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1. THE MAZUR INTERSECTION PROPERTY AND ITS RELATIVES

It was Mazur [ 39 | who first drew attention t o the euclidean space
property :
every bounded c los ed convex s et can be represented as an intersection of c
los ed balls . He began the investigation t o determine those normed
linear spaces
which posses this property , named after him the Mazur intersection prop-

erty
or MIP . He proved Theorem 1. 1, whose proofis so nice and clear
that it

deserves to be the starting point for this survey . The following easy ( and
useful ) fact will b e used extensively throughout the rest of the paper : a
closed ,

convex and bounded set C'is an intersection of balls if and only if for every
xelement — slashC, there i s a closed ball containing the set but missing the
point . Hence |,

the MIP can b e regarded as a separation property by balls which i s stronger

than the classical separation property by hyperplanes . We denote by B

and

S the unit ball and unit sphere of a Banach space .  Analogously ,B* and

S*

will stand for the corresp onding unit ball and unit sphere in the dual space
THEOREM 1 . 1. If a norm | - || in a Banach space X is F —r;

chet differentiable ,

then (X, |- |) satisfies the Mazur intersection property .
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Proof . Consider a closed convex and bounded set C and assume
that Oelement — slash C. We will find z € X and » > 0 such that C c 2 +rB
but Oelement — slash(x +rB). Since Oelement — slashC, there i s a norm one
functional f e S* such that inf f(C)>0. Using Bishop - Phelps theorem |,
we can find a norm - attaining functional g € S* close enough t o f so that
inf ¢g(C)>0. If we pick z € S satisfying g(z) =1 then
g= |- | (). The idea now is considering a ball big enough so that it s
boundary play the role of a separating hyperplane .  To this end , put ¢ = (
inf ¢(C))/2 and , for n > 2, consider the ball B, =nex + (n —1)eB. Clearly
, for every n > 2 we have Oelement — slashB,. We will show that C c B, for
some n. If this is not the case , for each n > 2 we can choose =z, € C\ B,.
Then |z, —nex| > (n—1)cand hence

|z—(1/ne)a, || >1-1/n (1)
Using that |- | is F —rs chet differentiable at zand g= |- | (z) we
can write ,
foreveryh € X,
le+hl— Jzl —g(h)=r(h), where lim7r(h)/||h[=0. (2)
Replacing now in  the above equation h by —(1/ne)z,, using

(1) and the equality e=inf ¢(C)/2, we obtain

r(—(1/ne)x,) =|| x — (1/ne)x, || -1+ g((1/ne)zy,) > 1/n.

Hence , for n > 2,

1/ne)xy, 1/n
Pl = e = 1/ > supe{ [ [} (3)

which contradicts ( 2 ) since {z,} c C,C i s bounded and lim,, || (1/ne)z, |
=0.
Norm one functionals f € X* satisfying that for every e > 0 there exists a

weak x slice S = {z* € B* : z*(z) > 1-6} (where 2 € S
and § > 0)such that diam (fuUS) < e were introduced in [ 7 |
under the name of semi - denting points . When , in  addition ,
we askthat f € S, then we recover the classical definition
of weak = denting point . Semidenting points play an important role in
questions related t o the MIP b ecause of the following key result , due t o
Chen and Lin , whose proof can be found in [ 7 | . It is the key to the

subsequent characterization of MIP , probably the most useful between the
several characterizations known of this property [ 1 8] .
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ProposiTION 1 . 2. A functional f e S* is a semi - denting
point of B* if
and only if for every closed convex and bounded set C and every z¢€ X, if
f
separates C and z then there is a ball D in X with C c D and
zelement — slashD.

ProrosiTION 1 . 3 . Given a Banach  space the

following conditions are

equivalent :
(i)  The space has the Mazur intersection property .

(ii)  There is a dense set of semi - denting points in S

(iii )  There is a dense set of weak =« denting points in S

Proof . To prove the equivalence between  (ii ) and  ( iii )
,  note that weak x denting points are semi - denting points so we only
need t o prove (ii ) == (il ). To this end , define F, as the set of
those norm one functionals lying in the ( relative to S*) interior of some
S*N = notdef —w h e — notdef — negationslash r notdef —eS — S i s a weak x slice
of diameter less than 1/n. Then F, is open and , using ( ii ) , dense in

S ¥ Therefore F =N = nnotdef asoden s—ein S«(a t—cualy ,F i a

Giden s—est). N o e—tfi naly,t hat Fi the tofweak
den t—ingpon s—tof Sasteriskmath — period

To prove that (i) implies (il ) , we will use Proposition 1 . 2 t o see
that every norm  one functional is a semidenting point . Indeed
, consider f € S* Ca closed, convex and bounded set
and , finally , 2 € X\C. Assume, for instance , that f(z) >0
and sup f(C) < 0( otherwise we can consider a suitable translation C -y and
r—y). Thereis X > oOsatisfying ¢ < AM; where
M;={z€ B: f(z) <0}. Now ,since X has the MIP M, is an intersection
of balls , thus implying the existence of a ball D containing M; but missing
z. The same ball D separates C from z.

The arguments t o prove that  (ii ) implies (i) are quite similar .  Let
C be convex , bounded and closed and let zelement — slashC. By using (
ii ) , we can find a semi - denting point f € S* separating C from z, say
for instance that sup f(C) < f(z). We may assume that sup f(C) <0 and
f(z)>0. Clearly, for enough big n € N, ¢ c nB and z € nB.
Using that  f1is semi - denting , it is not difficult t o prove that My i
s an intersection of balls , and so it is nM;. Asa
consequence , there i s a ball containing M; (hence C) that miss the point
z, thus implying that C i s also an intersection of balls .

Clearly , the set of semi- denting points is closed. Indeed
, if f € S* 1is not semi- denting, thereis ¢ > 0 such
that the set B(f,e) = {2* € S* :|2*—f|* <e} doesnot

contain the intersection of S* with a weak x slice and thus no point ¢
of B(f,e) 1is semi- denting, either. As a consequence ,
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condition ( ii ) of Proposition 1 . 3 easily implies that every norm - one

functional

is a semi - denting point . A weak x denting point is an extreme point . In a

finite dimensional space , and extreme point i s always a weak * denting point

, so the classical Phelps ’ result i s inmediate from the above proposition .
COROLLARY 1 . 4 . [ 47 ] A finite dimensional normed linear space

X has the MIP if and only if the set of extreme points of B* is dense in

*
S

Since the weak * denting points of B** must b e points of X, we get easily
the following consequence of Proposition 1 . 3.  Besides , having in mind
Pro - position 1. 1, note also that next corollary generalizes the well known
result that X is reflexive if the norm of X*is F —r chet differentiable .

COROLLARY 1 . 5 . A Banach space whose dual X* satisfies the
MIP is re - flexive .

There exist some other characterizations of spaces with MIP , in t erms of
the duality mapping , support mappings and points of - differentiability (
see
[ 18] ), though probably the most useful i s the one given in Proposition 1
.3

Among the several intersection properties that appeared as variations on
the MIP , probably the most important is the weak * Mazur intersection
prop - erty or  MIP % introducedin [18]: a dual space satisfies
the MIP x if every
weak x compact convex set i s an intersection of closed dual balls . In [ 18 ]
itis
shown that every result for MIP has an analogous formulation for MIP .
In particular , it is connected with convexity properties of the predual space

ProOPOSITION 1 . 6 . [ 18] A dual space X* has the MIP  « if and
only if the set of denting points of the predual unit ball is dense in its unit
sphere .

The nice piece of work contained in [ 1 8 | was the culmination of

previous

results obtained , among others , by Phelps [ 47 ] and Sullivan [ 56 ] . Since
these pioneering works , the investigation on  different intersection
properties  has been slow but st eady . Whitfield and Zizler studied

in [ 60 ] the property that every compact convex set is an intersection of
closed balls . F —urther research on this property was carried out lat er by
Sersouriin [ 52] and [ 53] and lat er by J . Vanderwerff [59].  The
corresp onding intersection property for weakly

compact and convex sets was investigated by Zizler in | 65 | and J . Vander-
werff

in 59 |. Finally , an uniform version of the MIP was  considered
in 61 by Whitfield and Zizler . A unified approach t o different
intersection properties is presented by Chen and Lin in [ 6 | . Other

authors have also contributed to
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the study of MIP and MIP x as Acosta and Galan in [ 1 ] , P . Bandyopad-
hyaya and A . Roy in [ 3 | and finally , P . Georgiev and P . S . Kenderov ,
whose results will be mentioned in the next sections .

2. RENORMING BANACH SPACES WITH MIP OR MIP «

Both MIP and MIP x are metric properties and hence invariant under i
so - metries but not under i somorphisms . The question of whether a
Banach space can b e renormed with MIP or a dual space with MIP x has
not an easy answer . Indeed , one might well ask how , when provided with a
norm , one can construct an equivalent norm such that every closed convex
body i s an intersection of ( new ) closed balls . Zizler [ 65 | realized
that T —r oyansky renorming techniques for LUR norms ( [ 1 1], Lemma
7. 1. 1) can b e applied to study intersection prop - erties . This
fruitful idea turned out t o b e sp ecially successful when applied first t o
MIP x [41] andlatertoMIP[31].  Recall that a biorthogonal system
{zi,zi}yi € I € X x X* i s fundamental provided X = span ({z;}i € I).
Through - out this section and also in Section 3 , all Banach spaces are
assumed to b e infinite dimensional .

LEMMA 2 . 1 . Let X be a Banach space with a fundamental
biorthogonal system {x;,z:}i € I ¢ X x X*. Then , the subspace Y =
span ({x;}i € I) admits a LUR norm .

THEOREM 2 . 2 . Let X be a Banach space with a fundamental
biorthogonal system . Then X* admits an equivalent norm with the
MIP .

The above theorem applies to a fairly wide class of Banach spaces includ
- ing , for instance , the dual of ¢ (T'). This fact will b e used lat er t
o prove that almost every norm ( in the sense of Baire ) in this space i s
F —r¢ chet differentiable on a dense set . We only know few Banach spaces
which admits no fundamental biorthogonal system . This is the case |,
for instance , of Kunen , Shelah and the space ¢¢ (I') ( the subspace of all
elements of ¢, (') with countable support , card T b eing strictly bigger than
the cardinal of the continuum ) , spaces that will appear lat er in this survey
Before stating the analogous versions of these results for the MIP let us
mention that , once we know that there i s an equi - valent norm with MIP
(or MIP «, if it i s dual ) in a Banach space , then there are many . In
fact , Georgiev [ 1 6 | proved that almost every norm ( again in the Baire
sense , that will be precised latter ) satisfies this property provided there is
one satisfying it .
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PROPOSITION 2 . 3 . [16] Given a Banach space X, the set of
norms having the MIP is either empty or residual . Analogously , the
set of dual norms having MIP =« is either empty or residual ( in the set of
all dual norms ) .

This result has many applications . For instance , it can b e used
together with the following proposition t o show the density of norms which
are F —rs chet differentiable in open dense sets in spaces with MIP or MIP .
There exist even stronger results linking MIP , MIP =« and differentiability
that will b e discussed lat er , in the section devoted t o almost Asplund

spaces .

PROPOSITION 2 . 4 . [41] If X* has MIP =, then  the
predual norm can be approximated by norms which are F —r¢ chet
differentiable on an open dense set . Also , if X has MIP | then the

dual norm can be approximated by ( dual ) norms which are F —r¢ chet
differentiable on an open dense set .

It was for long t ime an open problem to determine whether spaces with
the MIP are Asplund spaces . Also , it was unknown if every Asplund
space admits a norm with the MIP or , in particular , a F—r1s chet
differentiable norm . The latter was shown in the negative by Haydon |
28 ] . First and second problems were also answered in the negative in
[31] wusing, t ogether with Proposition 1. 3, the following results .

THEOREM 2 . 5 . Let (X*, | -||*) be a dual Banach space with a
biorthogonal system {x;,fi}ie I C X*x X and Xo = span ({x;}i € I).
Then ,X* admits an equivalent dual norm |- |* which is locally uniformly
rotund at the points of X,. Then , if X, is dense in X*, the Banach
space X with the predual norm |- | has the Mazur Intersection property

Outline of the proof . We may assume that || fi || =1, for every
icl and let us consider A={0}uNUI. Define the map T from X* into
Lo (A) as

|z || if =0
T(z)(6) = braceleftmid — braceleftbt 2 "G,(z) if d=neN
fi(z) if i€l
for every € X* and ¢ € A, where
Fa(z) = | fi(z) |
1€A
Ea(z) =dist (z,span ({z;}i€ A)) AcI, card A<oo
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Gn(xz)= sup {Fa(zr)+nFa(x)}.
cardA <n

- Clearly T(Xx*) Clo(A) and T(Xo) Cc(A).  On the other hand ,
since

27"(1+n?) <2 forevery neN,we have | z|*<||T(x) <2 = |

For every § € A, consider the map  Ts(z) = T(x)(5), =€ X*. Obviously
, if seru{o} themap T; isweak x—1.s.c. . Moreover , the
maps F4 and,the maps FE, areweak x—1.s.c.,s0o Ts; 1is
weak x—1.s.c. forevery 6¢cA.

Let pbethe Daynorm [11,p. 69]in ¢.(A), and consider in X*
the map n(z) = p(T(x)), x € X*. It can be easily proved that =(-)is an
equivalent norm in X*. The norm n(-) has the following expression :

=1
n(@)? =sup{>_ [T 2+ (01,02,.,00) C A, 6 #£8;, neN)

so n(-)is weak x—1. s. ¢. ,thatis , n 1is a dual norm |- |*.
The norm p defined in /,,(A) i s lo cally uniformly rotund at the points of
co(A). It can b e checked that the norm |- |* i s locally uniformly rotund

at the points of X,[31]. Now , it i s straightforward to verify that the
points of XgNarrowdblright — asteriskmathnotdef a e — notdefnotdef W notdef —
ak — infinity* € notdef — in finitynotde f — ny_pnotdeti — nnotdef g oonotdef — notdef

intso Bx. Fnaly,ifthe sbspace Xis dmnsein Xasteriskmath —

comma byte Popos t—iion 3, t e s ace Xe dowedw
thte p eduwal nr mo | = h s t e M a-z,
tersection  p operty .

COROLLARY 2 . 6 . Let X,Y be Banach spaces such that dens

X* <dens Y*. Supposethat Y* has a fundamental biorthogonal system
{yi, fiYie I CcY*xY. 'Then, the Banach space X @Y admits an equivalent
norm with the

MIP .

Proof . Let us consider Z = X@Y with the norm || (z,9) ||
Z=|lz|| X+||y|l Y By Theorem 2 . 5 we need only t o show that
Z* =~ X* @ Y* has also a fundamental biorthogonal system in Z* x Z. An
element z* +y* of X*®Y*is considered an element of Z* in the usual way

(z*+y*)(z+y) = 2*(x)+y*(y) for every z € X,y € Y. Relabel the fundamental
biorthogonal system given in Y* as {y? frliel,necxde . We may
assume that ||y?||Y < 1/nfor every
iel,neN. Let us take a dense set {z;}i e I of X*. Then , the system

S={x;+vy! fllielnexdeCZ*xZ

is a fundamental biorthogonal system in Z* and we conclude the proof .
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As a corollary , we get that every Banach space X can be embedded into
a Banach space with the MIP : just consider X @ /,(T") with card T = dens

X " Thus ,  for instance ,  the non - Asplund space ¢; @ fy(c) admits

an equivalent norm with the MIP . We also obtain as an application of the
above corollary the following result of Deville [ 8 | .

COROLLARY 2 . 7 . [ 8]  For every ordinal 7, the long James
space J(n),its predual M(n) and every finite dual of J(n) admit an
equivalent norm with the Mazur intersection property .

Proof . First , we need t o observe that ¢,(n) can be complementably
em - bedded into J(n). Indeed , consider the subset

A={a€el0,n:a=2no0r a=r~y+2n, with v ordinal limit and n > 1}
and the subspace H(n)={f € J(n): fla)=0 if aeclement — slashA}. The
subspace H(n) 1isisomorphict o /y(A) and card A= card 5 On the
other hand ,  the proj ection f e J(n) — p(f) € H(n) defined as

B fl@)—fla=1) if acd
p(Hle) = { 0 if «element — slashA

is continuous and , therefore ,H(n) i s complemented in J(n). Thus , we
have that J(n) ~f(n)@Y for a Banach space Y (which can b e easily
identified

J(n))andJ(n)* = f2(n) & Y™. with

On  the other hand , M(n), J(n) and every finite dual of
J(n) are As-
plund spaces [12]. Consequently dens /5(n) = card n > dens Y =
dens Y* =dens Y** and , applying Corollary 2 . 6 , we obtain that J(n)
and J(n)* admit
a norm with the Mazur intersection property . The assertion for M(n)
and the dual spaces of J(n)* follows from the fact that M (n) i s isometric t
o J(n)*
(cf.[12]).

Consider the James ’ tree space JT. It isshownin [37]that J7** i
siso-
morphic to JT@4(R). Then , as a consequence of Corollary 2. 6 , we obtain
that J7T** and finite even duals of J7T** admit an equivalent norm with the
Mazur intersection property . On the other hand , notice that the space
JT* and finite odd duals of JT admit a F—rschet differentiable norm
since their
duals are WCG . We finish this section with the following consequences , the
first one already mentioned .
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COROLLARY 2 . 8. (i) Every Banach space X can be almost iso-
metrically complementably embedded into a Banach space with the Mazur
intersection
property .

(ii) Every Banach space X may be isometrically embedded into a Banach
space Z with the Mazur intersection property .

Proof . (1) Let us consider the Banach space  Z =X @ /((I') with
card T =dens X*. By Corollary 2.6, Z can b e renormed with the MIP
and a useful
result of Georgiev [ 1 6 | ensures that the set of equivalent norms with the
Mazur intersection property in a Banach space i s either empty or residual
. In this case the set is residual and implies the assertion . Notice that
dens Z = dens X*. Clearly , this i s sharp in the sense that , necessarily , if
a Banach space Z has the MIP , dens Z = dens Zz*. In addition ,if Xis
a subspace of Z, dens Z >

densX

(ii ) We denote by a =dens X,3=a*(=min {yordinal number: card
v >a}), and the Banach space
ma(B) = {r € l(B): supp x has cardinality at most «},

with the supremum norm |z [|=sup,.45|2,|. Obviously , X maybei
somet -
rically embedded into  (m.(8), |- ). On the other hand , by Corollary

2. 8, mu(B) embeds into a Banach space  (Z,] - |) with the Mazur
intersection prop - erty and , by a result of Partington [46], (m.(8), |- |
) embeds is ometrically into  (mu(B),] - |). Therefore , X embeds
isometrically into  (Z,] - [). Note that , with this argument , we have
dens X* < dens Zz*

We are concern now with the three - space problem for the MIP . The fol
- lowing result states that being isomorphic to a Banach space with the MIP
is a three space property [51].  An application of this result states that
every[ Spa?e of continuous functions over a tree can b e renormed with the
MIP [31].

PropPoOSITION 2 . 9 . Let X be a Banach space and Y be a closed
subspace of X such that Y admits a norm with the Mazur Intersection
Property and X/Y admits a norm with the Mazur intersection property .
Then X admits a norm with the Mazur intersection property .

Sketch of the Proof . M. Raja [51] proved the following
renorming the - orem : Consider the set D of all weak x— denting points
of the ( dual ) unit ball of a dual Banach space X*. Then ,X* admits
an equivalent dual norm which is  locally uniformly rotund at every point
of D. Thus, we may assume that both
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Y* and (X/Y)* admit equivalent dual norms with a (Gs) dense set of LUR
points . The existence of an equivalent dual norm in X* with a (Gjs)
dense

set of LUR points follows by imitating the proof of the three - space property
for locally uniform rotund renormings given in ~ [21]:  We consider ,
under the

standard identifications ,(X/Y)* to b e the annihilator subspace Y+ with the
weak =t opology in  (X/Y)* being the same as the induced weak x t
opology

which Y+ inherites as a subspace of X*. Then , we may assume that there
is a norm on Y+ which is o(Y+,X)-1.s. c¢. and has a G; dense set of lo

cally
uniformly rotund points . The subspace Y=+ is weak = closed so this norm
can be extended to an equivalent dual norm |- |* on X*. Let |-|*

be an equi - valent dual norm on Y* which i s lo cally uniformly rotund at
a Gj dense set . Consider the restriction map @ : X* — Y*, which is weak
x— weak * continuous

and the Bartle - Graves continuous selection mapping B:Y* — X*, which i s
bounded on bounded set s , B(y*) = |y*|*By*/|y*|*) and B(0) =
0. For every y*e S ={y*e€Y*: |y*|*=1},take yeY such that y*(y)=1
and

|y| <2 Define P, (2*) =a2*(y)B(y*), for z* € X* whichis weak x—
weak x continuous .  The following family of weak * 1.s.c.  convex
functions  defined

onX*
by (27) =[ Q(z") +y* |

Yy x (27) =|[ 2" = Py (@) ", y" € )%,

9

is uniformly bounded on bounded set s .  Therefore , if we consider

k(™) = sup{¢py * (x*)2 + 1kt)y * (;10*)2 Coyt e S,
Pa*) = |2 [ «2+ | Q") I +) 27 ¢k(z"),
k

the Minkowski functional ||| - |||* of the set {z* € X* : ¢(2*) + ¢p(—a*) < 4} 1is
an equivalent dual norm on X*.

Consider the mapping ( not necessarily linear ) S:X* — Y+, defined
as S(z*) =a2"-B(Q(z*). Itisprovedin [21] that 2 isalo

cally uniformly rotund point for ||| - |||* provided Q(z*)i s lo cally uniformly
rotund for |- |*
and S(z*) is lo cally uniformly rotund for |- |*in Y+. To conclude

, observe that the mappings S and @ are continuous and open .
Then , the set s
Lij- ={z* € X*: |-|*1s locally uniformly rotund at Q(z*)},
Ly || «={z* e X*: S(z*)is weak *dentingof |- |[*in Y*}
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and therefore L = Ly *N = notde f —asteriskmath notdef a e — notdefnotdef —
Good — elementnotde f — in finity — Npotdef—s € notdefs — notdeft — infinity 8 notdef —
notde fo — braceleftnotde f —in finity X period — asteriskmath — notdef € e — notdef — n¢_unionenotdef—commat

e sace
X ) hsthe M a—zypterl section p operty .
Haydon gave in [ 28 |  an example of an Asplund space admitting no equi

- valent G a teaux differentiable norm , namely the space  Co(L) of all
continu - ous  functions  vanishing at the infinity over the
following tree L : denote by w; the smallest uncountable ordinal , «
an ordinal number and consider L = J,.,, wf which i s called the full
uncountable branching tree of height
wi. Therefore , it i s a natural question t o ask whether the space Cy(L)
admits an equivalent norm with the Mazur intersection property [ 1 1, Ch
VII | . The answer is affirmative .  Moreover , for every tree T, the
space Co(T) admits a norm with the Mazur intersection property .

LEMMA 2 .10 . Let K be a compact Hausdorff scattered space such that
card K = card I,I being the set of isolated points of K. Then , the
Banach space C(K) admits an equivalent norm with the Mazur intersection
property .

Proof . The space C(K) is an Asplund space , so it s dual space i s
identifiable with ¢,(K). For every we K’ = K\ I, we can consider disj oint
subsets of different points {tv}>, crland A=I\{t* : weK', neN }.
Denote by 6; € ¢,(K) the evaluation at the point ¢ € K and by xt the
characteristic function at the point ¢t. Clearly xyt € C(K) if and only
if tisanisolated point in K. Let wus consider the biorthogonal
system  {y%, f¥}, € zde,w e K C

C(K)* x C(K), where  y* = (1/n)6t, and  f¢ = nxtw, . Then , the
system

a<w

8 = {0 + ¥, e tnewde,w € K' U {5, xt}t € A C C(K)* x C(K)

is a fundamental biorthogonal system in C(K)*. We apply now Corollary 2
. 6 to finish the proof .

Remark 2 .11 . The above tree L={J,.,, wi equipped with the order
topology i s a locally compact scattered Hausdorff space such that the car-
dinal of it s isolated points i s equal t o card (L). Hence , it s Alexandrov
compactifica - tion oL is a compact Hausdorff scattered space such that
card (aL) = card (I), I b eing the set of i solated points of aL. So , the
Banach space C(aL) veri - fies Lemma 2 . 10 . As Cy(L) is isomorphic t
o C(aL),Cy(L) also verifies this Lemma .

Every tree T equipped with the order t opology is a locally compact
scattered Hausdorff space with card (T) > card (I),I being the set of i
solated points of 7. When card (T) > card (I) we cannot apply Lemma 2 .
1 0 but , in spite of this
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fact , next proposition shows that Cy(7T) admits an equivalent norm with the
MIP

ProproSITION 2 . 1 2. The Banach space Co(T) admits a
norm with the
Mazur intersection property whenever T is a tree space .
Proof . For any ¢ e T we denote by t* the set of immediate

successors of ¢
and consider the subset of T

H={teT : tt=g},

where T'1i s the set of all accumulation points of T and the closed subspace
of

Co(T)
Y={feCT) : f()=0, if teH}.

The space T\ H i s lo cally compact , Hausdorff | scattered and verifies that
the
cardinal of it s i solated points is equal t o card (T\ H). Hence , the Alexandrov
compactification o(T\ H) of T\ H i s scattered and verifies that card («(T\
H)) = card (I),I being the set of i solated points of «(T'\ H). Observe that
Y = Co(T\H) is isomorphicto the space of all continuous functions
on
a(T'\ H). Then , by Lemma 2 . 1 0, we obtain a norm on Y such that its
dual norm has a dense set of locally uniformly rotund points . On the
other hand , it can be easily verified using the fact that H i s an antichain
and the Tietze * s extension theorem that Cy(T)/Y i s i somorphic to cq(H),
and then ,Cy(T)/Y admits a norm such that it s dual norm has a dense set of
locally uniformly rotund points . Now the assertion follows from Proposition
2.9.
3. MIP |, MIP s, ASPLUND AND ALMOST ASPLUND SPACES
The results obtained in the previous section provide a wide range of Banach
spaces with an equivalent MIP norm .  This could induce to think that this
class of Banach spaces is larger than the class of Asplund spaces .  This is
not the case.  There are Asplund spaces which cannot b e renormed with
the MIP ([31]and [22]).  An example t o this assertion is the Kunen
space [ 35 ], a C(K)
Banach space where K is a scattered compact set ( and thus C(K)is Asplund
) constructed assuming the continuum hypothesis . The Kunen space i
s a non - separable Asplund space satisfying that for every uncountable set
{z;}i € I in the space , there exists iy € I such that

i, € conv({z; }T\ {io}. (4)
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The first example of a non - separable Banach space satisfying ( 4 ) was
con - structed by Shelah assuming the diamond principle for X;[54].

ProproOSITION 3 . 1. The Kunen and Shelah spaces do not admit an

equi - valent norm with the Mazur intersection property . Analogously

, the duals of the previous spaces do not admit a dual norm with the MIP

*.

Proof . First , if a Banach space X with a norm |- | has the Mazur
intersec - tion property , then , by Proposition 1 . 3 (iii ) , the dual norm
|- |* has adense set of weak * denting points in it s unit sphere.  Consider

0<6<1 and find a fam - ily of weak « denting points  (fa)a € I C S *
with  card I=dens X*=dens X
such that

| fa — fs|> 9, for a#p. (5)

Then , thereis a family of slices S(B-, ya, pa), for o € I, with
lya| =

L,
S(B.jx, ya, pa)narrowdblright — Bnotde fosteriskmath—notdef 1de f notdef —y comma — notdefop €

(6)

We denote  z, = (1/pa)ya for every a € I. It follows from ( 6 ) that
falwa)>1 and | fa(wp)|<1 for «a,B€l, B#a. Consequently ,

zoelement — slashconv({zg}pel \ {a}). (7)

Therefore , if X i s a non - separable Banach space with the MIP , there i s
an uncountable subset {z,}, € I ¢ X satisfying ( 7).  This implies that
that the Kunen and Shelah spaces does not admit an equivalent norm with
the MIP .

For the second assertion ,  consider the Banach space (X*,|-|*) with
the
weak * Mazur intersection property . Then , by Proposition 1 . 6 , the
norm |- | has a dense set of denting points in it s unit sphere . Take

0<d<1and find a family of denting points (z,)e €I in X,|z, |= 1, with
card I =dens X such that

8) |za—zp|>d, for a

thep _fact oints I aredenting) inB . i3 |
F— romge{lthat7 for thateverytheaz,g aslash—elementconv(xa)(a{exﬁ} Bel\ {a}.Thus7|theanddualscondltlonofthe(

and Shelah spaces do not admit an equivalent dual norm with MIP .



68 A . S. GRANERO , M . JIM ¢éNEZ - SEVILLA , J . P .
MORENO

The property exhibited in ( 4 ) shared by the spaces contructed by Shelah
and Kunen , that i s , for every uncountable family of points in the space
there is one point in the closed convex hull of the rest , has b een extensively
studied

in[22].  Let us denote this property by KS. The following result was
proved
for the Kunen space in [ 3 1 ] and for the general case in [ 22 | .

THEOREM 3 . 2 . Let X be a Banach space . The following

assertions are

equivalent :

(i) X has the KS property .
(ii)  Every weak x— closed convex subset K C X* is weak x— separable .
(iii )  Every convex subset K C X* is weak x— separable .
Let us mention that there are still a number of open problems concerning
the MIP , as the existence of points of F —r¢ chet differentiability in spaces
with this property . While spaces with F — r¢ chet differentiable norm satisfy

the Mazur intersection property , it is unknownifit is also the
case  of spaces with a ("7*¢ chet ) differentiable bump function . In this
setting , it was proved in [ 1 0] the following result .

THEOREM 3 . 3 . [ 1 0] If a Banach space has the Radon - Nikod
y m property and a F —r; chet differentiable bump function , then it

has an equivalent norm with the MIP .

We are concerned now with the connections between Mazur intersection
property on X or weak x Mazur intersection property on X* and the
gen - eric differentiability of “ most ”  equivalent ( dual ) norms defined on
X*or X,respectively .  Let F be the space of all sublinear ,  positively
homogeneous , continuous functionals on a Banach space X, furnished with
the metric p as - sociated t o the uniform convergence on bounded set s .
Analogously , let F* be the space of all sublinear , positively - homogeneous
, continuous and w*— lower semicontinuous functionals on X*. The spaces
(F,p) and (F*,p) are complete metric spaces and thus Baire spaces .

A Banach space X(resp . the dual X* of a Banach space X)i s called
almost
Asplund ( resp . almost weak * Asplund ) space , if there exists a dense
Gssubset F, of F (resp . Fy of F*) suchthat every f € F (
resp . every f* € Ey)
is F —r¢ chet differentiable on a dense Gj subset of X(resp . of X*). The
first
author t o consider this class of Banach spaces was P . Georgiev [ 15| . He
proved that MIP in X and MIP xin X*imply that X is almost Asplund and
X*1is almost weak x Asplund.  More connections between differentiability
of convex
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functions and Mazur ( weak x Mazur ) intersection properties were investi-
gated by Kenderov and Giles [34] and J.P . Moreno [ 41 | , among
others.  Later on, following the ideasof [15], it was provedin [1 7 | that
the dual of a Banach space with the MIP i s a almost wea k — asteriskmath
Asplund space and , analogously , the predual of a dual space with the
MIP x intersection property is an  almost Asplund space.  We will
focus here on this last result and it s geometrical derivations .

Some interesting consequences are obtained by considering norms instead
of sublinear functionals .  Among them , we can mention that  “ almost
all in the Baire sense ”  ( we shall detail this lat er ) equivalent norms
on a Banach space with a fundamental biorthogonal system are F —rs chet

differentiable on a dense G5 subset . This i s the case , for instance , of
spaces /(') and /.. (T), for every I', whose bad differentiability behavior i s
well known .  Moreover ,  there are only few examples of spaces without
fundamental biorthogonal system ( [ 49 ], [44 ] ) so this result applies for

most Banach spaces .

Denote by Hx, or just # if there is no ambiguity on the space we are
considering , the set of all bounded , closed , convex and nonempty subsets
of a real Banach space X. The Hausdorff distance between C;,C, € H1is
given by

d(Cl,Cg):inf{5>0:C1 CCQ+€B, Oy CC1+EB},

where Bis the unit ball of X. The space (H,d) is a complete metric space

[36] and, hence, a Bairespace. Denote by H* the elements of
Hx. Wwhich are weak = closed . The space (H*,d) is also a complete
metric space . The mappings I : (H,d) — (F*,p), where I(K) := ok the

support functional on

K: og(z*) = sup(x,z*),andl : (H*,d) — (F,p), wherel (K*) = ogx,

reK
the support functional on K* defined on X, o *(x) =sup,*cK * (z,2*),
are
homeomorphisms . The existence of the homeomorphisms I and I and

the duality between F -1, chet differentiability and  strong exposition
can b e t ied together in the following Lemma 3 . 4 whose proof i s omitted

LEmMMA 3 . 4. A Banach space X is almost Asplund if and only if
there is a dense Gs subset Hi < H* such that every element of H;
has a dense G
set of weak x— strongly exposing functionals in X. A dual Banach space
X* is almost weak x Asplund if and only if there is a dense Gs subset
Ho C H such that every element of Hy has a dense G5 set of strongly
exposing functionals in X*.

Let b: X — S* b e aselection of the subdifferential mapping of the norm , i.
e . (v,b(x)) = | x| forevery 2 € X. Given C c X, f € X*
and o« > 0,
we will denote by S(C, f,a) the slice {z € C: f(x) >sup f(C)—a}. The
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following lemma i s a key tool in the proof of the result cit ed above .  There
is an analogous version for a dual Banach space with the weak x Mazur
Intersection

Property .
LEMMA 3. 5. Let X bean infinite  dimensional  Banach
space with the Mazur intersection property . Then , for every

n > 2, there is a subset X, ¢ X such that : (1 )UX,b(X,) is dense in S*,
(il ) (x,b(x) > SUp.cx,\ {2} (0(2); 2), for every z € Xy,
(iii ) | b(x) =by) ||> 1, forevery  wxy€X,, x#y.

Proof . By Proposition 1. 3, the dual norm has a dense set
X of weak x denting points in it s unit sphere . Consider for every
n > 2, a maximal subset X c X satisfying | =* —y* | > 2/n, for every
oy e X ot #y*. Then, Ff =uUX,X* C X;isdensein S* and for
every x* € X} thereis a slice
S(B*,yn(z*),yn(x*)),yn(z*) € B* and ~n(z*) € (0,1,) so that ,

x* € S(B*,yn(x*),yn(z*)), diamS(B*,yn(z*),yn(z")) < 2'n

and

S(B*,yn(z*),yn(z*)) N arrowdblright — Bnotdef"”tdef_C‘””ma_a‘St”wkm“thynotdef,nparenleft — notdefznotde f -

9)

for every z*,z* € X:a* #z. By (9) it follows that yn(z}) # yn(z3)
for 23 # a3 1. e. the mapping yn : X — Sis an inj
ection .  We have | 2*—

b(yn(z*)) ||< 2'n, for every z* € X and

| b(yn(a1)) — blyn(z3)) [|> 1n
for each 323 e Xz a7 #23  If we define X, = {111”%&*) c2* € X}, then
it i s easy t o check the conditions (i), (ii ), ( iii ) and the proof i s
completed .

THEOREM 3 . 6 . Consider a Banach space X with dual X

(i) If X has  the Mazur intersection property ~ then — X*
is almost weak x
Asplund .
(ii) If Xx* has the weak x Mazur intersection property
then X is almost

Asplund .
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Sketch of the proof . The idea of the proof i s contained in Theorem 4
of [15]. Inordertoprove (i),itisenoughtoshow the existence of
a dense Gj subset By, c H such that every element of B, has a dense Gj set
of strongly exposing functionals in X*. Let {X,}, >2Db e the sequence we
have found in Lemma 3 . 5 and for every z € X,, define :

an(z) = (z,b(z)) — sup (y,b(x)),
y e X, \ {z}

For integers n >2and m > 1 denote :

Hym={z€X,:a,(z)>1/m}

and define B, ,, as the set of all Z € # for which there are o >0and >0
such that diam S(Z,b(z),a) < 1k—~yforeach 2z € H,,, if
H,m # @and

Bumir=Hif H,,,=2. It canb e proved that B, is a dense and open
subset of # for every n>2and m,k € N. We omit the rather t echnical and
cumbersome proof that can be foundin [17].  Finally, itis easy to see

that every element of By := N = notdef B—notde o 14/ ="

i 0os negationslash—notde f —notde f—notde f —ro — notdefn — notdef — notdef — notdefsPraceleft

y notdef—notdef—notde felement—enotde f —notdef—notdef—x p o — infinity® "/~ _ notdef — notdefno;
notdef — Yo—notdef@ — unionh — notdef — cbackslash — x@<M — bardbl,, e n g M =;

nm{b — parenleftw): we€ H comma—n,}. ytheB areca t—e goryt heo

e—rm 301 den s—edin Hg nce Mi den s—ein Sxandsn

cet hes r ongy e xpo'*n gf un c—tionas orma G§sub s—e.; hep roofi

competed .p heproofof(i)i s m l-iar.

notde f —k—comma

An interesting corollary i s now at hand , as a direct  consequence of
the above result and the results in section 2 .
COROLLARY 3 . 7 . Consider a Banach space X with dual X ’

(i) If X has a fundamental biorthogonal system then X is almost
Asplund .
(ii) If X* has a fundamental biorthogonal system
{xi,zf}i € I C X* x X then
X* is almost weak x Asplund .
Let N be the set of all equivalent norms on a Banach space X furnished
with the metric p, defined in this way ,

p(ni,n2) = sup{| ni(z) —na(x) [;z € By}, whereni,ny € N,

and N* the set of all equivalent dual norms on X*. Since N is an open
subset of the complete metric space of all continuous seminorms on X
under the distance pand themap =: |- |— |- |I*is an homeomorphism
b etween N and

N*, both are Baire spaces . If the space #H(#*) i s replaced by the set of all
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unit balls of equivalent norms ( dual norms , resp ectively ) , we obtain
analogous

results replacing F(F*) by N(N*).

There are few known Banach spaces without fundamental biorthogonal
systems . In fact , the question whether every Banach space i s almost
Asplund remains open . According to Corollary 3 . 7 , a possible coun-
terexample should have no fundamental biorthogonal system . This is
the case of Kunen space mentioned above , but it is Asplund . On the
other hand , it is worth t o mention that the duals of the Kunen and Shelah
spaces are not almost weak x Asplund . In fact , there is no equivalent dual
norm being F —r¢ chet differentiable on a dense set in the preceding spaces .
Otherwise , the unit ball of the associated ( predual ) norm in the Kunen or
Shelah spaces would b e the closed convex hull of it s strongly exposed points

This would produce in the Kunen and Shelah spaces , by imitating the
proof of Proposition 3. 1, an uncountable family satisfying the separation
property given in ( 7 ), thus a contradition .  Plichko proved that ¢ (T) (
b eing card T strictly bigger than the cardinal of the continuum ) does not

admit a fundamental biorthogonal system .  We do not know if this space
and the Shelah space are almost Asplund .
Next  theorem illustrates , under a  different point of view

,  the relation - ship b etween convexity and Mazur intersection properties
: As an application , analogies and differences between these properties
and the Radon - Nikod ¢ m property are exhibited . Our aim here is t
o point out that =~ Mazur intersec - tion properties seem to b e a good alt
ernative t o Radon - Nikod ¢ m property when some convexity conditions
arerequired  [17],[23]and [29].  Recall that a Banach space X is
said t o have the Radon - Nikod y m property if every element of # is the
closed convex hull of it s strongly exposed points . A Banach space X is
Asplund if and only if X* has the Radon - Nikod 3 m property .
THEOREM 3 . 8 . (A) Let X beaBanach  space  whose
dual X* has the
weak + Mazur intersection property . Then
(i)  there exists a dense Gj; subset By C H such that every element of
By is the closed convex hull of i ts strongly exposed points .
(ii)  there exists a dense Gs subset Bj c By, such that every
element of B;
is the weak x closed convex hull of i ts weak x strongly exposed points .
(B ) Let X be a Banach space with the Mazur intersection property
Then there is By satisfying (1 ) and there exists a dense Gs subset
B; C By, such
that every element of B} is the weak =« closed convex hull of i ts weak x
denting points .
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4 . INTERSECTION OF CLOSED BALLS AND POROSITY

4 . 1. DISTANCE OF TWO SETS . Given a normed space
X, and two closed and bounded subsets C,D c X, denote by p(C,D) = inf
Wx—nyeAye
B}. F . Hausdorff calls p(4, B) the lower distance b etween A4 and B, though
it i s clear that it i s not a metric , since the triangle inequality i s not fulfilled
. How to define then a distance b etween closed and bounded set s ? Here
is the
most accepted formula , namely the Hausdorff distance , that we have already
used in section 3 :

d(C, D) = sup{p(z, D), p(y,C) : # € C,y € D}
=inf{e>0:CCD+eB and DCC+eB}

being B the unit ball . A well known theorem of H . Hahn establishes that
the family of all closed and bounded set s of X, endowed with the Haudorft

distance , i s a complete metric space when X is complete [ 36 ] .
Recall that Hx (or simply by #, when it causes no confusion )
denotes  the family of all closed, bounded and convex subsets
of X. To provethat H is also a

complete metric  space with the Hausdorff metric, when X is com-
plete | it just suffices t o prove that , given a convergent sequence
{C,} C H, the limit C also is a convex set . We may assume that

d(C,,C) < 1/n, for every n. Defining D, = C, + (1/n)B, we know that

C c D,and d(D,,C) < 2/n,s0 lim,{D,} =C. Now , take z,y € C and suppose

that 2 1i es in the segment [z,y] = {tz+(1-t)y : t e 0,1} If

z element —slash C, thereis m € N satisfying

(z+(2/m)B)N = notdef.notdef T i — notdef — hs — infinity;,, € 1 — p — infinity — notdefi — notdef — e~
t Z'nfz'm'tyfa?gtdeffmtdefftelement—slash—notdefnotdeffnotdef—Dnotdeffnotdef—

notdef — notde frotde fwi — notdef —h ¢ h —notdef ¢ ntradicts t e a—fct €D, {
orevery n T h-us 2 e€Cad Cs—i cnvex. T h—e refore
, Hedowed wth e H a—usdorff dstanceis ac om'Petem e—tric
saccead hnceaB i—a.sace.

2. P O r—0 s—u S TS. Motivated by problems
in Real Analysis and , espe - cially , in differentiation theory ,  several
authors considered what came t o b e known as porosity , a notion which
concerns the size of holes of a set near a point . Topologically sp eaking
,  porous sets are smaller than merely being a countable union of nowhere
dense closed set s [ 62 ] .  Consequently , porosity has been usually used t
o describ e smallness in a topological sense .  Precisely , let M be a metric
space ,P a subset of M, B(x, R) the closed ball centered at z with radius R
and ~v(z, R, P) the supremum of all r for which there exists y € M such that
B(y,7) C B(z,R)\ P. The number

p(x,P) =2 lim sup ~(z, RR, P)
R—0
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is  called the porosity of Pat 2. We say that P is porous at =z
whenever p(z, P) >0 and , when P is porous at every point of M, we simply

say that P is a porous set . If there is e > 0 satisfying p(x, P) > ¢ for
every x € M, then Pissaid t ob e uniformly porous.  Finally , replacing
“ )—one—six6(i—1m su 7 by “)-1 in the above definition ,  we

encounter the notions of very porosity and very porous s et , respectively
The unit sphere of a normed linear space i s an easy example of an
uniformly very porous set .

In convex geometry , the use of porosity received in recent years a great
deal of attention . Several t opics as smoothness |, strict convexity
,  diameters , nearest points and others have b een investigated by using
porosity . We refer to the works of Zamfirescu [ 63 | , [ 64 ] and Gruber |
25 ], [ 26 | for more information about this rich line of research .

In Banach space theory, porosity has b een used t o describe t opological
properties of the set of points of F —r echet nondifferentiability [ 48 | , [ 50 |
and also in relation with questions of best approximation [ 5 | and variational
principles [ 9] . For these and other applications of porosity , we refer t
o Zajicek " s survey [ 62 | and Phelps * book [ 48 | .

Let M b e the collection of all intersections of balls , considered as a
subset
of # furnished with the Hausdorff metric . The space has the Mazur
inter - section property or MIP if M = #[39]. We will prove that M i s
uniformly very porous if and only if the space fails the MIP . To this end
, we need a handy description of the elements of  #\ M, obtained
as a consequence of Proposition 4 . 1, whose proof i s partially based in
Proposition 1 . 3.  The only difficulty li es in ( iii ) implies (1) ( see |
30 ] for the details of the proof ) . In what follows , given f e X*, we denote
Ky =Kker fN=_potder notdefequal — notdefnotdefroo € Beolon — notdefnotde f fa —
notde f)oogreaterequal — notde f — notde fzero — notdef — notdef notde fnotdef

Mf={xz €B:fr)<0y. d
r—o o—pSITION 41 . Given a Banach  space , the
following conditions are
equivalent :

(i)  The space has the Mazur intersection property . (i)  There is a
dense set F C S* satisfying My € M (L;y € M) for each

feF.

(iii )  There is a dense set F c S* satisfying K;e€ M for each f € F.

THEOREM 4 . 2 . The set M is uniformly very porous if and
only if the space fails the Mazur Intersection Property .

Proof . We find it convenient t o isolate from the argument the
following observation : consider Ce€H and X>0Ss0that D={ze
C:d(z,0C0) >
A} = @; every set E € H with d(C,E) < X contains also D.  The proofis
fairly
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easy : if z € D\ E, there i s a norm one functional f separating z and E.
Say , for instance , that f(z) >sup f(E). Clearly ,sup f(C)> f(z)+\ >
sup f(E)+ ), s0 d(C,E) > ), a contradiction .

By Proposition 4 . 1, if X fails the Mazur Intersection Property
there i s a norm one functional f such that M; element—slash M. It
means that there i s also
zo € B\ My such that every ball containing M; contains also zy. Denote by
a = f(zg) > 0 and consider an arbitrary subset  C € B. We will prove that

p(C,M) =2 lim inf ~(C,R®M) > la+a
R—0

and the proof will b e accomplished by looking at two cases .

Case 1. The functional f attains it s maximum over C, say at
y0 € C.Definethesets Cr, = C+RBand Dr = {ze€Cg:f(zx) <
sup f(C)}. Notice that Dgrelement — slashM since Dpg contains y0 + RM; and
misses the point 30+
Rxo. However , we do not know the existence of r > 0 such that By (Dg,7) C
H\M, which is necessary to compute the porosity of C. It is then convenient to
select a suitable modification of Dg, namely the set Er = Drp + «oR2B.
We claim that the ball By (Egr,aR/2 —1/n) satisfies

B4(Egr,aR/2 — 1/n) Narrowdblright — notdef = notde femptyset — notde f

for n € N large enough so that aR/2—-1/n > 0. Indeed , if
G € Hand dG,Er) < aR/2—1/nthen y0+ Rxg element—slash G but
, due to the first remark , y0+ RM; C G so every ball containing G should
contain also y0 + Rxy.

Now , since d(Egr,C) < R+ Ra/2, then By(Egr,aR/2 — 1/n) C B(C,R+ Ra).
It means that ~(C,R+ Ra, M) > aR/2 —1/n, for n large enough , so (C, R+
Ra, M) > aR/2, thus implying that

2 lim inf (C,R® +* RE*M) > liminf RaR+r, = lata
R—0 R—0

Case 2.  The functional fdoes not attain it s maximum over C. Given
R >0, we take ym so that f(ym)=sup f(C)and d(ym,C)< R/m. Consider
now C, = conv ({ymuC}). Since C,, satisfies the condition
of Case 1,

v(Cpm, R+ Ra, M) > aR/2and, consequently,v(C,R+ Ra+ R/m, M) >
aR/2. Therefore

2 lim inf y(C, R ++ RRS 45 RE/™ M)
R—0

> lim inf R4+ aRRa+R/m=1+a%+1/m
R—0

for every m € N and the theorem is proved .
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Notice that , if Celement — slashM, then =z + ACslash — elementM for every
r € X and X € R. It means that M is porous in a much stronger sense than
stated in Theorem 4 . 2, and close t o the notions of cone meager and angle
- smallness introduced by Preiss and Zajicek (' see [ 50 | and [48 ] ) .

5. STABILITY OF THE SUM IN M.

Two of the most important ways of combining two convex sets C,D t

o produce a third one are the vector sum C + D and the convex hull conv

(CuD),
together with the operations C+D = (C + D) and conv (C U D) of forming
the respective  closures . The  stability of M  with respect t

o the usual  set operations is very easy t o check : M i s stable under
translations , dilations and intersections and it i s not stable under unions

, convex hulls and the closure of convex hulls . For instance , if you
consider in R @, R the sets C = {(0,0)} and D = {(1,1)}, then conv (Cu D)
i s not an intersection of balls . However , the situation with respect

t o the sum and the closure of the sum seems t o b e more complicated .
The present note i s concerned with the extent t o which the property of b
eing an intersection of balls i s preserved by the operations + and +  We
will concentrate our attention also in a modest but quite relevant question

let B be the unit ball of X, X > o0and C € M; isit true that
C+AB € M? An affirmative answer t o this  question would provide
the following topological consequence for M.

ProprosSITION 5 . 1 . The set M is a closed subset of H provided
CH+AB € M for every C € M and each X > 0.
Proof . Let {C,} be a sequence in M and let C € H be such that

lim,, d(C,,C) =0. To prove that C € M, take zelement — slashC and let § =
dist (z,C) > 0.

We may assume that d(C,,C) < §/4, for every neN.  On the one hand ,
C c C,+2d(C,,C)B and , on the other hand ,zslash — elementC,+2d(C,,,C)B.
Now , as the set C,42d(C,,C)B1i s an intersection of balls , there is a ball D
such that

zelement — slashDandC C C,+2d(C,,,C)B C D.

The stability of M under the operation + implies , in particular , that
C + D is a closed set whenever C,D € M. Therefore , in this case ,C+A\B =
C + AB € M and , by the above proposition , M i s closed . Incidentally ,
let us mention that the stability under + does not imply the stability under
the vector sum , as the following remark shows .  Recall that many non -
reflexive Banach spaces
can be renormed t o satisfy the MIP . The space ¢y(N)1i s the simplest example
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since every separable space with separable dual admits a F —r, chet differen-
tiable
(‘and thus MIP ) norm [11].

Remark 5 . 2. When X is a nonreflexive Banach space with the
MIP and C € M, the set C + AB need not be closed . Consequently , M
need not be stable under vector sums , even if it i s stable under +.

Detail . Indeed , when X is nonreflexive, there 1is a
functional f € S* which does not attain it s norm .  Since X has the
MIP and M = H, the set C = {zr € B: f(z) <0} i s an intersection of balls .
However , this is not the
case for C + AB b ecause this set is not closed when 0 < A < 1/2. Indeed |,
there
is z € (1/2)B for which f(z) = A\. Hence for all n with 1/n <1/2 -\ we have

z+(A1/n)B C B. Thena = D,, = (z+(A+1/n)B)Nminus—arrowdblright—onenotde f (minus—notde fnotde fr

x neD,clearly (n +AB)intersection—aplus — arrowdblrightnotde fparenleft — notdefslash—
notde fnotde fParenright—notdef Brarenright — infinitynotde feaval—negationslash—infinity—notdef gy _ potdefnotde f—
ds — infinity®~motdef=notdel £ hhde f — notdefs — i — notdefelement — inotdef — notdef —
notde fnt — notdef — notdefnotdef — hunion — ec — notdef®, . fos ure of
AMB Ho eve—r,C none— arrowdblright — minusparenleft — notdef — lambdanotde f —
parenrightnotdef = @notdefinfinity—a € d s — notdef — infinitynotde f°t%¢f ~*notde f coCplus — braceleftnotd.
notdef — lambdanegationslash — notdef — B — notde fnotdef — notde fnotde f U notde f
T HE b—in, Y INTE SECTION PROP r—eTY . When
B is the unit ball and C = intersection — Bi — arrowdblrightipetae notdef a
n —notdef 1 n — notdeft — infinity —e I s — negationslash — notdef — notdef — notdef
ec notdef —ti — notdef — notdef — notdef 0 {n — notdef — notdef — notdef 0 notdef —
notdef —notdefPinfinity —a ls ,notdes, negationslash—notde fnotde f —notde f —inotde f
t Unotdef — mp—angbracketright; 40 ot o w 1 —i te

+AB = NB — arrowdblright — inotde f — plusnotaeynotdef — Bnotde fnotdef — equal = p notdef — notdef — nc
10)

and ; as a consequence , t o conclude that ¢+ AB € M. However , (10 )1is
false

in general . To be convinced of this , consider (R?, |- | 2) and define
By as the FEuclidean unit ball |, B, = By + (2,0) and take X =1.

As an  easy example, mnotice that (10 ) holds in
(R"™, ||+ |lw). Sine [55] proved that (10 ) is satisfied in those normed
spaces with the so called binary intersection property ( BIP ) :  every
collection of mutually intersecting closed balls has nonempty intersection
. However , we will prove in Section 5 . 2 that the validity of
10) forevery A > 0 does not characterizes spaces with the BIP
. This property plays a major role in questions of extendability of general
continuous  linear maps , as  proved by Nachbin and  Goodner
(see [45] and references therein ) . We note that normed spaces
with the BIP are complete . Moreover , a Banach space X has the BIP if
and only if X = C(K,R) with the supremum norm , where K is a extremally
disconnected , or Stonean , compact Hausdorff space ( Nachbin [ 43 ] |



Goodner [2 7] and Kelley [ 32] ).  The following proposition improves
that above mentioned result of Sine .
PROPOSITION 5 . 3 . If a normed space X has the BIP then every

( nonemp -

ty)C = intersection — B—i € notde fnotdefnotdef — Mn™/"™%W=4D _ negationslash — notdef — notdef — notd
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Proof . Recall that , as noted above, we have X =
C(K,R). Given an extreme point e of the unit ball of X, therei s only
one way of making X into a complete vector lattice having e as an order unit
such that the norm deduced from the order relation and eis identical to the

sup norm [ 43 ].  For instance , we can choose e = 1y if the canonical order
induced by Rin C(K,R)is desired. Every closed ball is identical
to a segment and, in particular ,

B; = B(z;, 1) = [1; — rie, x; + rie).
C = intersection — Bi — arrowdblright —,otde f [notde funotde f — pbracele ft — notde fxoonotde f — notdef — notde

and , analogously ,D = [a, 8]. Indeed , given any bounded family {fi} c C(K)
both inf; fi and sup, fi( taken in the order of C(K)) are continuous functions
on K(see[38],Prop. 1.a.4). Consequently,

intersection — B_.i + notdef D — notdefnotdef oo~ unotdefp — notdef — notdef — notdefbraceleft — bracele

5. 2. THE  CASE  OF  c¢o(I). The geometry of the unit ball
of the space /(. (I) is quite close t o that of the unit ball of ¢y(7). Thus
, it seems quite natural to  ask about the stability of M in this latter
space . ( Recall that for a ( not necessarily countable ) set I, a point
r=(x;)isin cy(I) provided z; — 0in the sense that for any e > 0, there are
only finitely many indices i€ I for which |z;| >e¢.) First of all ; we must
try t o obtain an easy - to - use description of set s which are intersection
of balls . Denote by {e;} and {fi} the canonical basis of ¢y(I) and the
associated functionals , respectively . Since the
unit ball for the supremum norm on c¢o(I) i s B = intersection — fyminus —
arrowdblrightnotdef[notdef minusnotde f, 1yotger)oo 1 notdef — notdef — notdef —
negationslash 1 notdefnotdef — notdef — notdef € notde f—notde f —notde f— Sy etement—tO — notdef — notdef —
howt hat B/i acosedbalw i—-thradus A>01i andonyi i
ast hef orm

1—-1

notdef—negationslash potdef 2,\ fonotdef> bal— 1w1th
notdef—notde f

1=

: d bi
i“ngbrad{etrlghtGC notde f —notde f —notde f coo® _notdefno

notdef—notdef—notdef

e mPt¥ilsreccionwe hv

notdef — notde frotdef —intersection—notdef ;00 e f — notdef — notdef — negationslashpotqepnotdef — notdef -
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Moreover , fixing an index «g, for each i we have a,,; < sup, an; < infyba; <

bayi and , as aconsequence, there exists & > 0Osuchthat -k <
SUp, Gai <

inf, by < k for every ieI. Conversely , a set C = intersection — fyminus —
arrowdblrightrlwtdefanotdef —icomma — notde fbpotde fnotdef 1 oo an notdef —it—
braceleftnotdef — notdef —notdef —e 7 — € notdef —notdef — notdef ction o fb
llsp r—ovided t ere e ists k > s ucht at ~k<,i< b < kfr 1l i

oseeths,] txzec Cnds uppo®®, f orint-sance—comma t hat
f 0( z) < i.ecaimt hatt hebal (ai+kparenright —ei+kB contans C b utn
ot x.r othsend, o t—efis—1t hat fO( =z — (a0+ kparenright — ei0) < —k
so ze( a0+ ke— parenrighti0 +kB.c l—ea l—ry

C kB Nminus — arrowdblrightnotde f — parenle ftianotde fnotdef — zeronotdef — com

Nmainus — arrowdblrightnotde f — parenleftnotdefg_notdef_mctdef g’(}""tdeﬂ) element — propersubset,otde t—in fir

Indeed , if y € kBﬂminus—armwdblm’ght}wtdef(notdef—ainotdef, notde fonotde fin finity—bracketright), €
t infinity—notdef —he—mrotdet £ _potde fnotdef — Z€T Oparenleft—infinityynotde f —notde f —
minus{i —notdef —notde f —notde fnotdef —notde f —notde frotde f—notde f—pius UNiON —
k — notde frarentieht=c; — notde fOpracele ft—parenright = fOq) — (10 + k) >
k a nda so f0,)—(i0+k) <b0—ai—k <k—k—ai=—-ai <kF o-r
nyoh e-rindex i+#4i weh v—ae |i(y— (i0+ kparenright —ei0y =
|
f P
poition
ROPO s—iTION 5 4 . Given C and D two ( nonempty ) intersections
of balls in  ¢y(I), theset C+ D isalsoan  intersection  of balls
Precisely , it ¢ =

i(ybar — parenright < k. W  ea e a dyn owt os ate t hen extp r—o

€ notde f
tdef — notdef — notdef — negationslashjotdefd — notdef — notdef — notde finotdef — notdef — notdef — period

f—period 'The inclusion C—i—Df—propersubsetﬂ[larmwdblright—anotdefi notde f—
plusnOtdef_Cib_nOtdeantd€f+oodnegationslash—notdef—notdef—notdefibraCketright — notdefs — notdef — notdef —
s notdef—in finity—ra — notdefi — notdef gh t — notdef — notdef™otdef —notdef =1 gin finity—r
wa  notdef — Tperiod—negationslash—notdet—anotdef — notde fTnotdef — o, notdef e the
rev rseinc usion , we wlassume t—-hat 0 €[ comma—i dij or

evey ie€lerwise,we wo l—-drepace >C n D y C = C_. u
an D = D -

som e ueD . LE z= 1u—e €
{ﬁ = a— bracketleft — notdefinotdefnotdeerfwtdefnotdef, oob—1i notdef — plus —

notdef — notdef — notdef — negationslashd — notdef — notdef — notdefi{]braceright -
infinity — notdef notdef —notdef W e oo w —notdef, t— infinity notdefnotdef —
negationslashnotdef — notde fnotde f

Y

ze; € Ca nd= idye,e Ds uh t—hat zi=zi+ Joreeryic I

+ ¢ < i<b—i<ip+ comma—igea c—hi €lfllinoone(andonlyon
parenright —e of ow;_,gs ubs"®s 1= { € [ a + ¢ < z—-i <



a;comma — braceright! 2={; € I a <, =3{; €l b<zi< b—i+ g
W dee—nzi= ain a.se i efl,i—nie ie two—Iand z—i=bi

n ace 1€ three—I1 Obioy l—-y,ai<zi<i—-band = i,— ;< 1
S nee|e i—bar§|i‘f rcal—-l >mfosme m €N, wa r—ethat x( and
h—ence y)isan el emen o f ¢(I).

COROLLARY 5 . 5 . If C = N = anotdef mnotdef a notdef —
nznfzmty _ Onefnotdeffnotdeffnotdef7negationslashmp7notdefnotdef _ ’I’LOtdEf _ notdef _
t — y{i — notdef — notdef — notdef € t — er — notdef — notdef — notde fsin finity — e ct
i —notdef 0 notdef — negationslashnmotdef—notdef=o by _ g — notde frotdef—1 S 1 D
0, - || ooyand A>0then NB—arrowdblrightrotdel —plus=notdef, ., notdef—
Bnotde fin finity—equalN= B—notde f —notde f —notde f —notde f —notde f —alpha;plus — notde
i finitynotde f — C' —negationslash —notde f —notdef —notde fo, braceleft —notdef —
notdef — enotde f—notde f—notde f—notde funion — element N notdef — notdef — notdef —
notde flnotdefoenotdefthp e gationslash — notdef mnotdef U1 Y o [  (17ero—parenright
d oe n otchr at®rz es the BIp

fnotdef—notdef—notdw
S

b
. B i ' . Ba _ P (a—notdefnotdefalpha—znotdefm,tde‘
an perZOdpl—IE—SSchethat BO‘+A =B = mffintersectioninotdeff = (notdefa—notdef—bracketle ft" ot

arrowdblright—minusl
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N = anotde fnotdef — lambdaB — notde fnotde f — equal Noo © — arrowdblright — notde f — notdef — notdef — n

5. 3. POLYHEDRAL NORMS . Recall that a Banach space is
polyhedral [ 33 ] if the unit ball of any of it s finite dimensional subspaces i
s a polyhedron .  The typical example of a polyhedral space is ¢y endowed
with the usual supremum norm . Isit truethat M is stable under
vector sums in  every polyhedral space ? We will answer this question
in the negative , despite the fact that the geometry of the unit ball of these

spaces i s quite close t o that of (co, ||+ [loo)-
Most  of the knowledge that we have about polyhedral spaces is  due
t o the work of V. Fonf (see [13]and [14]) . Among many other

things he proved
that , given a polyhedral Banach space X with unit ball B, there is a set (
not necessarily countable ){fi}i € I of norm — one functionals such that :

(13) Forevery ze€X, thereis igeIsuchthat |z| = fio(z)
4)  Forevery i € I, elative)i, fiamiornn ({110 = minus—ones?{otdefn_nOtdCf?}Otdef_m_mﬁmty) m — element® ™ f

y notdefnotdef
With this t ool in our hands , we easily obtain a description of the sets in M
which i s just a generalization of the one obtained for ¢y(T"). In the following
proposition , we keep the above notation ( see [ 24 ] ) .
PROPOSITION 5 . 6 . A bounded convex set C in a polyhedral

Banach space
is an intersection of balls if and only if C = intersection— fyminus—arrowdblright), ,,,. [notdef—
in notdefnotdef — f fnotdef — parenle fto,COmma—parenright peqationslash — notdef —
notde f —notde fnotde fu — notdef — notdef — notdefbracele ft—p fnotde f —notde f —notde f —
parenlefte Cbracketright7parenright7notdef7n0tdef7notdef) .oonotdef

The Proposition above implies that in a finite dimensional Banach space
with polyhedral norm , every set in M i s a finite intersection of balls .
The first question p ertaining t o the stability of M in a polyhedral space i
s whether ,
given two sets C = intersection — fiminus — arrowdblright}wtdefanotdef —icomma —

nOtdefbnotdef}notdef a infinity_,nnegationslash—notdef—notdef—notdef—anOtdef_notdef_

. . d .
ngtdef—equalﬂnotdef,mtdef,notdefl—arrowdblmght—elementiwtdef_notdef_notdefoozgidg_bmcketleﬁcmotdefnot(
dﬁmtdef]negationslash — notdef — notde fonotde f—notde f Pnotde funion — negationslash —
notdef — notdef — notdefP "t notdef — notdef — notdef — a — notde fbraceleft —

angbraCkEtTightnotdef—notdef—notdefe

+D = in["etel g — notdefimtdef+notdefnotdef — clinfinity — bplus — notdef — notdef — notdef — negationslashr

)
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As the next proposition shows , the answer t o this question can b e negative
. even if we reformulate the question in a slightly different way :  Is (15
) true if we assume , in addition , that a; = inf fi(C),b; = sup fi(C),¢; = inf
fi(D) and
d; = sup fi(D)? The answer is again no , since a positive answer would
imply the stability of M under vector sums in every polyhedral Banach space
, and this i s not the case even in finite dimensional spaces .

PROPOSITION 5 . 7 . The set M is not stable under vector sums in
(&, |

Il 1),n > 3orint,(I).

Proof . The segment C j oining the point (1 /2,1 /2,0 ) with
(—-1/2,-1/2,0) is an intersection of exactly two balls of radius 1.  Thisis also
the case of the segment D j oining the point (-1/2,1/2,0) with (1/2,-1/2,0).
However , the set C + D is not an intersection of balls . Indeed , denote by
{f1, f2, £3, f4} the norm one functionals satisfying ( 13 ) and ( 14 ) and by B
the unit ball . Since
C+D = BN = (notde f —x y—element notde f —zparenright — elementnotde f —elementR — NOEIIISE
z = 0}, we have that inf fi(C+D) = —1and sup fi(C+D)=1forevery i=1,...,4.
According t o Corollary 6 . 4 , if C + D were an intersection of balls then

C+D = intersectionffiminus—arrowdblrightiotdef (notde f —innotde fnotde f — f fnotdef —parenle ft o, CPMS 18

which is a contradiction .
The spaces (R”,|| -| 1) and ¢,(I) are particular cases of X =Y @, Z
where
Y =(R3| -] 1) and @; denotes that the sum i s endowed with the ¢;— norm
The intersection of every ball in X with the subspace Y is an ¢;— ball
As a consequence , if a closed , bounded and convex subset of Y is an
intersection of X— balls, it is also an intersection of Y— balls.  Finally
,  the sets C and D considered in the above paragraph are intersection of
X— balls but this i s not the case for the set C +D. For instance, to
see that D i s the intersection of the two balls B, = (1/2,1/2,0) + B and
By = (—1/2,-1/2,0) + B, just
take into account that , for every
r = (21,79,m3)+2z € BiN =y notdet notdef h notdef — veooe

—/2| 422 — /2| 4a3 | +bardbl —z ||< lad |zl + slash —one2|+x2 + one —slash2 | +x3 | +z — bardb
1

nsequent 11—y,

1 =12+ bar—22 —-12|<1-[3]— | |
1 +12|+ bar—2z2 +12|<1—-|3|— | |
and the only solution i s when |z3|= | 2| =0and (x,22) € D.
It has been proved in [ 24 | that in (R, ||- || 1) the family M i s stable
under

adding balls . As a consequence , we get that this property i s different
from
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being stable under the closure of vector sums . Though the result is
also

true for (R*, |- | 1) with n > 3, the arguments of the proof are those of

the tridimensional case , which has the advantage of great simplicity .

In Remark 5. 2, we observed the existence of spaces for which M i s not
stable by adding balls .  However , we have no example of a normed space
for which M s not stable under the operation C+\B, C € M and
A>0. On the other hand , the set of norms for which M is stable under
vector sums is not closed in the space of all equivalent norms , endowed with
the uniform metric . Indeed , in a finite dimensional Banach space , the
set of norms with the Mazur intersection property i s dense .

6 . MAZUR SETS AND MAZUR SPACES

As we mentioned in the introduction , aset Cis an intersection of balls
if it satisfies the following separation property :  For every xelement—slashC,
thereis a
closed ball B such that C c B but xelement — slashB. 'This property can be
strengthened by simply replacing the point z by a hyperplane . We say
that C1isa Mazur
set if given any hyperplane H with dist (C,H) > 0, thereisaball D
such
that ¢ ¢ D and Dn = notdefnotdefnotdef N t — infinity — o, notdef —
z'nfz'm'ty—a;;tn;;}iffimfm”y_s 1 s — notdef — notdef{notde f—in finity—enotde f —unotde f —
iva~infinity | e _ element n t — notdef — notdefnotdef — notde fnotdef —t Unotdef — sy
H—-ing tat C

aM a—z, e—stifgiven feX*xw t—h sp  fCnotdef) <\ th en h—tereex i—stsab 1—Ip
ch t—hat C cDad u-sp fD)<X ( C°msiderthe h perplane
H=fl\).e—ng.by Pt e clection oalM z-a, s—etsoa
nr m d—esace.

By the separation theorem , every Mazur set i s an intersection of balls
and so P ¢ M c H. However, we will show that the conversei
snot always true, even if the normis F —rs chet differentiable . There
are mainly two reasons connecting Mazur set s with the subj ect of this paper
: On the one hand ,P1is
always stable under ( the closure ) of vector sums ; on the other hand |,

sometimes
P=M=H.
PROPOSITION G . 1. Given two Mazur sets C and D, theset C+D is
always a Mazur set . However ,Cnarrowdblright—inotde fnotdef —nnotdef —

tnotde fnotdef —ninfinity —c e element —s S infinity —notdef —ar | —notdef —1i
Y notdefnotdef — aM — infinitya — braceleft — 2, _notde f—notde frnotde fs—notdes—et —
notde fnotdef — notdefnotdef — notdef C UNION — Ns—_notdef € ¢ — notde fuenty™!,
i a ways s able u derth e cosureovectorsm sbtitis nt n
cessar i—1ly
able w th r spectto i —n tersections .

oo f—period Let C and D be two Mazur subsets of a Banach space
X. Consider a functional f € X* and X € Rsuch that sup
f(C+D) < X Denote by



a=sup f(C)and B=sup f(D).Clearly,sup f(C+D)=sup f(C)+sup f(D)
and so a+ B < A. Therefore , there are two real numbers o and p’ satisfying
a<d,p<pB and o +p <A Now,since C and D are Mazur set s , there
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are two closed balls B, and B, suchthat ¢ < B, and D <c B,
satisfying sup f(B:1) <o’ and sup f(Bs) <. The sum of the two balls B,
and By is again a ball Bz that obviously contains C+D and satisfies

sup f(Bs)=sup f(B1)+sup f(B2)<a +p8 <A

Since we know that there exist Banach spaces for which M i s not stable
under
the closure of vector sums ( we proved that (R, || - | 1) is such an
example ) , the first part of this proposition implies that P can actually b
e different from M. The two segments C and D of Proposition 5 . 7 are
the intersection of two balls ( which are , obviously , Mazur sets ) but they
themselves are not Mazur

set s .

DEFINITION 6 . 2 . Spaces in which every element of M is a Mazur
set (P = M) will b e called Mazur spaces

In an analogous way ,  we can define a subset C of a dual Banach space

X* to be aweak x Mazur set ifit can be separated
by balls from  weak x closed hyperplanes H with dist (C,H) > 0.
We can denote the family of all weak x* Magzur set s by P* and we can
say that X* 1isa weak x Mazur space if P* = M. Proposition 6. 1
can b e formulated for weak x* Mazur set s and proved in essentially the
same way . We do not know , however , an example of a weak x Mazur set
which i s not a Mazur set .  Therefore , we know no example of a weak =
Mazur space which is not a Mazur space  ( thatis, a dual space for
which P ¢ P* = M). Going back to Mazur spaces , the next proposition
shows that the case P =M = H has a nice geometric characterization , in
terms of weak x denting points of the dual unit ball . Recall that a Banach
space satisfies the MIP if and only if the set of weak * denting points of the
du)al ball i s a residual set of the dual sphere [ 1 8 ] ( see also Proposition 1 .
3).
PROPOSITION 6 . 3 . A Mazur space X satisfies the Mazur
intersection prop - erty if and only if every norm one functional in X* is a
weak = denting point of B*.

Proof . Chen and Lin provedin [6] that f is aweak
denting point  of the dual unit ball B* if , and only if , for every bounded
subset A4 c X with inf f(A)>0thereis a ball D containing A such that inf
f(D)>0. Suppose that P =%# and consider f e B* and a bounded subset
A such that inf f(A) >0 . Then C = conv (A) € P and thus there i s a
ball D satisfying A c ¢ ¢ D with inf f(D)>0. Conversely ,let C e # and
H b e a closed hyperplane such
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that dist (C,H) > 0. We may assume that H is the kernel of a norm -
one
functional f e B* and inf f(C)>0. The existence of the desired ball i s due
to the fact that fis a weak x denting point .

In Remark IT. 7. 6 of [ 1 1], there is an example of a dual norm on
01 (N) with
the property that  every point  of the unit sphere is a weak x denting
point .  Consequently , Mazur spaces with the MIP need not be reflexive ,
although they are certainly Asplund spaces . Indeed , their dual spaces admit
dual LUR norms [ 5 1] and , therefore , they admit F — 1, chet differentiable

norms .  Spaces for which every point of the unit sphere i s a denting point
can be characterized as those satisfying a weaker notion of lo cal uniform
rotundity introduced by T —r oyanski in 58 ]  and called  average
locally uniform rotundity ( see also [11]). On the other hand |,
there is a wide family of Banach spaces which are not Asplund spaces , even
though they can b e renormed t o satisfy the MIP [ 3 1] . Obviously ,
these ( renormed ) spaces cannot b e Mazur spaces . The next corollary

contains an example of an Asplund space satisfying the MIP but failing to
be a Mazur

space .
COROLLARY 6 . 4 . A reflexive space with a F —rs chet differen-
tiable norm is always a Mazur space . However , spaces with F —r¢ chet
differentiable norms need not be Mazur spaces . Finally , Mazur spaces
with the MIP are always smooth
spaces .
Proof . In a reflexive space with a F —r¢ chet differentiable norm |
every norm one functional of the dual is the differential of the norm at some
point . Con - sequently , it isa weak x strongly exposed point  (

and thus a weak x denting
point ) of the dual unit ball .

On the other hand , it is well known that there is only a partial duality
between smoothness and convexity . As a matter of fact ,  from the
pioneer - ing results about renormings on spaces of continuous functions on
scattered compact spaces due t o Talagrand [57], we know that there
are spaces with F —r¢ chet differentiable norm whose dual space admits no
rotund norm . This is the case , for instance , for C([0,w;]). Since
every weak x denting point i s also an extreme point , the proposition above
implies that the dual norm of a F —rs chet norm in a Mazur space must be
rotund . As a consequence ,C([0,w]), endowed with an equivalent F — rg
chet differentiable norm is not a Mazur space . The previous proposition
shows that , in particular , a Mazur space with the MIP has a dual rotund
norm and thus the norm of the space itself is G at eaux differentiable .
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To finish our discussion on Mazur spaces and the MIP ,  notice that the
condition of F -1, chet differentiability in  Corollary 6.4 is
essential . Indeed , there are even finite dimensional Banach spaces with
the MIP which are not
Mazur spaces . Take , for instance , a norm in R? with a dense set of
denting points which contains a segment in it s unit sphere .  The predual
norm has the
MIP but R? endowed with this predual norm is not a Mazur space .

6. 1. EXAMPLES OF MAZUR SPACES . This section i s devoted t
o present - ing some examples of Mazur spaces which are not merely reflexive
spaces with a F — 1 chet differentiable norm . We will prove that this i s the
case for co(I) and ¢ (I) with their usual norms .  These spaces are
natural candidates t o b e Mazur spaces in view of the results obtained in
Sections 2 and 3 . It is a bit surprising that every two dimensional space
is a Mazur space .  This result
distinguishes dimension d < 2 from dimension d > 3: Note that (R3, ||

| 1)is not a Mazur space , since M i s not stable under vector sums (
Proposition 5. 7 ) .

PROPOSITION 6 . 5 . For every set I, the space (co(I), |- o)
is a Mazur
space .
Proof . Consider C = intersection — fi_arrowdblright —}wtdef (notdef — ai —

notdef,notdey b notde f—bracketrighty, co,n — negationslash — notdef — notdef — notdefo — notdef — notdef — nc
rm notdef—notdef—notdef—on — element™°de/ ~notdef=notdef=e £y _infinity e
equalyiyei* € 1, ndt wor al ~ n umbes « > g s ucht hati nf f(C)=a> g.r
e—1.1 mnolss ng en° T alityina s—sum' ™ gt hat 0 € C.w em u t —sfi nda
b al Dsucht hat ¢ cD

negationslash—notdef —ion

ndi nf f(D) > B ek nowf romS e c—tion 52t hat D= ni-
arrowdblm'ghtlnotdefiotdefipmenleftcicomma—notdefnotdefidnotdef} 00; S notde f—notde f—
notdef —negationslash a notdef{lo fraius A >ifandonyif i — - d;—

And di—.i= X S ce wa n—tC C Dwe.ned [a bl c i—c dijfor
evry i€ andacordingly we ose A=s,p{ma x— braceleft | ai,| bi}}.

T estategywilbetodene ci= —Aandzixept f—o" afinte

nu mb'° of co rdinates . M r—e prci®®ly ,Jeo F Ccbe ntese
suh th tX element—slash—F|" < «a —fp2\. F,revry ic F,w, de ne

= a—i—i —2\ <70
= a—i—i +2X <70

and , for every i element—slash F, take ¢¢ = -—Xand d; = X It
is easy to check that D = intersection — fi—arrowdbiright —}wtdef (notde f —
ci—notdef, dnotae pnotde f —bracketrightyoo 1 megationslash—notdef —notdef —notdef
a notdef — notdef — notdefnotdef — notdef — notdef — a; € a notdef — notdef —
notdef — n"fity=d t notdef — h?igfj;;ﬁii:ge}nomef_a notdef notdef . €] us*
n e—edtoc omput~
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f—intersection;arrowdblright—minus
: b i€EF+ ; +,bieiis an€ofC=
sincethendeed,, point%* (i 7b]waiei+henig 1€EF\ F Api} forther stofcoordnat—e
cer

eongst o [i,b ]snce 0eC.
PROPOSITION 6 . 6 . Let K be a Stonean compact Hausdorff space
Then C(K) is a Mazur space .
We finish this section with a result that distinguishes dimension d < 2.
Indeed , we will see later that for normed linear space X with dimension

greater than 2 there is an equivalent norm || .|| for which (X, |- )
i s not a Mazur
space .

THEOREM 6 . 7 . Every two dimensional normed linear space is a
Mazur
space .

The following lemma i s a key t ool in proving Theorem 6 . 7 . We will
denote by B* the dual unit ball of B. As usual , ext C stands for the
collection of all extreme points of C.

LEMMA 6 . 8 . Suppose that C € M,z € 0C and that there exists
f € 0B*\ ext B* satisfying f(z) = sup f(C). Then there is y e B with

fly) =sup f(B)
such that any g€ 0B* with g(y) = sup g(B) satisfies g(x)=sup g(C).

Proof . Since f is not an extreme point of B*, there i s a vertex
y€ o0Bsuchthat f(y) = 1. Suppose that there is ¢ € 0B*
with g(y) = 1 but gzr) < sup g(C). Choose h € 08B* with
h(y) = 1 such that f lies in the
interior of the segment defined by h and g¢. Let 2’ be the intersection of the
lines {s € R?:h(s)=h(z)} and {se€R?:g(s)=sup g(O)}. Since

z’element — slashC,
the proof of the lemma will b e accomplished by showing that 2’1 s in every
ball containing C, which provides a contradiction .
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C Cca+AB. Consider a point z e C
satisfying g(z) =sup g¢(C). Necessarily

gla+Xy) = g(a+ AB) = supg(C) = g(2)
and , analogously ,h(a+ Ay) > h(z). Hence we have

z' € conv{x, z,a + \y}
whichimpliesz’ € C.

Notice that the condition felement —slash ext B* was essential in the
above lemma . In fact , the statement i s not true for extreme points .
Suppose , for instance ,
that D1isthe euclidean ball in R? and B = {(2,0)+3D}N = (metdef=2¢ro two — element)plus — notdef — nof
intersection t he

R2
onl
Qy
On the other hand , the lemma i s not valid for higher dimensional
spaces .
Consider , for instance , the space (R*, | .| 1),theset C = {(¢,t,0), -1 <t <1},

the point = = (0,0,0) € C and the functional f(z,2s,23) = x3 which i s not
an extreme point of the dual unit ball .

Proof of Theorem 6 . 7. It is enough to show that for any C e M, f €
oB* and ¢ > 0, there i s a closed ball B. containing C and satisfying sup
f(B:) =sup f(C)+e. We split the proof into two cases .

Case 1: feext B*. There exists y e dB such that f(y)=1 and the
line
L={secR?: f(s) =1} is ( at least ) a one - sided tangent t o B at y. Since y
defines two sides in L, it is convenient t o fix one which is tangent to B and
call
it the positive side ( with respect t o y). Let Lo ={z € R?: f(z) =sup f(O)}
and L.={xeR?: f(x) =sup f(C)+e}. We fix a point z € L. satisfying ,
first , that {z +sy : s € R}N = a notdefn — notdefnotde fe "t =Sin finity —
cn — elementd — infinity — notdef,t—"°tef potde f — hainfinity —t t h — notdef — notdef
€ s — infinity — notdef € notdef — notdef — tnotdef — partialdif fC — notde fnotdef —
notde f —notde f —notde f —intersectionarrowdblright—notde fnotde f —union—zxelement—
notdef — elementnotde f — notdef — Rnotdef — twonotdef{ ) =s pu f(C)} le s int he
pos t7Vesid of LC w t—ihresecttothep o-it—n

={z+sys € R}intersection — period = notde fnotde fnotdefnotde f

Finally , for every X > 0, we consider the point a) = 2z — Ay and the ball
ax+AB. We just need t o show that thereis Ac > 0such that C cay, +AcB.
To do



that , we first choose a point b in the positive side of Ls with resp ect to 2/
and )¢ > 0 such that

C C conv{b, ay,,z=ax, + oy}
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We need only find M\ > 0 satisfying Ao > Ao and b€ ay. +A\cB.  Consider
the point & = L.N= a— notdefy,element — plussnotdef — parenleftb{ay,)
s € R} and define the sequence

{zn =2+ —2)/n}. Let yn b e the corresponding point of d(a; + B) such
that the segment j oining =, and yn i s orthogonal ( in the euclidean sense
Jto L.. If », € 9(a;+ B), in this case we define yn =x,. Notice
that ynis well defined for n sufficiently large .  Since the positive side of
L. is tangent t o a; + B at z, we have

[yn—zn | llzp—2-1 =nlyn—a,|| [V —-2]-1 n—oo— 0.
Therefore , there is an ng such that

nllyn—zn | |V —2]-1 <elb—z]-1

for every n > ny. As a consequence ,n | yn—=z,|| < ¢and hence
d(ay, + nB)intersection — b

p
Case 2: felement — slash ext B*. Let ¢,9 € ext B* b e such that f1li
es in the interior

of the segment  [¢,9] < o0B*. Let y € Bbesuchthat fy) = 1.
We have (y) = ¢(y) = 1, since ¢(y) < 1,¢(y) < 1 and thereis 0 <t <1
satisfying

1 = fly = toly)+ 1 —t)(y). Consider now = € C satisfying
flx) =

sup f(C). By Lemma 6 . 8 we know that «(x) = sup «(C) and ,
analogously , ¢(x) =sup #(C). Asin the preceding case , we will consider
balls a) + B

for which ay+)y = z+ey. Now pick z,w € R? with ¢(z) = ¢(2)
and ¥(w) = <(z) satisfying ¢ < conv {z,w,z}. The only question

i s whether thereis X > 0so that z,we€ay+AB. The existence of such a X
can b e proved using an argument of differentiability , as in Case 1 , since

and ¢ are extreme points of B

COROLLARY 6 . 9 . A Banach space has dimension less than  three
if and only if is a Mazur space with respect to every equivalent norm .

Proof . It i s clear that  one dimensional spaces  are always
Mazur spaces and Theorem 6 . 7 states that this i s also the case of two
dimensional spaces . To prove the reverse ,  suppose that the Banach
space X contains a three —
dimensional subspace Y, which can b e assumed ( after renorming ) to be
(B2, -

| 1). Letting Z(in it s inherited norm ) b e the complement of Y in X,
so we can assume that X isthe ¢, —sum Y@®,Z  We proved in Proposition
5. 7 that in this case M is not stable under the closure of vector sums and
hence X
with this norm is not a Mazur space .
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