x45 EXTRACTA MATHEMATICAE Vol. 19, N \acute{u} m. 1, 141 – 144 (24)

V Curso Espacios de Banach y Operadores .

Laredo , Agosto de 23.

Renorming and Operators

Sebasti a_n Lajara , Antonio $\hat{\mathbf{J}}$. Pallar \hat{e} s

 $Dpto \ . \qquad de \ Matem \quad \acute{a} \ ticas \ , \qquad Universidad \ de \ Castilla \ La \ Mancha \ , \ Escuela \ Polit \quad \acute{e} \ cnica \ Superior \\ de \ Espa \quad \~n \ a \ s \ / \ n \ , \ 2071 \ A \ lbacete \ , \ Spain$

 $Dpto \ . \qquad de \ Matem \quad \acute{a} \ ticas \ , \qquad Universidad \ de \ Murcia \ , \ Campus \ de \ Espinardo \\ 30100 \ Espinardo \ \, (Murcia \) \ , \ Spain$

e - mail : Sebastian . Lajara @ uclm . es , apall @ um . es

AMS Subject Class . (2000): 46 B 3, 46 B 6

This communication presented in the summer course "Espacios de Banach y operadores" help in Laredo (Spain), august 2003, i s an annoucement of some results about MLUR renorming of Banach spaces. These results will appear in $\begin{bmatrix} 6 \end{bmatrix}$.

Let us start by recalling some convexity properties of norms . Let $X \parallel \parallel \parallel \parallel$

be a Banach space. We say that X (or the norm of X) is:

(1) locally uniformly rotund (LUR for short) if, for every x and every se -

quence $(x_n)_n$ in X such that $||x_n + x|| \to 2 ||x||$ and $||x_n|| \to ||x||$, we have

$$||x_n - x|| \rightarrow 0;$$

(2) midpoint locally uniformly rotund (MLUR for short) if, for every x and every sequence $(x_n)_n$ in X such that $||x_n + x|| \to ||x||$ and $||x_n - x|| \to ||x||$,

wehave
$$||x_n|| \to 0$$
;

(3) strictly convex or rotund (R for short) if x = y whenever x and y are

points of $\,X$ such that $\,\,\parallel x \parallel = \,\parallel y \parallel \,\, = \,\parallel x +_2 y \parallel,\, {\rm i}$. e . , if the unit sphere of $\,X$

does not contain any nondegenerate segment.

It is clear that LUR \Rightarrow MLUR and that MLUR \Rightarrow R . The converse implic -

ations are not true in general , even under renormings : as dual of a separable space $,\ell_{\infty}$ has an equivalent (dual) rotund norm , but it does not admit MLUR renorming [2] . In the paper [5] , Haydon showed the first example of MLUR space with no equivalent LUR norm .

Banach spaces with equivalent MLUR norms were characterized in [8], in terms of countable decompositions of such spaces, involving the following

Supported by MCYT and FEDER BFM 2 2 - 1719

142 S. L. \acute{a} Jara, A. J. Pallar \acute{e} S

Definition 1 . Let A be a subset of a Banach space $(X, \| \ \|)$. A point

 $x \in A$ is said to be a ε -strongly extreme point of A if there is $\delta > 0$ such that

 $||u-v|| < \varepsilon$ whenever u and v are points in A with $||x-u+_2v|| < \delta$.

It is easy to see that X is MLUR if and only if every point of the unit sphere is a ε - strongly extreme point of the unit ball, for every $\varepsilon > 0$. The characterization of MLUR spaces mentioned above is given by the following

Theorem 1 . ([8] , Theorem 1) A Banach space X admits an equivalent MLUR norm if , and only if , for every $\varepsilon>0$ we have a countable decomposition

$$X = \bigcup_{n=1}^{\infty} X_{n,\varepsilon}$$

in such a way that every $x \in X_{n,\varepsilon}$ is a ε -strongly extreme point of the convex

$$envelopeco(X_{n,\varepsilon}).$$

A similar result was proved for LUR renormability in [7] and [10], where roughly speaking $,\varepsilon$ - strong extremality is replaced by ε - dentability

Theorem 2 . ([7] , Main Theorem) A Banach space X has an equival - ent LUR norm if , and only if , for every $\varepsilon>0$ we have a countable decompos - ition

$$X = \bigcup_{n=1}^{\infty} X_{n,\varepsilon}$$

in such a way that for every $n \in \mathbb{N}$ and every $x \in X_{n,\varepsilon}$ there is an open half space $H \subset X$ such that $x \in H$ and diam $(H \cap \Rightarrow_{notdef-parenright} notdef < epsilon - notdef notdef <math>R$ $e-notdef-infinity-c_{notdef-alnotdef}$ t notdef-ha-infinity t notdef-notdefa-braceleft notdef-notdefo

 $\in \mathbb{R}$.

This result has motivated the following notion , introduced and extensively studied by Molt δ , Orihuela , r – T oyanski and Valdivia in their recent memoir

[8], where a non linear transfer method for LUR renormability is provided

.

Definition 2 . Let X and Y be Banach spaces , and let A be a subset of X. A map $\Psi:A\to Y$ is said to be $\sigma-$ slicely continuous if for every $\varepsilon>0$ we may write

$$A = \bigcup A_{n,\varepsilon}$$

in such a way that for every $x \in A_{n,\varepsilon}$ there exists an open half space H such that $x \in H$ and diam $\Psi(H \cap \Rightarrow_{notdef-parenright} notdef < notdef - epsilonnotdef$

We are going to combine the covering characterization of Theorem 1 and some properties of σ - slicely continuous maps to get some results about MLUR renormability on Banach spaces . Our first theorem contains , as a particular case, a version of the three space property for MLUR norms.

Theorem 3. Let X be a Banach space. Suppose that there exist a closed MLUR renormable subspace Y of X and a σ -slicely continuous map $\Phi: X \to X$ such that $x - \Phi x \in Y$ for all $x \in X$. admits an equivalent MLUR norm.

The basic idea to prove this result is to get ε - MLUR decompositions on X from ε - MLUR decompositions of Y via the operator $Id - \Phi$. map $\Phi: X \to X$ given by $\Phi = g \circ Q$, where $Q: X \to X/Y$ is the quotient map and X/Y is LUR renormable , and $g: X/Y \to X$ is a continuous selector , is σ -slicely continuous. If moreover Y has an MLUR renorming, we obtain the following result Alexandrov [1] (see also [3, p. 181]).

Corollary 1. Let X be a Banach space. there exists a closed subspace Y of X with an equivalent MLUR norm and such that the quotient X/Y is LUR renormable. Then MLUR renormable.

Let us recall that MLUR is not a three space property. In the paper [5 Haydon provided an example of Banach space X with a closed subspace Y such that Y and X/Y admit a LUR norm and a MLUR norm, resp ectively, while X does not have any equivalent rotund norm.

As another application of our t echnique we get a partial generalization Proposition 5.3]), of a result of Haydon ([5, which is the main tool for the construction of MLUR norms in $C(\Upsilon)$ spaces, Υ a tree.

Theorem 4. Let K be a locally compact space. there exist a σ -slicely continuous map $\Psi: C_0(K) \to c_0(\Gamma)$ and a family $\{K_{\gamma}\}_{\gamma} \in \Gamma \text{ of closed}$

and open subsets of K with the following properties:

for each $\gamma \in \Gamma$, $C_0(K_{\gamma})$ is MLUR renormable;

for each $x \in C_0(K), x \neq 0$, supp $(x) \subset \bigcup \{K_\gamma : \Psi x(\gamma) \neq 0\}.$

Then $C_0(K)$ admits an equivalent MLUR norm.

The idea now to obtain the ε -MLUR decompositions in $C_0(K)$ is to

 σ - slicely continuity of Ψ and condition (2) to get a first decomposition where the functions x can be approximated by its restriction on some K_{γ} ,

transfer the MLUR decompositions of the spaces $C_0(K_{\gamma})$.

- 144 S. L \acute{a} Jara , A. J. Pallar \acute{e} S References
- [1] ALEXANDROV , G . , On the three space problem for MLUR renorming of Banach spaces , C . R . Bulg . Acad . Sci . , $\bf 42$ (1989) , 17 20 .
- [2] ALEXANDROV, G., DIMITROV, I., On equivalent weakly midpoint lo cally uniformly rotund renormings of the space $\ell_\infty,$ Math. and Math. Education, Proc. 1 4 th Spring Conference of the Union of Bulg. Mathematicians, Sunny Beach, 1985, 189 191 (russian).
- $[3] \\ Castillo Theory'', J_{\text{Lecture}}.M., Gonz_{\text{Notesin Math. 1667}}^{\acute{a}}, Space \\ \text{Notesin Math. 1667}, Springer, Problems_{\text{Berlin,1997}}^{\text{inBanach}}. Space$

[4] Devilleings;

 $D_{\rm Banach}^{\cdot,\cdot,\cdot Godefroy}, \qquad {_{\prime\prime}G_{\rm Pitman}^{\cdot,\cdot,\cdot Zizler,\cdot,\cdot V\cdot,\cdot "Smoothnessand_{Surveys}}} V\cdot, {^{\prime\prime}Smoothnessand_{Surveys}} {\rm and}_{\rm in} \quad {_{\rm Pure}Renorm_{and}} - {_{\rm Spaces}}$

 \mbox{Appl} . Math . 64 , Longman Scientific and Technical , Longman House , Burnt Mill , Harlow , 1 993 .

[5] HAYDON , R . , Trees in renorming theory , Proc . London Math . Soc . **78** (1999) , 541 – 585 .

[6] Lajara , S . , Pallar é s , A . J . , Mlur renormings of Banach spaces and $\sigma-$ sli cely continuous maps (preprint) .

[7] MOLT \acute{o} , A., ORIHUELA, J., TROYANSKI, S., Locally uniformly ro-tund renorming and fragmentability, Proc. London Math. Soc. 75 (1997), 619-640.

. London Math . Soc . **75** (1997), 619 – 640. [8] MOLT 6, A., ORIHUELA, J., TROYANSKI, S., VALDIVIA, M., Midpoint

 $\label{eq:composition} \mbox{locally uniformly} Quartely_{Journal} of^{\mbox{\scriptsize rotundity}} \\ \mbox{\it Mathematics}^{\mbox{\scriptsize and}} \mbox{\it a} & \mbox{\it decomposition} \\ 52^{\mbox{\scriptsize method}}_{(2001),181--193}. & \mbox{\it for renorming}, \\ \mbox{\it renorming}, & \mbox{\it decomposition} \\ \mbox{\it decomposition} \\ \mbox{\it for renorming}, & \mbox{\it decomposition} \\ \mbox{\it dec$

[9] Molt δ , A., Orihuela, J., Troyanski, S., Valdivia, M., A non linear transfer technique (preprint). [1 0] Raja, M., On lo cally uniformly rotund norms, Mathematika 46 (1999), 343 – 358.