66, 1(2014), 73-83 research paper

March 20 1 4

ON $\mathcal{I}-$ CONVERGENCE OF DOUBLE SEQUENCES IN THE TOPOLOGY INDUCED BY RANDOM 2 - NORMS Mehmet G \ddot{u} rdal and Mualla Birg \ddot{u} l Huban

Abstract . In this article we introduce the notion of $\mathcal{I}-$ convergence and $\mathcal{I}-$

Cauchyness of

double sequences in the topology induced by random 2 - normed spaces and prove some important results .

1. Introduction

Probabilistic metric (PM) spaces were first introduced by Menger [1 9] as a generalization of ordinary metric spaces and further studied by Schweizer and Sklar [26 , 27] . The idea of Menger was to use distribution function instead of non - negative real numbers as values of the metric , which was further developed by several other authors . In this theory , the notion of distance has a probabilistic nature . Namely , the distance between two points x and y is represented by a distribution function F_{xy} ; and for t>0, the value $F_{xy}(t)$ is interpreted as the probability that the distance from x to y is less than t. Using this concept , Serstnev [29] introduced the concept of probabilistic normed space , which provides an important method of generalizing the deterministic results of linear normed spaces , also having very useful applications in various fields , among which are continuity properties [1] , topological spaces [3] , linear operators [7] , study of boundedness [8] , convergence of random variables [9] , statistical and ideal convergence of probabilistic normed space or 2 - normed space [1 4 , 2 1 – 23 , 25 , 32] as well as many others .

The concept of 2 - normed spaces was initially introduced by G \ddot{a} hler [5 , 6] in the 1 960 's . Since then , many researchers have studied these subjects and obtained various results [1 0 – 1 3 , 28 , 3 1] .

P. Kostyrko et al. (cf. [17]; a similar concept was invented in [15]) introduced the concept of $\mathcal{I}-$ convergence of sequences in a metric space and studied some properties of such convergence. Note that $\mathcal{I}-$ convergence is an interesting generalization

201 0 AMS Subject Classification $\,:\,40$ A 35 , 46 A 70 , 54 E 70

 $\textit{Keywords and phrases} \quad : \quad t- \text{ norm} \text{ ; random 2 - normed space ; ideal convergence ; ideal } \\$ Cauchy

sequences; F – topology.

This work is supported by S \ddot{u} leyman Demirel University with Project 2947 - YL - 11. 73

of statistical convergence . The notion of statistical convergence of sequences of real numbers was introduced by H . Fast in $[\ 2\]$ and H . Steinhaus in $[\ 30\]$.

There are many pioneering works in the theory of $\mathcal{I}-$ convergence. The aim of this work is to introduce and investigate the idea of $\mathcal{I}-$ convergence and $\mathcal{I}-$ Cauchy of double sequences in a more general setting , i . e . , in random 2 - normed spaces .

2. Definitions and notations

First we recall some of the basic concepts, which will be used in this paper.

DEFINITION 1. [2, 4] A subset E of $\mathbb N$ is said to have density $\delta(E)$ if $\delta(E) = \lim_{n \to \infty} n^{-1} \sum_{k=1}^{n} \chi E(k) \text{ exists }.$ A number sequence $(x_n)_{n \in \mathbb N}$ is said to be statistically convergent to L if for every $\varepsilon > 0$, $\delta(\{n \in \mathbb N : |x_n - L| \ge \varepsilon\}) = 0$. If $(x_n)_{n \in \mathbb N}$ is statistically convergent to L we write st - $\lim x_n = L$, which is necessarily unique

Definition 2 . [1 6 , 1 7] A family $\mathcal{I} \subset 2^Y$ of subsets of a nonempty set Y is

said to be an ideal in Y if: $(i) \varnothing \in \mathcal{I}; (ii) A, B \in \mathcal{I} \text{ imply } A \cup B \in \mathcal{I}; (iii) A \in \mathcal{I}, B \subset A \text{ imply } B \in \mathcal{I}.$ A non-trivial ideal \mathcal{I} in Y is called an admissible ideal if it is different from $P(\mathbb{N})$ and it contains all singletons, $i \cdot e \cdot \{x\} \in \mathcal{I}$ for each $x \in Y$.

Let $\mathcal{I} \subset P(Y)$ be a non - trivial ideal . A class $\mathcal{F}(\mathcal{I}) = \{M \subset Y : \exists A \in \mathcal{I} : M = Y \setminus A\}$, called the filter associated with the ideal \mathcal{I} , is a filter on Y.

Definition 3 . [1 7 , 1 8] Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in $\mathbb{N}.$ Then a sequence

 $(x_n)_{n\in\mathbb{N}}$ in X is said to be $\mathcal{I}-$ convergent to $\xi\in X$, if for each $\varepsilon>0$ the set

$$||x_n - \xi|| \ge \varepsilon$$
} belongs to \mathcal{I} . $A(\varepsilon) = \{n \in \mathbb{N} :$

DEFINITION 4 . [5 , 6] Let X be a real vector space of dimension d, where $2 \leq d < \infty$. A 2 - norm on X is a function $\| \cdot, \cdot \| : X \times X \to \mathbb{R}$ which satisfies : (i) $\| x,y \| = 0$ if and only if x and y are linearly dependent ; (ii) $\| x,y \| = \| y,x \|$; (i ii) $\| \alpha x,y \| = |\alpha| \| x,y \|,\alpha \in \mathbb{R}$; (iv) $\| x,y+z \| \leq \| x,y \| + \| x,z \|$. The pair $(X,\|\cdot,\cdot\|)$ is then called a 2 - normed space .

As an example of a 2 - normed space we may take $X = \mathbb{R}^2$ being equipped with the 2 - norm $\|x,y\|$:= the area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula

$$||x,y|| = |x_1y_2 - x_2y_1|, \quad x = (x_1, x_2), \quad y = (y_1, y_2).$$

Observe that in any 2 - normed space $(X, \| \cdot, \cdot \|)$ we have $\| x, y \| \ge 0$ and $\| x, y + \alpha x \| = \| x, y \|$ for all $x, y \in X$ and $\alpha \in \mathbb{R}$. Also , if x, y and z are linearly dependent , then $\| x, y + z \| = \| x, y \| + \| x, z \|$ or $\| x, y - z \| = \| x, y \| + \| x, z \|$. Given a 2 - normed space $(X, \| \cdot, \cdot \|)$, one can derive a topology for it via the following definition of the limit of a sequence : a sequence (x_n) in X is said to be convergent to x in X if

$$= 0$$
 for every $y \in X$. $\lim_{n \to \infty} ||x_n - x, y||$

All the concepts listed below are studied in depth in the fundamental book by Schweizer and Sklar [27] .

DEFINITION 5 . Let $\mathbb R$ denote the set of real numbers , $\mathbb R_+ = \{x \in \mathbb R : x \geq 0\}$ and S = [0,1] the closed unit interval . A mapping $f: \mathbb R \to S$ is called a distribution function if it is nondecreasing and left continuous with $\inf_{t \in \mathbb R} f(t) = 0$ and

$$\sup_{t \in \mathbb{R}} f(t) = 1.$$

We denote the set of all distribution functions by D^+ such that f(0) = 0. If

$$a \in \mathbb{R}_+, \text{then} H_a \in D^+, \text{where}$$

$$H_a(t) = \begin{cases} 1 & \text{if } t > a, \\ 0 & \text{if } t \leq a. \end{cases}$$

It is obvious that $H_0 \ge f$ for all $f \in D^+$.

DEFINITION 6 . A triangular norm (t-norm) is a continuous mapping $*: S \times S \to S$ such that (S,*) is an abelian monoid with unit one and $c*d \leq a*b$ if $c \leq a$ and $d \leq b$ for all $a,b,c,d \in S$. A triangle function τ is a binary operation on D^+ which is commutative , associative and $\tau(f,H_0)=f$ for every $f \in D^+$.

DEFINITION 7 . Let X be a linear space of dimension greater than one , τ is a triangle function , and $F: X \times X \to D^+$. Then F is called a probabilistic 2 - norm and (X, F, τ) a probabilistic 2 - normed space if the following conditions are satisfied:

(i) $F(x,y;t)=H_0(t)$ if x and y are linearly dependent , where F(x,y;t) denotes the value of F(x,y) at $t\in\mathbb{R}$,

 $\begin{array}{c} (\ {\rm i}\ {\rm i}\)F(x,y;t)\neq H_0(t)\ {\rm if}\ x\ {\rm and}\ y\ {\rm are\ linearly\ independent}\ ,\\ (\ {\rm i}\ {\rm ii}\)F(x,y;t)=F(y,x;t)\ {\rm for\ all}\ x,y\in X,\\ (\ {\rm iv}\)F(\alpha x,y;t)=F(x,y;\mid t_\alpha\mid)\ {\rm for\ every}\ t>0,\alpha\neq0\ {\rm and}\ x,y\in X,\\ (\ {\rm v}\)F(x+y,z;t)\geq\tau(F(x,z;t),F(y,z;t))\ {\rm whenever}\ x,y,z\in X,\ {\rm and}\ t>0. \end{array}$ If (v) is replaced by

(vi) $F(x+y,z;t_1+t_2) \ge F(x,z;t_1)*F(y,z;t_2)$ for all $x,y,z \in X$ and

$$t_1, t_2 \in \mathbb{R}_+;$$

then (X, F, *) is called a random 2 - normed space (for short, RTN space).

REMARK 1 . Note that every 2 - norm space $(X, \|\cdot, \cdot\|)$ can be made a random 2 - normed space in a natural way, by setting

(i) $F(x, y; t) = H_0(t - ||x, y||)$, for every $x, y \in X, t > 0$ and $a * b = \min \{a, b\}$,

$$a, b \in S$$
: or

(i i) $F(x,y;t)=t+\parallel^t x,y\parallel$ for every $x,y\in X,t>0$ and a*b=ab for $a,b\in S$. Let (X,F,*) be an RTN space . Since * is a continuous t- norm , the system of $(\varepsilon,\lambda)-$ neighborhoods of $\theta($ the null vector in X) $\{\mathcal{N}_{\theta}(\varepsilon,\lambda):\varepsilon>0, \quad \lambda\in(0,1)\},$ where

$$\mathcal{N}_{\theta}(\varepsilon, \lambda) = \{x \in X : F_x(\varepsilon) > 1 - \lambda\},\$$

determines a first countable Hausdorff topology on X, called the F- topology . Thus , the F- topology can be completely specified by means of F- convergence of sequences

. It is clear that $x-y\in\mathcal{N}_{\theta}$ means $y\in\mathcal{N}_{x}$ and vice - versa .

 \mathbf{M} . G \ddot{u} rdal , \mathbf{M} . B . Huban

A double sequence $x = (x_{jk})$ in X is said to be F- convergence to $L \in X$ if for every $\varepsilon > 0, \lambda \in (0,1)$ and for each nonzero $z \in X$ there exists a positive integer N such that

$$x_{jk}, z - L \in \mathcal{N}_{\theta}(\varepsilon, \lambda)$$
 for each $j, k \geq N$

or, equivalently,

$$x_{ik}, z \in \mathcal{N}_L(\varepsilon, \lambda)$$
 for each $j, k \geq N$.

In this case we write $F - \lim x_{jk}, z = L$.

Let $(X, \|\cdot, \cdot\|)$ be a real 2 - normed space and (X, F, *) be 1. an RTN space induced by the random norm $F_{x,y}(t) = t + ||t_{x,y}||$, where $x, y \in X$ and t > 0. Then for e very double s equence $x = (x_{jk})$ and nonzero y in X

$$\lim ||x - L, y|| = 0 \Rightarrow F - \lim(x - L), y = 0.$$

Suppose that $\lim \|x - L, y\| = 0$. Then for every t > 0 and for every $y \in X$ there exists a positive integer N = N(t) such that

$$||x_{jk} - L, y|| < t \text{for each } j, k \ge N.$$

We observe that for any given $\varepsilon > 0$,

$$\varepsilon + \| x_{jk} - L, y \| < \varepsilon + t$$
 $\varepsilon \quad \varepsilon$

which is equivalent to

$$\varepsilon + \| \varepsilon j k_x - L, y \| > \varepsilon \varepsilon + t = 1 - \varepsilon t + t.$$

Therefore, by letting $\lambda = t +_{\varepsilon} t \in (0,1)$ we have

$$F_{x_{jk}-L,y}(\varepsilon) > 1 - \lambda \text{for each } j, k \geq N.$$

This implies that $x_{jk}, y \in \mathcal{N}_L(\varepsilon, \lambda)$ for each $j, k \geq N$ as desired . $2.\mathcal{I}_2^F$ and $\mathcal{I}_2^{F_*}$ - convergence for double sequences in RTN spaces

In this section we study the concept of \mathcal{I} and \mathcal{I}^* – convergence of a double sequence in (X, F, *) and prove some important results . Throughout the paper we take \mathcal{I}_2^F as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.

Let (X, F, *) be an RTN space and \mathcal{I} be a proper ideal in Definition 8 . A double sequence $x = (x_{jk})$ in X is said to be \mathcal{I}_2^F – convergent to $L \in X$ $\mathbb{N} \times \mathbb{N}$. $(\mathcal{I}_2^F$ - convergent to $L \in X$ with respect to F - topology) if for each $\varepsilon > 0, \lambda \in (0,1)$ and each nonzero $z \in X$,

$$\{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_L(\varepsilon,\lambda)\} \in \mathcal{I}_2.$$

In this case the vector L is called the \mathcal{I}_2^F – limit of the double sequence $x=(x_{jk})$ and we write $\mathcal{I}_2^F - \lim x, z = L$.

Lemma 2 . Let (X, F, *) be an RTN space . If a double s equence $x = (x_{jk})$ is

 \mathcal{I}_2^F- convergent with respect to the random 2-norm F, then \mathcal{I}_2^F- limit is unique. Proof . Let us assume that \mathcal{I}_2^F- lim $x,z=L_1$ and \mathcal{I}_2^F- lim $x,z=L_2$ where $L_1\neq L_2$. Since $L_1\neq L_2$, select $\varepsilon>0,\lambda\in(0,1)$ and each nonzero $z\in X$ such that $\mathcal{N}_{L_1}(\varepsilon,\lambda)$ and $\mathcal{N}_{L_2}(\varepsilon,\lambda)$ are disjoint neighborhoods of L_1 and L_2 . Since L_1 and L_2 both are \mathcal{I}_2^F- limit of the sequence (x_{jk}) , we have

$$A = \{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_{L_1}(\varepsilon,\lambda)\}$$

and

$$B = \{(j, k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_{L_2}(\varepsilon, \lambda)\}$$

both belong to \mathcal{I}_2^F . This implies that the sets

$$A^c = \{(j, k) \in \mathbb{N} \times \mathbb{N} : x_{ik}, z \in \mathcal{N}_{L_1}(\varepsilon, \lambda)\}$$

and $B^c = \{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, z \in \mathcal{N}_{L_2}(\varepsilon,\lambda)\}$ belong to $\mathcal{F}(\mathcal{I}_2)$. In this way we obtain a contradiction to the fact that the neighborhoods $\mathcal{N}_{L_1}(\varepsilon,\lambda)$ and $\mathcal{N}_{L_2}(\varepsilon,\lambda)$ of L_1 and L_2 are disjoint. Hence we have $L_1 = L_2$. This completes the proof.

LEMMA 3 . Let (X, F, *) be an RTN space . Then we have (i) F- $\lim x_{jk}, z = L$, then \mathcal{I}_2^F - $\lim x_{jk}, z = L$. (ii) $If \ \mathcal{I}_2^F$ - $\lim x_{jk}, z = L_1$ and \mathcal{I}_2^F - $\lim y_{jk}, z = L_2$, then \mathcal{I}_2^F - $\lim (x_{jk} + y_j k), z = L_2$.

$$L_1 + L_2$$
.

(i ii) If \mathcal{I}_2^F - $\lim x_{jk}$, z = L and $\alpha \in \mathbb{R}$, then \mathcal{I}_2^F - $\lim \alpha x_{jk}$, $z = \alpha L$. (iv) If \mathcal{I}_2^F - $\lim x_{jk}$, $z = L_1$ and \mathcal{I}_2^F - $\lim y_j k$, $z = L_2$, then \mathcal{I}_2^F - $\lim (x_{jk} - y_{jk})$, z

$$= L_1 - L_2.$$

Proof . (i) Suppose that $F-\lim x_{jk}, z=L$. Let $\varepsilon>0, \lambda\in(0,1)$ and nonzero $z\in X$. Then there exists a positive integer N such that $x_{jk}, z\in\mathcal{N}_L(\varepsilon,\lambda)$ for each j,k>N. Since the set

 $A = \{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_L(\varepsilon,\lambda)\} \subseteq \{1,2,...,N-1\} \times \{1,2,...,N-1\}$ and the ideal a \mathcal{I}_2^F is admissible, we have $A \in \mathcal{I}_2^F$. This shows that $\mathcal{I}_2^F - \lim x_{jk}, z$

$$=L.$$

(i i) Let $\varepsilon > 0, \lambda \in (0,1)$ and nonzero $z \in X$. Choose $\eta \in (0,1)$ such that $(1-\eta)*(1-\eta) > (1-\lambda)$. Since $\mathcal{I}_2^F - \lim x_{jk}, z = L_1$ and $\mathcal{I}_2^F - \lim y_{jk}, z = L_2$, the sets

$$A = \{(j, k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_{L_1}(^{\varepsilon}_{2}, \lambda)\}$$

and

$$B = \{(j,k) \in \mathbb{N} \times \mathbb{N} : y_{jk}, zelement - slash \mathcal{N}_{L_2}(\xi, \lambda)\}$$

belong to \mathcal{I}_2^F . Let $C=\{(j,k)\in\mathbb{N}\times\mathbb{N}:(x_{jk}+y_{jk}),zelement-slash\mathcal{N}_{L_1+L_2}(\varepsilon,\lambda)\}$. Since \mathcal{I}_2^F is an ideal , it is sufficient to show that $C\subset A\cup B$. This is equivalent to show

78 M.G. \ddot{u} rdal, M.B. Huban that $C^c \supset A^c \cap \Rightarrow$ who notdef - enotdef r enotdef $\mathcal{F}Anotdef - existential$ and existential braceleft - B - negations lash notdef - notdef -

 $\label{eq:since} \text{Since}(j,k) \in C^c \supset A^c \cap arrowdblright - c \in F - notdef \text{parenleft} - \text{notdef} - \text{Itwo} - \text{F}^{\text{parenright}-\text{notdef}}, notdef - \text{i}$) I t is training the parenleft of the parenleft

 $z \in X$. nce $\mathcal{I}F - hyphen$ li mxk, z = L, we have

$$= (\{j,k) \in \mathbb{N} \times \mathbb{N} : xk_{,z} \quad element - slash \mathcal{N}(\varepsilon,\lambda)\} \in \mathcal{I}2$$

 $\mathbf{h} - \mathbf{i} \ \mathbf{sim} \quad \ \mathbf{l} - \mathbf{pi} - \mathbf{e} \ \mathbf{s} \ \mathbf{t} \ \mathbf{at}$

$$c = (\{j, k) \in xk, z \in \mathcal{N}(\varepsilon, \lambda)\} \in \mathcal{F}$$
parenleft – I2).

 $t(k) \in A$. Th-en we hve

$$x_{jk} - \alpha L, z_{\ell}^{\varepsilon}) = Fjk_{-L,z} \quad \varepsilon \mid \alpha \mid)$$

$$\geq F_{x_{jk} - L, z}(\varepsilon) * F_0 \begin{pmatrix} \varepsilon \\ \mid \alpha \mid -\varepsilon \end{pmatrix}$$

$$> (1 - \lambda) * 1 = (1 - \lambda).$$

So $\{(j,k) \in \mathbb{N} \times \mathbb{N} : \alpha x_{jk}, zelement - slash \mathcal{N}_{\alpha L}(\varepsilon,\lambda)\} \in \mathcal{I}_2$. Hence $\mathcal{I}_2^F - \lim \alpha x_{jk}, z = \alpha L$.

(iv) The result follows from (i i) and (i ii) .

We introduce the concept of \mathcal{I}_2^{F*} – convergence closely related to \mathcal{I}_2^F – convergence of double sequences in random 2 - normed space and show that \mathcal{I}_2^{F*} – convergence implies \mathcal{I}_2^F – convergence but not conversely .

Definition 9 . Let (X,F,st) be an RTN space . We say that a sequence

 $x=(x_{jk})$ in X is \mathcal{I}_2^{F*} – convergent to $L\in X$ with respect to the random 2 - norm F if there exists a subset

$$K = \{(j_m, k_m) : j1 < j2 < \dots; \quad k_1 < k_2 < \dots\} \subset \mathbb{N} \times \mathbb{N}$$

such that $K \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus K \in \mathcal{I}_2$) and $F - \lim_m x_{j_m,k_m}, z = L$ for each

 $nonzeroz \in X$.

In this case we write \mathcal{I}_2^{F*} – $\lim x, z = L$ and L is called the \mathcal{I}_2^{F*} – \lim of the

doublesequence $x = (x_{jk})$.

Theorem 1 . Let (X,F,*) be an RTN space and \mathcal{I}_2 be an admissible ideal . If

 $\mathcal{I}_2^{F*}-\lim\ x,z=L,\ then\ \ \mathcal{I}_2^F-\lim\ x,z=L.$ Proof . Suppose that $\mathcal{I}_2^{F*}-\lim\ x,z=L.$ Then by definition , there exists

$$K = \{(j_m, k_m) : j1 < j2 < \cdots; k_1 < k_2 < \cdots\} \in \mathcal{F}(\mathcal{I}_2)$$

On $\mathcal{I}-$ convergence of double sequences 79 such that $F-\lim_m x_{j_m,k_m},z=L$. Let $\varepsilon>0,\lambda\in(0,1)$ and nonzero $z\in X$ be given .

Since $F - \lim_m x_{j_m k_m}, z = L$, there exists $N \in \mathbb{N}$ such that $x_{j_m k_m}, z \in \mathcal{N}_L(\varepsilon, \lambda)$ for

every
$$m \geq N$$
.Since

$$A = \{(j_m, k_m) \in K : x_{j_m k_m}, zelement - slash \mathcal{N}_L(\varepsilon, \lambda)\}$$

is contained in

$$B = \{j1, j2, ..., jN - 1; k_1, k_2, ..., k_{N-1}\}$$

and the ideal \mathcal{I}_2 is admissible, we have $A \in \mathcal{I}_2$. Hence

$$\{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_L(\varepsilon,\lambda)\} \subseteq K \cup B \in \mathcal{I}_2$$

for $\varepsilon>0, \lambda\in(0,1)$ and nonzero $z\in X.$ Therefore , we conclude that \mathcal{I}_2^F- lim x,z=

L.

The following example shows that the converse of Theorem 1 need not be true . Example 1 . Consider $X=\mathbb{R}^2$ with $\parallel x,y\parallel:= \mid x_1y_2-x_2y_1\mid$ where $x=(x_1,x_2),y=(y_1,y_2)\in\mathbb{R}^2$ and let a*b=ab for all $a,b\in S$. For all $(x,y)\in\mathbb{R}^2$ and t>0, consider

$$F_{x,y}(t) = t + \|^t x, y\|$$
.

Then $(\mathbb{R}^2, F, *)$ is an RTN space. Consider a decomposition of $\mathbb{N} \times \mathbb{N}$ as $\mathbb{N} \times \mathbb{N} = \bigcup_{i,j} \Delta_{ij}$ such that for any $(m,n) \in \mathbb{N} \times \mathbb{N}$ each Δ_{ij} contains infinitely many (i,j)'s where $i \geq m, j \geq n$ and $\Delta_{ij} \cap \Rightarrow_{n-notdefequal-notdef} \varnothing notdef F-f-or-element_{existential-notdef}(notdefj-existential_notdef-notdef-negationslashbraceleft-equal-negationslashparenleft-notdef-notdef-mcomma-union-n_period-notdef \cdot L \tau \mathcal{I}_{2b} \text{ et e c ass o} \text{ lsu bsets o } \mathbb{N} \times \mathbb{N} \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mathbb{N} \times \mathbb{N} \m$

$$F_{x_{mn},z}(t) = t + \parallel t_{x_{mn}}, z \parallel \to 1$$
 as $m, n \to \infty$. Hence $\mathcal{I}_2^F - \lim_{m,n} x_{mn}, z = 0$.

Now, we show that $\mathcal{I}_2^{F_*} - \lim_{m,n} x_{mn}, z \neq 0$. Suppose that $\mathcal{I}_2^{F_*} - \lim_{m,n} x_{mn}, z = 0$. Then by definition, there exists a subset

$$K = \{ (m_i, n_i) : m_1 < m_2 < \cdots; \quad n_1 < n_2 < \cdots \} \subset \mathbb{N} \times \mathbb{N}$$

such that $K \in \mathcal{F}(\mathcal{I}_2)$ and $F - \lim_j x_{m_j n_j}, z = 0$. Since $K \in \mathcal{F}(\mathcal{I}_2)$, there exists $H \in \mathcal{I}_2$ such that $K = \mathbb{N} \times \mathbb{N} \setminus H$. Then there exists positive integers p and q such that

$$H \subset \bigcup_{p \in \infty}^{m=1} \bigcup_{n=1}^{m=1} \Delta_{mn}) \cup \bigcup_{q=1}^{m=1} \bigcup_{m=1}^{m=1} \Delta_{mn}).$$

Thus $\Delta_{p+1,q+1}\subset K$ and so $x_{m_jn_j}=(p+11)(q+1)>0$ for infinitely many values (m_j,n_j) 's in K. This contradicts the assumption that $F-\lim_j x_{m_jn_j}, z=0$. Hence

$$\mathcal{I}_2^{F_*} - \lim_{m,n} x_{mn}, z \neq 0.$$

Hence the converse of Theorem 1 need not be true .

The following theorem shows that the converse holds if the ideal \mathcal{I}_2 satisfies condition (AP) .

80 M.G. \ddot{u} rdal, M.B. Huban

DEFINITION 1 0 . [23] An admissible ideal $\mathcal{I}_2 \subset P(\mathbb{N} \times \mathbb{N})$ is said to satisfy the condition (AP) if for every sequence $(A_n)_{n \in \mathbb{N}}$ of pairwise disjoint sets from \mathcal{I}_2 there are sets $B_n \subset \mathbb{N}, n \in \mathbb{N}$, such that the symmetric difference $A_n \Delta B_n$ is a finite set for every n and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{I}_2$.

every n and $\bigcup_{n\in\mathbb{N}}B_n\in\mathcal{I}_2$. THEOREM 2. Let (X,F,*) be an RTN space and the ideal \mathcal{I}_2 satisfy the condi-

tion (AP). If $x = (x_{jk})$ is a double s equence in X such that $\mathcal{I}_2^F - \lim x, z = L$, then

$$\mathcal{I}_2^{F_*} - \lim x, z = L.$$

Proof . Since \mathcal{I}_2^F- lim x,z=L, so for every $\varepsilon>0,\lambda\in(0,1)$ and nonzero $z\in X,$ the set

$$\{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_L(\varepsilon,\lambda)\} \in \mathcal{I}_2.$$

We define the set A_p for $p \in \mathbb{N}$ as

$$A_p = \{(j,k) \in \mathbb{N} \times \mathbb{N} : 1 - 1_p \le F_{x_{jk},z-L} < 1 - p1_+1\}.$$

Then it is clear that $\{A_1, A_2, ...\}$ is a countable family of mutually disj oint sets belonging to \mathcal{I}_2 and so by the condition (AP) there is a countable family of sets $\{B_1, B_2, ...\} \in \mathcal{I}_2$ such that the symmetric difference $A_i \Delta B_i$ is a finite set for each $i \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_i \in \mathcal{I}_2$. Since $B \in \mathcal{I}_2$, there is a set $K \in F(\mathcal{I}_2)$ such that $K = \mathbb{N} \times \mathbb{N} \setminus B$. Now we prove that the subsequence $(x_{jk})_{(j,k)\in K}$ is convergent to L with respect to the random 2 - norm F. Let $\eta \in (0,1), \varepsilon > 0$ and nonzero $z \in X$. Choose a positive q such that $q^{-1} < \eta$. Then

$$\{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_L(\varepsilon, \eta)\}$$

$$\subset \{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_L\begin{pmatrix} 1 \\ \varepsilon, q \end{pmatrix}\} \subset -_{q \cup 1}^{i=1} A_i.$$

Since $A_i \Delta B_i$ is a finite set for each i = 1, 2, ..., q - 1, there exists $(j0, k_0) \in \mathbb{N} \times \mathbb{N}$ such that

$$-_{(q \cup 1}^{i=1} B_i) \cap \Rightarrow (notdef - j, element - k)element - element \mathbb{N} - \ltimes \rtimes \approx \Im braceleft - multiply \mathbb{N} : j \geq j0 \text{and} k \geq = -_{(q \cup 1}^{i=1} A_i) \cap \Rightarrow (notdef - j, element - k)element - element \mathbb{N} - \ltimes \rtimes \approx \Im braceleft - multiply \mathbb{N} : j \geq j0 \text{and} k \geq 0$$

If $j \geq j0, k \geq k_0$ and $(j,k) \in K$, then (j,k) element - slash $\bigcup_{i=1}^{q-1} B_i$ and (j,k) slash - element $\bigcup_{i=1}^{q-1} A_i$. Hence for every $j \geq j0, k \geq k_0$ and $(j,k) \in K$ we have

$$x_{ik}$$
, zelement $- slash \mathcal{N}_L(\varepsilon, \eta)$.

Since this holds for every $\varepsilon > 0, \eta \in (0,1)$ and nonzero $z \in X$, so we have $\mathcal{I}_2^{F_*}$ – $\lim x, z = L$. This completes the proof of the theorem .

$4.\mathcal{I}_2^F$ and $\mathcal{I}_2^{F_*}$ – double Cauchy sequences in RTN spaces

In this section we study the concepts of \mathcal{I}_2 — Cauchy and \mathcal{I}_{2-}^* Cauchy double sequences in (X, F, *). Also, we will study the relations between these concepts.

Definition 1 1 . Let (X, F, *) be an RTN space and \mathcal{I} be an admissible ideal Then a double sequence $x = (x_{jk})$ of elements in X is called a \mathcal{I}_2^F of $\mathbb{N} \times \mathbb{N}$. Cauchy sequence in X if for every $\varepsilon > 0, \lambda \in (0,1)$ and nonzero $z \in X$, there exists

$$s=s(\varepsilon), t=t(\varepsilon) \text{such that}$$
 $\{(j,k)\in\mathbb{N}\times\mathbb{N}: x_{jk}-x_{st}, zelement-slash\mathcal{N}_{\theta}(\varepsilon,\lambda)\}\in\mathcal{I}_{2}.$

DEFINITION 1 2 . Let (X, F, *) be a RTN space and $\mathcal I$ be an admissible ideal of $\mathbb{N} \times \mathbb{N}$. We say that a double sequence $x = (x_{jk})$ of elements in X is a $\mathcal{I}_2^{F_*}$ - Cauchy sequence in X if for every $\varepsilon > 0, \lambda \in (0,1)$ and nonzero $z \in X$, there exists a set

$$K = \{(j_m, k_m) : j1 < j2 < \cdots; \quad k_1 < k_2 < \cdots\} \subset \mathbb{N} \times \mathbb{N}$$

such that $K \in F(\mathcal{I}_2)$ and (x_{j_m,k_m}) is an ordinary F – Cauchy in X. The next theorem gives that each $\mathcal{I}_2^{F_*}$ – double Cauchy sequence is a \mathcal{I}_2^F – double Cauchy sequence.

Let (X, F, *) be an RTN space and \mathcal{I} be a nontrivial ideal of Тнеокем 3. $\mathbb{N} \times \mathbb{N}$. If $x = (x_{jk})$ is a $\mathcal{I}_2^{F*} - double \ Cauchy \ s \ equence$, then $x = (x_{jk})$ a \mathcal{I}_2^F - double Cauchy s equence, too.

Proof . Let (x_{jk}) be a \mathcal{I}_2^{F*} – Cauchy sequence . Then for $\varepsilon > 0, \lambda \in (0,1)$ and nonzero $z \in X$, there exists

$$K = \{(j_m, k_m) : j1 < j2 < \cdots; k_1 < k_2 < \cdots\} \in \mathcal{F}(\mathcal{I}_2)$$

and a number $N \in \mathbb{N}$ such that

$$x_{j_m k_m} - x_{j_p k_p}, z \in \mathcal{N}_{\theta}(\varepsilon, \lambda)$$

for every $m, p \geq N$. Now, fix $p = jN + 1, r = k_{N+1}$. Then for every $\varepsilon > 0, \lambda \in (0, 1)$ and nonzero $z \in X$, we have

$$x_{j_m k_m} - x_{pr}, z \in \mathcal{N}_{\theta}(\varepsilon, \lambda)$$
 forevery $m \geq N$.

Let $H = \mathbb{N} \times \mathbb{N} \setminus K$. It is obvious that $H \in \mathcal{I}_2$ and

$$A(\varepsilon,\lambda) = \{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk} - x_{pr}, zelement - slash \mathcal{N}_{\theta}(\varepsilon,\lambda)\}$$

$$\subset H \cup \{j1 < j2 < \dots < jN; \quad k_1 < k_2 < \dots < k_N\} \in \mathcal{I}_2.$$

Therefore, for every $\varepsilon > 0, \lambda \in (0,1)$ and nonzero $z \in X$, we can find $(p,r) \in \mathbb{N} \times \mathbb{N}$

such that $A(\varepsilon, \lambda) \in \mathcal{I}_2$, i. e., (x_{jk}) is a \mathcal{I}_2^F – double Cauchy sequence. Now we will prove that $\mathcal{I}_2^{F_*}$ – convergence implies \mathcal{I}_2^F – Cauchy condition in a 2 - normed space.

Let (X, F, *) be an RTN space and \mathcal{I} be an admissible ideal Theorem 4. of

If a s equence $x = (x_{jk})$ is $\mathcal{I}_2^{F*}-$ convergent, then it is a \mathcal{I}_2^F- double $\mathbb{N} \times \mathbb{N}$. Cauchy

s equence.

$$K = \{(j_m, k_m) : j1 < j2 < \cdots; \quad k_1 < k_2 < \cdots \} \subset \mathbb{N} \times \mathbb{N}$$

such that $K \in \mathcal{F}(\mathcal{I}_2)$ and $F - \lim_m x_{j_m,k_m}, z = L$ for each nonzero z in X, i.e., there exists $N \in \mathbb{N}$ such that $x_{j_m k_m}, z \in \mathcal{N}_L(\varepsilon, \lambda)$ for every $\varepsilon > 0, \lambda \in (0,1)$, each nonzero z in X and m > N. Choose $\eta \in (0,1)$ such that $(1-\eta)*(1-\eta) > (1-\lambda)$. Since

$$F_{x_{j_m k_m} - x_{j_p k_p}, z}(\varepsilon) \ge F_{x_{j_m k_m}} - L, z(\frac{\varepsilon}{2}) * F_{x_{j_p k_p}} - L, z(\frac{\varepsilon}{2})$$
$$> (1 - \eta) * (1 - \eta) > 1 - \lambda$$

for every $\varepsilon>0, \lambda\in(0,1)$, each nonzero z in X and m>N, p>N, we have $x_{j_mk_m}-x_{j_pk_p}, zelement-slash \mathcal{N}_L(\varepsilon,\lambda)$ for every m,p>N and each nonzero $z\in X$, i. e. .

 (x_{jk}) in X is an \mathcal{I}_2^{F*} – double Cauchy sequence in X. Then by Theorem $3(x_{jk})$ is a \mathcal{I}_2^F – double Cauchy sequence in the RTN space .

Theorem 5 . Let (X,F,*) be an RTN space and $\mathcal I$ be an admissible ideal of

 $\mathbb{N} \times \mathbb{N}$. If a s equence $x = (x_{jk})$ of e lements in X is \mathcal{I}_2^F – convergent, then it is a \mathcal{I}_2^F – double Cauchy s equence.

Proof . Suppose that (x_{jk}) is \mathcal{I}_2^F – convergent to $L \in X$. Let $\varepsilon > 0, \lambda \in (0,1)$ and nonzero $z \in X$ be given . Then we have

$$A = \{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, zelement - slash \mathcal{N}_L(z,\lambda)\} \in \mathcal{I}_2$$

This implies that

$$A^{c} = \{(j, k) \in \mathbb{N} \times \mathbb{N} : x_{jk}, z \in \mathcal{N}_{L}(2, \lambda)\} \in \mathcal{F}(\mathcal{I}_{2})$$

Choose $\eta \in (0,1)$ such that $(1-\eta)*(1-\eta) > (1-\lambda)$. Then for every $(j,k),(s,t) \in$

$$A^{c},$$

$$F_{x_{ik}-x_{st},z}(\varepsilon) \ge F_{x_{ik}-L,z}(\varepsilon)^{\varepsilon} * F_{x_{st}-L,z}(\varepsilon)^{\varepsilon} > (1-\eta) * (1-\eta) > (1-\lambda).$$

Hence $\{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk} - x_{st}, z \in \mathcal{N}_{\theta}(\varepsilon,\lambda)\} \in \mathcal{F}(\mathcal{I}_2)$ for nonzero $z \in X$. This implies that

$$\{(j,k) \in \mathbb{N} \times \mathbb{N} : x_{jk} - x_{st}, zelement - slash \mathcal{N}_{\theta}(\varepsilon,\lambda)\} \in \mathcal{I}_2,$$

i. e., (x_{ik}) is a \mathcal{I}_2^F – double Cauchy sequence.

 $\label{eq:acknowledgement} \mbox{Acknowledgement} \ . \ \ \mbox{The authors would like to thank anonymous referees} \\ \mbox{on suggestions to improve this text} \ . \\ \mbox{References}$

 $[\ 1\]$ C . Alsina , B . Schweizer , A . Sklar , \quad Continuity properties of pro bab ilistic norms $\$, J . Math .

- [${f 2}$] H . Fast , Sur la convergence statistique , Colloq . Math . ${f 2}$ (1 95 1) , 241 244 .
- [3] M. J. Frank, Pro bab ilistic topological spaces, J. Math. Anal. Appl. 34(1971), 67endash eight1.
 - [${\bf 4}~$] A . R . Freedman , J . J . Sember , Densities and summability ~ , Pacific J . Math . ${\bf 95}~$ (1~ 98 1) , 293-305 .

[f 5] S . G $\ddot a$ hler , 2 - metrische R $\ddot a$ ume und ihre topologische Struktur , Math . Nachr . f 2 f 6 (1963) , 115 -

148.

- [6] S . G \ddot{a} hler , Lineare 2 normietre R \ddot{a} ume , Math . Nachr . 28 (1964) , 1 43 .
- $[\ \textbf{7}\]\ I\ .\ Golet\ ,\ \textit{On\ probabilistic}\ \ 2\ -\ normed\ spaces\quad ,\ Novi\ Sad\ .\ J\ .\ Math\ .\ \textbf{35}\ \ (\ 2005\)\ ,\ 95\ -\ 102\ .$
- $[\ {\bf 8}\]$ B . L . Guillen , J . A . R . Lallena , C . Sempi , A study of boundedness in pro bab ilistic normed
 - $spaces \;$, J . Math . Anal . Appl . ${\bf 232} \;$ ($1 \; 999$) , $183 - 1 \; 96$.
- $[\ 9\]$ B . L . Guillen , C . Sempi , Probabilistic norms and convergence of random variables $\$, J . Math .
- Anal . Appl . $\bf 280~$ (2003) , 9 1 6 . [$\bf 10~$] H . Gunawan , Mashadi , On finite dimensional $\,2$ -normed spaces $\,$, Soochow J . Math . $\bf 27~$ (2001) ,

321 - 329.

- $[\ {\bf 1}\ {\bf 1}\]$ M . G $\ \ddot{u}$ rdal , S . Pehlivan , The statistical convergence in $\ 2$ Banach spaces $\$, Thai . J . Math . ${\bf 2}$
- (2004), 107 113. [$\bf 12$] M . G \ddot{u} rdal, I . A c cedilla1 k , On $\mathcal{I}-$ Cauchy s equences in 2 normed spaces , Math . Inequal . Appl . $\bf 11$
- (2008) , 349 354 . [13] M . G \ddot{u} rdal , A .cedilla – S ahiner , I . A cedilla – c1 k , Approximation theory in 2 - Banach spaces , Nonlinear Anal .
- $\bf 71~(2009)$, 1 654-1 661 . [$\bf 14~]$ S . Karakus , \quad Statistical convergence on probabilistic normed spaces $\,$, Math . Commun . $\bf 12~$
- (2007) , 1~1-23 . [$\mathbf{15}$] M . Kat \check{e} tov , Products of filters , Comment . Math . Univ . Carolin $\mathbf{9}$ (1~968) , 173-189 . [$\mathbf{16}$] J . L . Kelley , General Topology , Springer Verlag , New York , 1~955 .
- [17] P. Kostyrko , M. Ma \check{c} aj , T. $.\check{S}$ alat $\,,\mathcal{I} convergence\,$, Real Anal . Exchange 26 (2000) , 669 686 .
- [18] P . Kostyrko , M . Ma č aj , T .Š alat , M . Sleziak , $\mathcal{I}-$ convergence and extremal $\mathcal{I}-$ limit points ,
- tic normed spaces , Annali Univ . Ferrara , doi : $10 \cdot 1007 / s \cdot 1 \cdot 1565 1 \cdot 2 1 \cdot 57 5$. [21] M . Mursaleen , On statistical convergence in random 2 normed spaces , Acta Sci . Math .
- (Szeged) **76** (2010) , 101 109 . [**22**] M . Mursaleen , A . Alotaibi , On $\mathcal{I}-$ convergence in random 2 normed spaces , Math . Slovaca **61**
- ($20\ 1\ 1$) , 933-940 . [${\bf 23}$] M . Mursaleen , S . A . Mohiuddine , On ideal convergence of double s equences in pro babilistic
- normed spaces $\,$, Math $\,$. Reports $\bf 12$ ($\bf 62$) ($\bf 20$ 10) , $\bf 359-371$. [$\bf 24$] M $\,$. Mursaleen , S $\,$. A $\,$. Mohiuddine , On ideal convergence in probabilistic normed spaces $\,$, Math $\,$.
- Slovaca **62** (20 1 2) , 49 62 . [**25**] M . R . S . Rahmat , K . K . Harikrishnan , On $\mathcal{I}-$ convergence in the topology induced by probabilis -
- tic norms , European J . Pure Appl . Math . $\bf 2$ (2009) , 1 95 2 1 2 . [$\bf 26$] B . Schweizer , A . Sklar , Statistical metric spaces , Pacific J . Math . $\bf 1$ 0 (1 960) , 3 1 3 334 . [$\bf 27$] B . Schweizer , A . Sklar , Probabilistic Metric Spaces , North Holland , New York Amsterdam -
- Oxford , 1 983 . [$\bf 28$] A . H . Siddiqi , 2 - normed spaces , Aligarh Bull . Math . (1 980) , 53 – 70 . [$\bf 29$] A . N . Serstnev , Random normed space : Questions of completeness , Kazan Gos . Univ . Uchen .
- Zap . $\bf 1~22:4~(1~962)$, $\bf 3-20$. [$\bf 30~$] H . Steinhaus , Sur la convergence ordinaire et la convergence asymptotique , Colloq . Math . $\bf 2$

(1951) , 73 – 74 . [$\bf 31$] A .S – cedilla ahiner , M . G \ddot{u} rdal , S . Saltan , H . Gunawan , Ideal convergence in 2 - normed spaces , Tai -

wanese J . Math . **1 1** (2007) , 1477 – 1484 . [**32**] B . C . Tripathy , M . Sen , S . Nath $\,$, $\mathcal{I}-$ convergence in probabilistic $\,$ n- normed space $\,$, Soft Compute . ,

doi : 10 . 1007 / s 500 - 1 1 - 799 - 8 .

(received 20 . 2 . 201 2; in revised form 1 1 . 7 . 201 2; available online 0 1 . 10 . 20 1 2) Suleyman Demirel University , Department of Mathematics , East Campus , 32260 , Isparta , Turkey E - mail : gurdalmehmet @ sdu . edu . tr , bt a-rh $n-a3@y^{a-h}$ oo . com