < S(y,y,y) + Sy, y,9) + S(x,z,y) = S(x,2,y). (2)

Hence , by (1) and (2 ), we obtain S(z,z,y) = S(y, y, ).



DEFINITION 2 . 6 . Let (X, S) be an S— metric space .  For r >0 and z € X
we
define the open ball Bg(x,r) and closed ball Bg[z,r] with a center z and a radius r as
follows :

BS(Z’,?”) = {yGX : S(y,y,m) <T‘},
Bglz,r]={ye X : S(y,y,x) < r}.
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Denote S(z,y,2) =|y+2z—2z |+ |y — 2| for all

z,y, 2z € R.Therefore
Bs(1,2) ={yeR:S(y,y,1) <2} ={y e R:|y—1|<1} =(0,2).

DEFINITION 2 . 8 . Let (X,S) be an S— metric space and A C X. (1) If for every
2 € A there exists r > 0 such that Bg(x,r) C A, then the subset

A is called an open subset of X. (2) A subset A of X is said to be S— bounded if
there exists » > 0 such that

S(z,x,y) < rforallz,y € A.

3) A sequence {z,} in X converges to z if and only if S(z,,2n,z) — 0 as n —
oo. That is for each ¢ > 0 there exists ng € N such that for all n > ny,
S(xp, xn, ) < e and we denote this by lim, e z, = .

(4) A sequence {z,} in X is called a Cauchy s equence if for each € > 0, there
exists ng € N such that S(z,, z,, z,) < € for each n,m > ng.
(5) The S— metric space (X, S) is said to be complete if every Cauchy sequence is
convergent .
(6) Let 7 be the set of all A € X with x € A if and only if there exists r > 0 such
that Bg(x,r) C A. Then 7 is a topology on X ( induced by the S— metric S).
LEMMA 2. 9. Let (X,S) be an S— metric space . If r>0and

z e X, then the
ball Bg(x,r) is an open subset of X.

Proof . Letyé€ Bg(xz,r), hence S(y,y,x) <r. Ifwesetd=S(x, x,y)and
r'= r—2§ then we prove that Bg(y,r’") C Bg(xz,r). Let z € Bs(y,r’), therefore ,
S(z,z,y) < r'. By the third condition of S— metric we have

S(z,z,2) < S(z,2,y) + S(2,2,9) + S(z,2,y) <2 +d =7
andsoBgs(y,r") C Bg(z,7).

LEMMA 2. 10 . Let (X,S) bean S— metric space . If the s equence
{z,} n X
converges to x, then x is unique .
Proof . Let {x,} convergestoz andy. Then for eache > 0 there
exist
ni1,no € Nsuchthat
n>ny = S(xn, p,x) < €2
and
n>ng = S(tn,Tn,y) < e2.
If set ng = max {ny,no}, therefore for every n > ngy and the third condition of S—

metric we get

S(x,x,y) <2S5(x,x,2n) + Sy, y, ) <242 =¢.
Hence S(z,z,y) =0 and so z = y.
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LEMMA 2. 11 . Let (X,S) bean S— metric space . If th e s equence
{z,} n X
converges to x, then {x,} is a Cauchy s equence .
Proof .  Since lim,, s, x, = x then for each € > 0 there exists nq,no € N such
that
n>ny = S, xn,x) < cd
and
m > ns = S(Tm, T, ) < 2.
If we set ng = max {nj,na}, therefore for every n,m > ny we get by the third

condition of S— metric

S(Tn, Tn, Tm) < 25T, Tpny ) + STy T, ) < €2+ €2 =¢.

Hence , {x,} is a Cauchy sequence .

LEMMA 2 .1 2. Let (X,S) be an S— metric space . If there exist s
equences {x,}
and {yn} such that lim, o 2, = x and lim, o yn =y, th en lim, o S(zn, Tn,yn) =

S(z,z,y).

Proof .  Since lim,, s, z, = x and lim,, ., yn = y, then for each € > 0 there exist
ni1,n2 € N such that
Vn>ny, S(xn,x,, ) <ed

and

Yn > ns, S(yn,yn,y) < e4.
If set ng = max {ny,na}, therefore for every n > ny we get by the third condition of S—
metric
S(@n, Tn,yn) < 28(xn, T, ) + S(yn, yn, z)
< 28(xn, an, x) + 28(yn, yn, y) + S(@, 2, y)
<e2+e2+ Sz, z,y) =+ S(z,z,y).

Hence we obtain

S(Xn, Tpyyn) — Sz, z,y) < e (3)
On the other hand , we get
S(x,z,y) <28z, @, 20) + S(Y, Y, )
< 25(3771‘71'71) + 25(y7y, yn) + S(xn, Tn,yn)
<e24e2+4 S(xn,xn,yn) =+ S(xn, xn,yn),
that is



S(z,z,y) = S(xn, 2n,yn) <e (4)
Therefore by relations ( 3 ) and ( 4 ) we have | S(x,, Zn,yn) — S(z,x,y) |< €, that is
lim S(z,,xn,yn) = S(z,z,y).

n—oo

DEFINITION 2 . 1 3 . Let (X,S) be an S— metric space . A map F: X - X
is said to be a contraction if there exists a constant 0 < L < 1 such that

S(F(x), F(z), F(y)) < LS(z,z,y),forall z,y € X.
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3. A generalization of fixed point theorems in S - metric spaces
Note that a contraction map is necessarily continuous because if x,, — x in
the above condition we get F(x,) — F(x).
For notational purposes we define F™(z),z € X and n € {0,1,2, ...}, induc -
tively by FO(x) = x and F"*l(x) = F(F"(x)).
The first result in this section is known as a similar Banach ’ s contraction principle .

THEOREM 3 . 1. Let (X,S) be a complete S— metric space and F: X — X
be a

contraction . Then F has a unique fixed point uw € X. Furthermore , for any = € X
we have lim,, o F™(x) = u with
S(F"(x), F"(x),u) < 122" L5, F(2)),
Proof . First , we show the uniqueness .  Suppose that there exist =,y € X with

x = F(z)andy = F(y).Then
S(z,z,y) = S(F(x), F(z), F(y)) < LS(x,x,y)
and .. S(z,z,y) = 0.
To show the existence , we select € X and show that {F"(x)} is a Cauchy sequence

. Forn=0,1, ..., we get by induction

S(F™(x), F"(x), F""}(2)) < LS(F"~ (@), "~ (2), F"(x))

< L"S(z,x, F(x)).
Thus for m > n we have

S(E"(z), F" (x), " (2))

m—2
<2) S(Fi(x), F'(x), F' (2)) + S(F™ (@), F" (@), F™(x))
m_—2

<2 Z L'S(x,x, F(z)) + L™ 'S(z,z, F(x))
t1=n
<2L"S(z,x, F(x))14+ L+ L* +- -]
<12L"LS(z,x, F(z)).

That is for m > n,

S(F™(x), F"(z), F™(z)) < 12L"LS(z, z, F(x)). (5)
This shows that {F™(x)} is a Cauchy sequence and since X is complete there exists

u € X with lim,,_, F"(x) = u. Moreover , the continuity of F' yields

w= lim F""(2) = lim F(F"(x)) = Fu.

n—oo n—o0
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m — oo in ( 5 ) we obtain

S(F™(z), F™(x),u) < 12L" L@ F(x)).

EXAMPLE 3 . 2. Let X = R, then S(x,y,2)=|z—z|+|y—z]|isan S—
metric
on X. Define a self - map F on X by : F(x) = 2! sin 2. We have
S(Fz,Fx, Fy) =| 2'( sin x— sin y) | + | 2!( sin z— sin y) |

<2(lz—yl+|e—yl)=2""ay)

for every z,y € X. Furthermore , for any € X we have lim,,_, o, F™(z) = 0 with

S(F™(x), F™(x),0) < 12" L@ F(x)), L = 2'.
It follows that all conditions of Theorem 3 . 1 hold and there exists ©« = 0 € X such

thatu = Fu.

THEOREM 3. 3. Let (X,S) be a compact S— metric space with

F X=X
satisfying
S(F(x),F(z),F(y)) < S(z,z,y) forall x,y€ X and x #y. Then F hasa
unique fized point in X.

Proof . The uniqueness part is easy .  To show the existence , notice that the
map  — S(x,z, F(x)) attains its minimum , say at xo € X. We have xg = F(z0)
since otherwise

S(F(F(x0)), F(F(x0)), F(x0)) < S(F(x0), F(20), 20) = S(x0, %o, F(20))

which is a contradiction .
Next , we present a lo cal version of Banach ’ s contraction principle . THEOREM 3 . 4
Let (X,S) be a complete S— metric space and le ¢

Bs(zg,7) ={z € X : S(z,z,20) < r},where x9 € Xand r > 0.

Suppose that F : Bg(xg,r) — X is a contraction with

S(F(x0), F(xo),x0) < (1 — L)r2.

Then F has a unique fized point in Bg(xq,r).

Proof . Thereexists g with0O < rg < 7 such that
S(F(xo), F(z0),20) <
(1 —=L)rg2. We will show that F': Bg(zo,r0) = Bs(zo,70). To see this , note that

ifr € Bg(zg, o), then
S(zo, zo, F(x)) < 25(x0, 0, F(x0)) + S(F(x0), F(zo), F(x))
< 2(1 — L)ro2 4+ LS(xg,x0,x) < 1.
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deduce that F' has a unique fixed point in
Bg(zo,70) C Bs(xo,T). Again , it is easy to see that F' has only one fixed point in

Bg(zo,7).

Next , we examine briefly the behavior of a contractive map defined on Bg(r) =
Bs (0, 7)( the closed ball of radius r with centre 0 ) with values in Banach space E. More
general results will be presented in the next theorem .

THEOREM 3. 5. Let (X,S) bea complete S— metric space with
S(z,y,2) =lz—y || + || y—=2 1 and let Bg(r) be the clos ed ball of radius
r > 0, central at zero in Banach space E with F : Bg(r) — E a contraction and
F(0Bg(r)) € Bg(r). Then F has a unique fized point in Bg(r).

Proof .  Consider G(x) =z + 2. We first show that G : Bs(r) — Bs(r).
To see this , let

¥ =r|x

|| where x € Bg(r)and z # 0.
Now if x € Bg(r) and x # 0, we have

S(F(z),F(2),F(2*) = | F(z) — F(e*) |< LS(z,2,a") =L ||z —a" |
=L |z—r|a®| [=Llr—[=])
Hence
| F) | < [F@E@)| + [F@)-F@)[<r+Lir— [z])<2r—|z|

Then for x € Bg(r) and x # 0

- F
|G@) || =lz+2"@ < ||+ s <r

In fact by the continuity of G we get || G(0) || < r, and consequently G : Bg(r) —
Bg(r). Moreover G : Bg(r) — Bg(r) is a contraction because

| G(x)—G) |I< llz—yl +2Lflz—yl=0+2L)|z—y].

Theorem 3 . 1 implies that G has a unique fixed point in v € Bg(r) and so u = Fu.
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