64, 3 (20 1 2), 258 - 266 research paper September 20 1 2

A GENERALIZATION OF FIXED POINT THEOREMS IN S- METRIC SPACES

Shaban Sedghi, Nabi Shobe and Abdelkrim Aliouche

Abstract . In this paper , we introduce S- metric spaces and give some of their properties

Also we prove a fixed point theorem for a self - mapping on a complete $\,\,S-\,$ metric space .

1. Introduction

Metric spaces are very important in mathematics and applied sciences . So , some authors have tried to give generalizations of metric spaces in several ways . For

example , G \ddot{a} hler [3] and Dhage [2] introduced the concepts of 2 - metric spaces and

D- metric spaces , respectively , but some authors pointed out that these attempts are not valid (see [$6-1\ 0$]) .

Mustafa and Sims [4] introduced a new structure of generalized metric spaces which are called G- metric spaces as a generalization of metric spaces (X,d) to develop and introduce a new fixed point theory for various mappings in this new structure . Some authors [1,5,13] have proved some fixed point theorems in these

spaces.

Recently , Sedghi et al . [1 2] have introduced D^*- metric spaces which is a probable modification of the definition of D- metric spaces introduced by Dhage [2] and

proved some basic properties in D^* – metric spaces , (see [1 1 , 1 2]) .

In the present paper , we introduce the concept of S- metric spaces and give some of their properties . Then a common fixed point theorem for a self - mapping on complete S- metric spaces is given .

We begin with the following definitions:

DEFINITION 1 . 1 . [4] Let X be a nonempty set and $G: X \times X \times X \to [0, \infty)$ be a function satisfying the following conditions for all $x, y, z, a \in X$,

$$G(x, y, z) = 0if x = y = z, \tag{G1}$$

(G2) 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$,

201 0 AMS Subject Classification : 54 H 25 ; 47 H 10 .

Keywords and phrases : S- metric space; fixed point . 258

Fixed point theorems in S- metric spaces 259 (G 3) $G(x,x,y) \leq G(x,y,z)$ for all $x,y,z \in X$ with $x \neq y$,

$$G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots,$$
 (G4)

(G 5) $G(x, y, z) \le G(x, a, a) + G(a, y, z)$ for all $x, y, x, a \in X$.

Then the function G is called a $generalized\ metric$ or a $G-\ metric$ on X and the pair

(X,G) is called a G- metric space.

We can find some examples and basic properties of G- metric spaces in Mustafa and Sims [4].

DEFINITION 1 . 2 $\,$ [1 2] Let X be a nonempty set . A generalized metric (or D^*-

metric) on X is a function : $D^*: X^3 \to \mathbb{R}^+$ that satisfies the following conditions

$${\rm for each} x,y,z,a\in X.$$

(1)
$$D^*(x, y, z) > 0$$
,

(2) $D^*(x, y, z) = 0$ if and only if x = y = z, (3) $D^*(x, y, z) = D^*(p\{x, y, z\})$, (symmetry), where p is a permutation function,

(4)
$$D^*(x, y, z) \le D^*(x, y, a) + D^*(a, z, z)$$
.

The pair (X, D^*) is called a generalized metric (or D^*- metric) space . Immediate examples of such functions are :

(a)
$$D^*(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\},\$$

(b) $D^*(x, y, z) = d(x, y) + d(y, z) + d(z, x).$

Here, d is the ordinary metric on X. (c) If $X = \mathbb{R}^n$ then we define

$$D^*(x,y,z) = \mid\mid x+y-2z\mid\mid +\mid\mid x+z-2y\mid\mid +\mid\mid y+z-2x\mid\mid.$$
 (d) If $X=\mathbb{R}^+$ then we define

$$D^*(x, y, z) = \{0_{\text{max}}\{x, y, z\} \text{ otherwise}^{\text{if } x = y =} z,$$

Remark 1. 3 . It is easy to see that every G- metric is a D^*- metric , but in

general the converse does not hold, see the following example.

EXAMPLE 1 . 4 . If $X = \mathbb{R}$, we define

$$D^*(x, y, z) = |x + y - 2z| + |x + z - 2y| + |y + z - 2x|.$$

It is easy to see that (\mathbb{R}, D^*) is a D^*- metric , but it is not G- metric . Set x=5.

y = -5 and z = 0 then $G(x, x, y) \le G(x, y, z)$ does not hold.

Now , we introduce the concept of S- metric spaces which modifies D- metric and G- metric spaces .

2. S - metric spaces

We begin with the following definition .

260 Sh. Sedghi, N. Shobe, A. Aliouche

Definition 2 . 1 . Let X be a nonempty set . An S- $metric\,$ on X is a function

 $S: X^3 \to [0, \infty)$ that satisfies the following conditions , for each $x, y, z, a \in X$,

$$S(x, y, z) \ge 0, (1)$$

(2) S(x, y, z) = 0 if and only if x = y = z,

$$S(x, y, z) \le S(x, x, a) + S(y, y, a) + S(z, z, a)$$
(3)

The pair (X, S) is called an S- metric space.

Immediate examples of such S- metric spaces are :

(1) Let $X = \mathbb{R}^n$ and $\|\cdot\|$ a norm on X, then $S(x,y,z) = \|y+z-2x\| + \|y-z\|$ is an S- metric on X. (2) Let $X = \mathbb{R}^n$ and $\|\cdot\|$ a norm on X, then $S(x,y,z) = \|x-z\| + \|y-z\|$ is an

$$S - \text{metricon}X$$
.

(3) Let X be a nonempty set , d is ordinary metric on X, then S(x,y,z) = d(x,z) + d(y,z) is an S- metric on X.

Remark 2 . 2 . It is easy to see that every D^* – metric is S – metric , but in general the converse is not true , see the following example .

EXAMPLE 2 . 3 . Let $X=\mathbb{R}^n$ and $\|\cdot\|$ a norm on X, then $S(x,y,z)=\|y+z-2x\|+\|y-z\|$ is S- metric on X, but it is not D^*- metric because it is not symmetric

. Example 2 . 4 . [intuitive geometric example for S- metric] Let $X \ = \ \mathbb{R}^2, \ d$

is an ordinary metric on X, therefore, S(x,y,z) = d(x,y) + d(x,z) + d(y,z) is an S- metric on X. If we connect the points x,y,z by a line, we have a triangle and if we choose a point a mediating this triangle then the inequality $S(x,y,z) \leq S(x,x,a) + S(y,y,a) + S(z,z,a)$ holds. In fact

$$S(x, y, z) = d(x, y) + d(x, z) + d(y, z)$$

$$\leq d(x, a) + d(a, y) + d(x, a) + d(a, z) + d(y, a) + d(a, z)$$

$$= S(x, x, a) + S(y, y, a) + S(z, z, a).$$

Lemma 2 . 5 . In an S- metric space , we have S(x,x,y)=S(y,y,x). Proof . By the third condition of S- metric , we get

$$S(x, x, y) \le S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x)$$
(1)

and similarly

$$S(y, y, x) \le S(y, y, y) + S(y, y, y) + S(x, x, y) = S(x, x, y).$$
(2)

Hence, by (1) and (2), we obtain S(x, x, y) = S(y, y, x).

Definition 2 . 6 . Let (X,S) be an S- metric space . For r>0 and $x\in X$ we

define the open ball $B_S(x,r)$ and closed ball $B_S[x,r]$ with a center x and a radius r as follows :

$$B_S(x,r) = \{ y \in X : S(y,y,x) < r \},$$

$$B_S[x,r] = \{ y \in X : S(y,y,x) \le r \}.$$

Fixed point theorems in S- metric spaces 26 1 EXAMPLE 2 . 7 . Let $X=\mathbb{R}$. Denote $S(x,y,z)=\mid y+z-2x\mid +\mid y-z\mid$ for all

 $x, y, z \in \mathbb{R}$. Therefore

$$B_S(1,2) = \{ y \in \mathbb{R} : S(y,y,1) < 2 \} = \{ y \in \mathbb{R} : |y-1| < 1 \} = (0,2).$$

DEFINITION 2 . 8 . Let (X, S) be an S- metric space and $A \subset X$. (1) If for every $x \in A$ there exists r > 0 such that $B_S(x, r) \subset A$, then the subset

A is called an open subset of X. (2) A subset A of X is said to be S- bounded if there exists r > 0 such that

$$S(x, x, y) < r \text{forall } x, y \in A.$$

- (3) A sequence $\{x_n\}$ in X converges to x if and only if $S(x_n, x_n, x) \to 0$ as $n \to \infty$. That is for each $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $S(x_n, x_n, x) < \varepsilon$ and we denote this by $\lim_{n \to \infty} x_n = x$.
- (4) A sequence $\{x_n\}$ in X is called a Cauchy s equence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $S(x_n, x_n, x_m) < \varepsilon$ for each $n, m \ge n_0$.
- (5) The S- metric space (X,S) is said to be ${\it complete}$ if every Cauchy sequence is convergent .
- (6) Let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exists r > 0 such that $B_S(x,r) \subset A$. Then τ is a topology on X (induced by the S- metric S).

Lemma 2 . 9 . Let (X,S) be an S- metric space . If r>0 and $x\in X,$ then the

ball $B_S(x,r)$ is an open subset of X.

Proof . Let $y \in B_S(x,r)$, hence S(y,y,x) < r. If we set $\delta = S(x,x,y)$ and $r' = r-2\delta$ then we prove that $B_S(y,r') \subseteq B_S(x,r)$. Let $z \in B_S(y,r')$, therefore, S(z,z,y) < r'. By the third condition of S— metric we have

$$S(z, z, x) \le S(z, z, y) + S(z, z, y) + S(x, x, y) < 2r' + \delta = r$$

andso $B_S(y, r') \subseteq B_S(x, r)$.

Lemma 2 . 1 0 . Let (X,S) be an S- metric space . If the s equence $\{x_n\}$ in X converges to x, then x is unique .

Proof . Let $\{x_n\}$ converges to x and y. Then for each $\varepsilon > 0$ there exist

$$n_1, n_2 \in \mathbb{N}$$
suchthat

$$n \ge n_1 \Longrightarrow S(x_n, x_n, x) < \varepsilon 2$$

and

$$n \ge n_2 \Longrightarrow S(x_n, x_n, y) < \varepsilon 2.$$

If set $n_0 = \max\{n_1, n_2\}$, therefore for every $n \ge n_0$ and the third condition of Smetric we get

$$S(x, x, y) \le 2S(x, x, x_n) + S(y, y, x_n) < \varepsilon 2 + \varepsilon 2 = \varepsilon.$$

Hence S(x, x, y) = 0 and so x = y.

262 Sh. Sedghi, N. Shobe, A. Aliouche

Lemma 2 . 1 1 . Let (X,S) be an S- metric space . If the s equence $\{x_n\}$ in X

converges to x, then $\{x_n\}$ is a Cauchy's equence.

Proof . Since $\lim_{n\to\infty}x_n=x$ then for each $\varepsilon>0$ there exists $n_1,n_2\in\mathbb{N}$ such that

$$n \ge n_1 \Rightarrow S(x_n, x_n, x) < \varepsilon 4$$

and

$$m \ge n_2 \Rightarrow S(x_m, x_m, x) < \varepsilon 2.$$

If we set $n_0 = \max\{n_1, n_2\}$, therefore for every $n, m \geq n_0$ we get by the third condition of S— metric

$$S(x_n, x_n, x_m) \le 2S(x_n, x_n, x) + S(x_m, x_m, x) < \varepsilon 2 + \varepsilon 2 = \varepsilon.$$

Hence, $\{x_n\}$ is a Cauchy sequence.

LEMMA 2 . 1 2 . Let (X,S) be an S- metric space . If there exist s equences $\{x_n\}$

and $\{yn\}$ such that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} S(x_n, x_n, y_n) = x$

$$S(x, x, y)$$
.

Proof . Since $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} yn = y$, then for each $\varepsilon > 0$ there exist $n_1, n_2 \in \mathbb{N}$ such that

$$\forall n \geq n_1, \quad S(x_n, x_n, x) < \varepsilon 4$$

and

$$\forall n \geq n_2, \quad S(yn, yn, y) < \varepsilon 4.$$

If set $n_0 = \max\{n_1, n_2\}$, therefore for every $n \ge n_0$ we get by the third condition of S-metric

$$S(x_n, x_n, y_n) \le 2S(x_n, x_n, x) + S(y_n, y_n, x)$$

 $\le 2S(x_n, x_n, x) + 2S(y_n, y_n, y) + S(x, x, y)$
 $< \varepsilon 2 + \varepsilon 2 + S(x, x, y) = \varepsilon + S(x, x, y).$

Hence we obtain

$$S(x_n, x_n, y_n) - S(x, x, y) < \varepsilon \tag{3}$$

On the other hand, we get

$$S(x, x, y) \le 2S(x, x, x_n) + S(y, y, x_n)$$

$$\le 2S(x, x, x_n) + 2S(y, y, y_n) + S(x_n, x_n, y_n)$$

$$< \varepsilon^2 + \varepsilon^2 + S(x_n, x_n, y_n) = \varepsilon + S(x_n, x_n, y_n),$$

that is

$$S(x, x, y) - S(x_n, x_n, y_n) < \varepsilon \tag{4}$$

Therefore by relations (3) and (4) we have $\mid S(x_n,x_n,y_n)-S(x,x,y)\mid<\varepsilon,$ that is

$$\lim_{n \to \infty} S(x_n, x_n, yn) = S(x, x, y).$$

DEFINITION 2 . 1 3 . Let (X,S) be an S- metric space . A map $F:X\to X$ is said to be a contraction if there exists a constant $0\le L<1$ such that

$$S(F(x),F(x),F(y)) \leq LS(x,x,y), \text{for all} \quad x,y \in X.$$

3. A generalization of fixed point theorems in S - metric spaces

Note that a contraction map is necessarily continuous because if $x_n \to x$ in the above condition we get $F(x_n) \to F(x)$.

For notational purposes we define $F^n(x), x \in X$ and $n \in \{0, 1, 2, ...\}$, inductively by $F^0(x) = x$ and $F^{n+1}(x) = F(F^n(x))$.

The first result in this section is known as a similar Banach's contraction principle.

Theorem 3 . 1 . Let (X,S) be a complete S- metric space and $F:X\to X$ be a

contraction. Then F has a unique fixed point $u \in X$. Furthermore, for any $x \in X$ we have $\lim_{n\to\infty} F^n(x) = u$ with

$$S(F^{n}(x), F^{n}(x), u) \le 1^{2L^{n}} L^{S(x, x)} F(x).$$

Proof . First , we show the uniqueness . Suppose that there exist $x, y \in X$ with

$$x = F(x) \text{and} y = F(y). \text{Then}$$

$$S(x, x, y) = S(F(x), F(x), F(y)) \le LS(x, x, y)$$
 and $\therefore S(x, x, y) = 0$.

To show the existence , we select $x \in X$ and show that $\{F^n(x)\}$ is a Cauchy sequence . For $n=0,1,\ldots$, we get by induction

$$S(F^{n}(x), F^{n}(x), F^{n+1}(x)) \le LS(F^{n-1}(x), F^{n-1}(x), F^{n}(x))$$

. .

$$\leq L^n S(x, x, F(x)).$$

Thus for m > n we have

$$\begin{split} S(F^{n}(x),F^{n}(x),F^{m}(x)) & m-2 \\ \leq 2\sum S(F^{i}(x),F^{i}(x),F^{i+1}(x)) + S(F^{m-1}(x),F^{m-1}(x),F^{m}(x)) \\ & i=n \\ & m-2 \\ \leq 2\sum L^{i}S(x,x,F(x)) + L^{m-1}S(x,x,F(x)) \\ & i=n \\ \leq 2L^{n}S(x,x,F(x))[1+L+L^{2}+\cdots] \\ \leq 1^{2}L^{n}LS(x,x,F(x)). \end{split}$$

That is for m > n,

$$S(F^{n}(x), F^{n}(x), F^{m}(x)) \le 1^{2L^{n}} LS(x, x, F(x)).$$
(5)

This shows that $\{F^n(x)\}$ is a Cauchy sequence and since X is complete there exists $u \in X$ with $\lim_{n\to\infty} F^n(x) = u$. Moreover, the continuity of F yields

$$u = \lim_{n \to \infty} F^{n+1}(x) = \lim_{n \to \infty} F(F^n(x)) = Fu.$$

Sh. Sedghi, N. Shobe, A. Aliouche Therefore, u is a fixed point of F. Finally letting $m \to \infty$ in (5) we obtain

$$S(F^{n}(x), F^{n}(x), u) \le 1^{2L^{n}} L^{S(x, x}, F(x)).$$

Example 3 . 2 . Let X = R, then S(x, y, z) = |x - z| + |y - z| is an Smetric

on X. Define a self - map F on X by : $F(x) = 2^1 \sin x$. We have

$$S(Fx, Fx, Fy) = |2^{1}(\sin x - \sin y)| + |2^{1}(\sin x - \sin y)|$$

$$\leq 2^{1}(|x-y|+|x-y|)=2^{1S(x,x,y)}$$

for every $x, y \in X$. Furthermore, for any $x \in X$ we have $\lim_{n \to \infty} F^n(x) = 0$ with

$$S(F^{n}(x), F^{n}(x), 0) \le 1^{2L^{n}} L^{S(x, x}, F(x)), L = 2^{1}.$$

It follows that all conditions of Theorem 3 . 1 hold and there exists $u=0\in X$ such

that
$$u = Fu$$
.

3.3. Let (X, S) be a compact S- metric space with Theorem $F: X \to X$ satisfying

S(F(x), F(x), F(y)) < S(x, x, y) for all $x, y \in X$ and $x \neq y$. Then F has a unique fixed point in X.

Proof . The uniqueness part is easy . To show the existence, notice that the map $x \mapsto S(x, x, F(x))$ attains its minimum, say at $x_0 \in X$. We have $x_0 = F(x_0)$ since otherwise

$$S(F(F(x_0)), F(F(x_0)), F(x_0)) < S(F(x_0), F(x_0), F(x_0)) = S(x_0, x_0, F(x_0))$$

which is a contradiction.

Next, we present a local version of Banach's contraction principle. Theorem 3.4 Let (X,S) be a complete S- metric space and let

$$B_S(x_0, r) = \{x \in X : S(x, x, x_0) < r\}, where \quad x_0 \in X \text{ and } r > 0.$$

Suppose that $F: B_S(x_0, r) \to X$ is a contraction with

$$S(F(x_0), F(x_0), x_0) < (1 - L)r2.$$

Then F has a unique fixed point in $B_S(x_0, r)$.

Proof . There exists r_0 with $0 \leq r_0 < r$ such that $S(F(x_0), F(x_0), x_0)$

 $(1-L)r_02$. We will show that $F: B_S(x_0,r_0) \to B_S(x_0,r_0)$. To see this , note that

if
$$x \in B_S(x_0, r_0)$$
, then
$$S(x_0, x_0, F(x)) \le 2S(x_0, x_0, F(x_0)) + S(F(x_0), F(x_0), F(x))$$

$$\le 2(1 - L)r_0 + LS(x_0, x_0, x) \le r_0.$$

Fixed point theorems in S- metric spaces 265 We can now apply Theorem 3 . 1 to deduce that F has a unique fixed point in

 $B_S(x_0, r_0) \subset B_S(x_0, r)$. Again, it is easy to see that F has only one fixed point in

$$B_S(x_0,r)$$
.

Next, we examine briefly the behavior of a contractive map defined on $B_S(r) = B_S(0,r)$ (the closed ball of radius r with centre 0) with values in Banach space E. More general results will be presented in the next theorem.

THEOREM 3.5. Let (X,S) be a complete S- metric space with $S(x,y,z) = \|x-y\| + \|y-z\|$ and let $B_S(r)$ be the closed ball of radius r > 0, central at zero in Banach space E with $F: B_S(r) \to E$ a contraction and $F(\partial B_S(r)) \subseteq B_S(r)$. Then F has a unique fixed point in $B_S(r)$.

Proof . Consider $G(x) = x + 2^{F(x)}$. We first show that $G: B_S(r) \to B_S(r)$. To see this , let

$$x^* = r \parallel x^x \parallel$$
 where $x \in B_S(r)$ and $x \neq 0$.

Now if $x \in B_S(r)$ and $x \neq 0$, we have

$$S(F(x), F(x), F(x^*)) = || F(x) - F(x^*) || \le LS(x, x, x^*) = L || x - x^* ||$$
$$= L || x - r || x^x || || = L(r - || x ||)$$

Hence

$$|| F(x) || \le || F(x^*) || + || F(x) - F(x^*) || \le r + L(r - || x ||) < 2r - || x ||$$

Then for $x \in B_S(r)$ and $x \ne 0$

$$\parallel G(x) \parallel = \parallel x + 2^{F(x)} \parallel \leq \parallel x \parallel + \parallel_2^{F(x)} \parallel \leq r.$$

In fact by the continuity of G we get $||G(0)|| \le r$, and consequently $G: B_S(r) \to B_S(r)$. Moreover $G: B_S(r) \to B_S(r)$ is a contraction because

$$||G(x) - G(y)|| \le ||x - y|| + 2L ||x - y|| = (1 + 2L) ||x - y||.$$

Theorem 3 . 1 implies that G has a unique fixed point in $u \in B_S(r)$ and so u = Fu. REFERENCES

 $[\ \mathbf{1}\]$ R . Chugh , T . Kadian , A . Rani , B . E . Rhoades , Property $\ P$ in $\ G-$ metric spaces , Fixed Point

Theory Appl . Vol . 2010 , Article ID $40\ 1\ 684$.

 $[\ \mathbf{2}\]$ B . C . Dhage , Generalized metric spaces mappings with fixed point $\ ,$ Bull . Calcutta Math . Soc .

[$\bf 3$] S . G \ddot{a} hler , 2 - metrische R \ddot{a} ume und iher topoloische Struktur $\,$, Math . Nachr . $\bf 2~6$ (1~963) , 1 1 5 -

148 .

- [4] Z. Mustafa , B. Sims , A new approach to generalized metric spaces $\,$, J. Nonlinear Convex Anal . 7 (2006) , 289-297 .
- $[\ \mathbf{5}\]$ Z . Mustafa , H . Obiedat , F . Awawdeh , Some common fixed point theorems for mapping on

complete G-metric spaces, Fixed Point Theory Appl. Vol. 2008, Article ID 189870.

266 Sh. Sedghi, N. Shobe, A. Aliouche

 $[\ \mathbf{6}\]$ Z . Mustafa , A New Structure for Generalized Metric Spaces with Applications to Fixed Point

Theory , Ph . D . Thesis , The University of Newcastle , Callaghan , Australia , 2005 .

 $[\ 7\]$ Z . Mustafa , B . Sims , Some results concerning $\ D-\ metric\ spaces$, Proc . Internat . Conf . Fixed

Point Theory and Applications , pp . 189 - 1.98 , Valencia , Spain , 2003 .

[${\bf 8}$] S . V . R . Naidu , K . P . R . Rao , N . Srinivasa Rao , On the topology of $\ D-$ metric spaces and the

generation of $\,D-\,$ metric spaces from metric spaces $\,$, Internat . J . Math . Math . Sci . **2004** (2004) ,

No . 51 , 2719 - 2740 .

[9] S . V . R . Naidu , K . P . R . Rao , N . Srinivasa Rao , On the concepts of bal ls in a $\,$ D-metric space $\,$,

Internat . J . Math . Math . Sci . **2005** (2005) , 1 33 – 141 . [**10**] S . V . R . Naidu , K . P . R . Rao , N . Srinivasa Rao , On convergent sequences and fixed point theo -

rems in D- metric spaces , Internat . J . Math . Math . Sci . **2 5** (2005) , 1 969 – 1 988 . [**1 1**] S . Sedghi , K . P . R . Rao , N . Shobe , Common fixed point theorems for six weakly compatible mappings in D^*- metric spaces , Internat . J . Math . Math . Sci . 6 (2007) , 225 – 237 . [**12**] S . Sedghi , N . Shobe , H . Zhou , A common fixed point theorem in D^*- metric spaces , Fixed Point Theory Appl . Vol . 2007 , Article ID 27906 , 1 3 pages . [**13**] W . Shatanawi , F-i-x-ed point theory for contractive mappings satisfying $\Phi-$ maps in G- metric

 $spaces \;$, Fixed Point Theory Appl . Vol . 20 10 , Article ID 18 1 650 .

(received 10 . 2 . 201 1; in revised form 8 . 8 . 201 1; available online 10 . 9 . 20 1 1)

Shaban Sedghi , Department of Mathematics , Qaemshahr Branch , Islamic Azad University , Qaemshahr , Iran

E - mail : sedghi gh @ya-h oo . com , sedghi . gh @qaemsh^h-a r i au . ac . ir Nabi Shobe , Department of Mathematics , Islamic Azad University - Babol Branch , Iran E - mail : nabi shobe @ya-h oo . com Abdelkrim Aliouche , Department of Mathematics , University of Larbi Ben M ' Hidi Oum - El -

Bouaghi, 4000, Algeria E - mail: ali o u - m ath $@y^{h-a}$ oo . fr