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ABSTRACT

Given a generating family JF of subgroups of a group G, closed under conjuga -
tion and with partial order compatible with inclusion , a new group S can be
constructed , taking into account the multiplication in the subgroups and their

mutual actions given by conj ugation . The group S is called the active sum of F,

has G as a homomorph and is such that S/Z(S) ~ G/Z(G), where Z denotes

the center .
The basic question we investigate in this paper is : when is the active sum .S of
the family F isomorphic to the group G7?

The conditions found to answer this question are often of a homological nature .
free

We show that the following groups are active sums of cyclic subgroups :
groups , semidirect products of cyclic groups , Coxeter groups , Wirtinger approx -
imations , groups of order p® with p an odd prime , simple groups with trivial
Schur multiplier , and special linear groups SL, (q) with a few exceptions .
We show as well that every finite group G such that G/G’ is not cyclic is the
active sum of proper normal subgroups .
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D 1 az - Barriga et al . Active sums I

Introduction
A motivating question for the concept of active sum is :  to what extent can one re -
cover a group G from a generating family F = {F;}i € I  of subgroups , clos ed
under conjugation , and their natural actions 7

To be more precise ,  consider the disj oint union U =[], F;, and the (
partial )
multiplication on U induced by the multiplication in the subgroups (zy is defined if and
only if z and y belong to the same subgroup in the disj oint union ) . One defines
a second ( this one global ) operation , conjugation , in U by 2% = y~lzy € F}, where
x € F, y € F; and FY = F, ( we are assuming here that the subgroups
are all

different ; see however Remark 1. 4 ) . Thus U is what we will be calling an active add
, that is , a partial algebra with two binary partial operations . ~ We think of U as the
family of subgroups {F;}i € I and their mutual actions , and we call it the active add
determined by F. Every active add determines a group called the active sum of U. This
group S is the image of U under the left adjoint to the inclusion functor from

the category of groups to the category of active adds . We show that the natural
epimorphism ¢ from S onto G is such that ¢~ (Z(G)) = Z(S), where Z denotes the
center .  We want to know under what conditions the active sum is isomorphic to the

group G.  The fact that ker (¢) C Z(S) allows us to use homology of groups ,
in particular the five - term exact sequence and Ganea ’ s extention to six terms [2 1], |
41,712].

The concept of active sums of groups originated in papers by F.  Tomas [43],]
44 ] and P . Ribenboim [ 35]. Tom & s considered what in Ribenboim ’ s terminology
are discrete active families of normal subgroups and proved , for example , that any finite
group G is the active sum of the family (W), where p runs over the primes dividing the
order of G, and W, is the subgroup generated by the p — hyphen Sylow subgroups of G.
Ribenboim proved that any finite group is the active sum of the family F of the subgroups
of G of prime power order with F ordered by inclusion . A . D 7 az - Barriga and L .
Rom ¢ n obtained a family ( also ordered by inclusion ) more economical than F whose
active sum is G, namely the family of tame intersections of subgroups of prime
power order .

Perhaps another motivating question for the concept of active sum , related to the
original one , is the following : Is there an analogue for ( not necesarily abelian ) groups
of the theorem stating that any finitely generated abelian group is a direct sum of
cyclic subgroups 7

The concept of active sum is proposed as an analogue for groups of the concept of
direct sum for abelian groups ( in fact Tom & s sometimes uses the term direct sum for
this construction ) .

Should the * building blocks * be cyclic groups 7  Ribenboim proposes the atomic
subgroups ( also called groups of weight at most one [ 24 | ) as building blocks .  These
are the groups ( important in knot theory ) normally generated by one element . It is
known ( see [ 26 ], [ 27 ] ) that the finite atomic groups are the finite groups with cyclic
abelianization .
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D 1 az- Barriga et al . Active sums I
Ribenboim defines a molecular group as one which is an active sum of atomic
groups .

Non - molecular groups are not exhibited in Ribenboim ’ s paper . Tom d s and Belana
[ 3] have constructed a 2 - group which is not an active sum of any discrete family of
proper normal subgroups . We defer to the sequel of this paper the proof that it is not
molecular .  Two intriguing questions are :  which finite groups are molecular ?; which
finite groups are active sums of cyclic subgroups 7 We will present in the sequel of this
paper families of molecular and non - molecular groups .

Besides the applications in Galois groups and finite group theory that appear in [ 43
],(42]1,[36],[7],[6],][34], active sums ( of groups ) appear in the study of
subgroups
of amalgamated free products ( see [ 30 | and Section 2 . 2. 2) , knot groups ( see [ 39 ]
and
Section 2 . 2. 5 ) , and Coxeter groups ( see [ 22 | and Section 2. 2. 4 ) . Other articles
dealing
with the active sum are [ 8],[32],[33]

Lyndon and Schupp in [ 30 ] , Section I. 1 1, consider a free product with amalgama
- tion ,G = x4 H;, and describe what in our terminology is an active family of subgroups
of G. They prove ( in Proposition 1 1. 4 ) that the active sum of this family is G, though
the proof is marred with many errors ; use of our Corollary 2 . 5 provides an easy con
- ceptual proof .  More generally , for any subgroup G* of G, they describe an active
family of subgroups of G*, with active sum N, a normal subgroup of G* such that

G* /Nisfree.

Simon [ 39 | considers finitely presented groups G with infinite cyclic abelianization
and normally generated by one element ¢, and takes the active sum S of the family of
conjugates of the subgroup generated by ¢. He called S a best Wirtinger approxima - tion
of G; the group G is the fundamental group of a closed orientable surface in R*
if and only if S is isomorphic to G for some suit able choice of .

Here is an example considered in [ 1 6 ] and [ 1 3 ] , which will not be pursued in this
paper .  Let M, be the mapping class group of the closed orientable surface F; of genus
g, that is , the quotient of the group of orientation - preserving homeomorphisms
of Fy by the subgroup of homeomorphisms isotopic to the identity .  Let ¢ be a Dehn
twist along a non - separating curve , that is , an element of M, which is not a proper power
and is represented by a homeomorphism of Fi, which is the identity in the complement of
a non - separating annulus . All such ¢ are conjugate up to inversion . By [28]¢ normally
generates My.  Again , consider the active sum S, of the family of
conjugates of the subgroup generated by t. When g > 3 it turns out that H;(M,) =0,
Hy(Mgy) = Z[16], H1(S,) = Z, and the ( central ) kernel of the natural epimorphism
from S, onto M, is 72, that is , Sy is the direct product of Z with the universal central
extension of M,. This example is important in the obtention of a finite presentation
of M,[17,45], and in the proof of Kirby ’ s surgery theorem [ 25, 29 ] . A related example
with Dehn twists along all curves is considered in [ 1 3] .

In Section 2 . 2 . 4 , we show that any Coxeter group is the active sum of a family of
subgroups of order 2. A 3 - transposition group G[1] yields an additional example of a
generating active family of subgroups of order two .  In this case two different
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D 1 az- Barriga et al . Active sums I
subgroups of the family generate a subgroup of order at most six .
The concept of active sum , or that of active add , is a common , though not always
explicit , ingredient in many seemingly unrelated papers , some of them with topological

applications . Aside from those mentioned above , we mention [10],[40],and [24].
The paper is organized as follows . In Section 1 , we give a construction of the
active sum of groups using partial algebras ( see [5] ).  We find necessary and

suffi - cient conditions on a generating active family F of subgroups of a group G, for the
abelianization of the active sum of F to be isomorphic to the abelianization of G. The
conditions found here are called regularity and independence

In Section 2 we observe that it suffices to split the canonical epimorphism from the
active sum to the group in question , to prove that they are isomorphic , provided that
the family under consideration is regular and independent . ~ We use this result in a
few examples :  free groups , free amalgamated products , semidirect products of cyclic
groups , Coxeter groups , and best Wirtinger approximations . We also introduce atomic
and molecular groups , showing that a finite class 2 group is molecular if and only if it
is the active sum of cyclic subgroups .  In Section 2 . 4 we show that the pullback of
an active sum of groups is the active sum of the inverse image of the active family of the
original group .  We use this result to show that every finite , non - cyclic group is the
active sum of proper normal subgroups , and that every finite group that is not a cyclic
p— group is the active sum of proper subgroups . We conclude the section with the study
of the active sum via homology .  We show here , that , if
the Ganea map [ 1 2 ] in certain exact sequence is an epimorphism , then regularity and
independence of the generating active family of subgroups suffice for the active sum to
be isomorphic to the group G in question .  In particular , the result applies when the
second homology group of G is trivial . A less trivial corollary of the aforementioned
result is used to show that any group of order p* with p an odd prime , is the active sum
of cyclic subgroups .

In section 3 we point out that independence is automatic for perfect groups .  We
deal next with some examples of perfect groups , and some examples of simple groups .
We show that every finite simple group with trivial Schur multiplier is the active sum

of cyclic subgroups . We investigate the finite special linear groups SL,, (q). When
n > 3, previous results show that SL,(q) is the active sum of cyclic subgroups , with a
few exceptions .  The analysis for the case n = 2 involves direct computations .  The

main result of section 3 . 4 is that , for a finite group G, and any generating regular
and independent active family F of subgroups of G, if the order of any element of F is
relatively prime to the order of the second homology group of G then the active sum of F
is a covering group of G.

Some of the experimental evidence for this paper was gathered using the computer
programs Maple and Gap .
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1. The active sum of groups
1.1. The active sum via partial algebras
We give a construction of the active sum of groups using partial algebras .  This con -

struction is economical notationally and conceptually . For the definition and proper - ties
of partial algebras we refer the reader to [ 5] . We start by defining the categories

Add and Actad . In the terminology of [ 5], Add is the category of partial algebras with
one operation ¢ - 7 of arity two ; and Acta d is the category of partial algebras with two
operations ‘ -’ , and ‘ A’ , both with arity two . What this means is that an object of
the category Add , called an add , consists of a set A, together with a partial binary

operation :
Miine—A—d127—dos - A
A2

called multiplication . A morphism of adds f : A — B is a function f : A — B, such
that f x f(Ma) C Mp, and the diagram

Maf*I Mp
-d15 — d15 —line d15 — d15 — line-
A-fB
commutes .  Composition is composition of functions .  An object A in the category

Acta d , also called an active add , consists of a set A, together with two partial binary
functions

A
Miine—A—d127—do5 - A Cazr—tine—d15-disa——A
A% A2
that we call multiplication and conjugation . A morphism f : A — B between active

adds is a function f: A — B such that f x f(M4) C Mp and f x f(C4) C Cp, and the
diagrams

MAfj(fMB CAfixfCB
line — d15 — d15  d15 — d15 — line- Aline — d15 — d15 d15 — d15 — lineA
AfB AfB

commute . Given a,b € A, we write -(a,b) = a-b and A, b) = ab. Adds can be traced
back to [ 2] .
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Denote the category of groups and homomorphisms by G rp . We have a full and
faithful functor F': G rp — Actad defined as follows :  Given a group G, the active
add F'(G) has the same underlying set as G, Mpgy =Cpi = G?;  the function

M ) — ._multiplication s B . F(G) — _
that™ 7 (n, g)GHlsg, P 13,4 Itwekeepinthegrouponly,y o,s¢ G, andthepartialg,;, .0, functionCy, e s ™ Gafunc

Grp — Add

[ 5] gives an explicit construction of the product in a category of partial algebras of a
given similarity type . It is not hard to see that this category also has equalizers of pairs of
arrows : given f,g: A — B the set {a € A| f(a) = g(a)} is a closed subset of the partial
algebra A, and it determines a closed subalgebra that is the equalizer of f and g. What
this means is that the category of partial algebras of a given similarity type is complete [
31]. Analyzing these constructions in the case of Acta d , it is not hard to see that
the functor F': Grp — Acta d defined above preserves limits .
Proposition 1. 1. The functor F :Grp — Actad has a left adjoint .
Proof . Consider the following commutative diagram :

Grp F Actad

d68 — d68 — d68 — d68 — d68 — d68y  d120 — d120 — d120 — d120 — d120 — d120y

Set

where Set is the category of sets and U and V' are forgetful functors . As we mentioned
before , F' preserves limits . It is well known that the functor U has a left adjoint . V
is clearly faithful .  Furthermore , G rp is complete , well powered and well co - powered
. These conditions suffice for the existence of a left adjoint to F[18], pg .213. line — line

Denote the left adjoint of FF by S :Actad — Grp . Explicitly, given an
active add A, we have that S(A) is the free group generated by A modulo the normal
subgroup generated by elements of the form

ab(a-b)~!  with(a,b) € My;
b~ tab(a®)™!  with(a,b) € Ca.

Explicit constructions for coproducts and directed colimits in the category of par -

tial algebras for a given similarity type are also given in [ 5] .  Furthermore , the anal
- ysis given there of congruences makes it clear that coequalizers also exist :  Given
fhg + A — B, consider the smallest congruence § on B that contains the

pairs (f(a),g(a)) for all a € A, then the coequalizer is the quotient morphism B — B/6.
This means that the category of partial algebras for a given similarity type is co - complete

As examples , if R is a rack where we view R as an active add with empty domain of
the multiplication and global conjugation , then S(R) is the associated group defined
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n[10];if Risa pregroup [ 40 ], chapter 3 , viewed as an active add where the domain
for the conjugation is empty , then S(R) is the universal group of R. Definition 1 . 2 .
(1) An active family of adds consists of a functor I' : I — Add ,

where I is a small category , together with an active add A whose underlying

addis lim IeIFI-
—
(ii) Wecall S(A) the active sum of the active family of adds .
The situation we consider in this paper is as follows . Let G be a group and I a
partially ordered set . Denote by Sub (G) the partially ordered set of subgroups of G,
where the order is given by inclusion .  Consider an injective , order preserving map

I — Sub (G), and denote by I' the functor

I - Sub(G)— Grp — Add .
We then have the add lim_, 1T'( the colimit is t aken in the category of adds ) . To use the
conjugation in the group G to define a total operation (lim_, {I)? — lim_, {I', making it
an
object of Acta d , we would need the family (I'I)I € 1 to satisfy the following conditions

(a) Tt is closed under conjugation (i. e . for every I,J € I and g € T'J, there

exists a
K €1 such that TK =T19).

(b) TheorderinI is compatible with conjugation (i.e.If I,I',J,J' K €1

with
I<J and g € TK is such that T'T"" =TT and T'J'9 =T'J, then I' < J inT .
More generally , we have

Lemma 1. 3. Let C be an active add where th e operation N :C x C — C is total .
Let
S C C? and 0 be the congruence generated by S in the underlying add of C. Then @
is a congruence in the categ ory Acta d , if the following conditions are satisfied for al l

a,bh,keC:

(1) (,b)ES,then(hbh)EG
(ii) If ( k) €S, then (a",d*) € 6.
(iii) ((a-b)", b)eﬁifabzsdeﬁnedm C.
(iv) (a hk,(a V) € 0 if h-kis defined in C.
Proof . For every h € C define h : C — C/6 such that ¢h(a) = [a"], for every a € C.
Using condition (11ii ) , it is not hard to see that ph is a morphism of adds . Condition (
i
)

tells us that S C ker ph, where ker ph = {(a,b) € C? | ph(a) = ph(b)}. From [ 5] we
know that ker ph is a congruence .  Therefore 6 C ker ph.  That is to say , for every

(a,b) € 0 we have (a",b") € 0. Similarly , for every a € C, we define ¢, : C — C/0
such that for every h € C we have 1,(h) = [a"]. We have then that 0 C ker pa.
Therefore , for every (h, k) €  we have that (a",a*) € 6. We thus conclude that for

every (a,b), (h,k) € 0 we have (a”,b%) € . line — line
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The situation we were t alking about before the lemma corresponds to C' =[], I'I,
and 6 the congruence of adds such that C'/6 = lim_, ;¢1I'1.
It is worth mentioning that the definition of active quiver of groups given in [ 35 |
produces an active add in our context , and the active sum , in the sense of [ 35 | , of the
active quiver and the left adjoint S given here applied to the active add are isomorphic .

1.2. Regularity and independence
Let G be a group and let F = (F;)i € I be a family of pairwise different subgroups of
G closed under conjugation .  What we mean by closed under conjugation is , that

for every element F; € F and every element g € G we have that FY € F, where

F! = g7'F,g. For h € F; we denote the element g~ thg € FY by hY. Assume we have

a partial order < on F compatible with group inclusion and conjugation . That is

to say, foral " k! € i, €€ IF"°haveliy,  that” L SF/UPES A thatfamily F;Fiswie, a
i ="

Subgroup peseproperties Of £, andwinthatpe

called an active family of subgroups of G.  If the family generates the group G, we will

call it a generating active family .  When the order is the trivial one we say that the
family F is dis cre te
Such a family (F, <) is an active family in the sense of [ 35] .  Therefore we can

consider its active sum S.  Explicitly , we have that S = minus — multiplyF /R, where
multiply — minusF is the free product of the elements of 7, and R is the normal
subgroup of minus — multiplyF generated by elements of the form :
(i) h7'gh(g")~! with g € F; and h € Fj.
(ii) gcij(g)_1 with g € F;, F; < Fj in F and ¢;; : F; — F} the inclusion map .
By the universal property of the active sum , there exists a unique homomorphism
¢ : 8 — G such that for every i € I the diagram

FﬂfS
d64 — d64 — d64 — d64 — d64d15 — d15 — linep
G
commutes , where 7y is the canonical injection of F; into the active sum . If the family F
generates G then ¢ : S — G is an epimorphism .

Remark 1. 4. It is of course possible to consider a more general definition allowing
for the family of subgroups to have repetitions by introducing a function

k:ITxUE) 1
i

suchthat Fy,; ) = y ' Fy.
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We assume for the rest of the section that F is a generating active family of
subgroups of G. We will make use of homology theory ; the following lemma will
allowustodoso. Lemma 1. 5. If Z(S) isth e center of S and Z(G) is the center
of G, then ¢ Y(Z(G))=

Z(8).

Proof . Since ¢ is an epimorphism , Z(S) C ¢~ }(Z(G)). For the converse , consider an
element of S represented by g € Fj, and let w € S.  We can write w = f1f2--- f, where
fie Fj(i=1,...,n). It is easy to show , by induction on n, that the element
w~tgw of S is represented by the element p(w)~tgp(w) of F,f(w). In particular , if
o(w) € Z(G), then w™lgw = g for any g € F}, and any k, and therefore w € Z(S). line—
line

Consider the following short exact sequence

1 ker(¢p) S G 1.

As a consequence of the previous lemma , we have that ker (¢) C Z(S). Therefore ( |
21], pg. 203 ) we have an exact sequence

Hy(8)¢" Ha(G)—ker(p)—H:1(S)¢" H1(G) 0.

We have that ¢ is an isomorphism if and only if ¢* is a monomorphism in H;( and
thus , an isomorphism ) , and an epimorphism in Hs. We will find necessary and suffi -
cient conditions on the family F for ¢* : H1(S) — H;(G) to be an isomorphism .

Define the following graph I . The objects of I are the elements of I. There is in I
at most one arrow from one object to another . There is an arrow ¢ — j in I if either of
the following two conditions is satisfied :

(ii) Thereisak el and a g € Fy, such that F; = F}.
Consider the following diagram I' : I — G rp : For every i € I define I'(i) = F;/R;,
where R; is the normal subgroup of F; generated by elements of the form z~'z9,

the"herey € Fjconditiony, ¥ €< Ff’then?ndFjdeﬁne < Firg 25 j})ginas]-"the. Ifthearrowi — homomorphismj;)
induced by the inclusion F; — Fj. If , on the other hand , we have that the arrow ¢ — j

in I comes from F; = FY, then define I'(i — j) as the homomorphism F;/R; — F;/R;

induced by the homomorphism z + g~ 'zg from F; to F;. It is not hard to see that the

definition of T' does not depend on the choice of g such that F; = F?.

Proposition 1 . 6 . With the a bove notation , we have that S/S’ ~lim_, 1F;/R;,

where the colimit is taken in the category of a be lian groups .
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D 1 az - Barriga et al . Active sums I~ Proof . It is not hard to see that R; is
contained in the kernel of the composition

F; —)S—>S/S/,

where the first map is the canonical inclusion of F; in the active sum S, and the second is
the projection of S onto its abelianization . Therefore we have a map F;/R; — S/S’. For
every ¢ — j in I we have that the diagram

F,/RT"IF;/R;
d71 —d71 — d71 — d71 — d71 — d71 — d71  d119 — d119 — d119 — d119 — d119 — d119 — d119
S/8’

There

commutesthey;,eram exists then a unique homomorphism lim_, F;/R; — S/S’ such

that
Fi/Rilim1F;/R;
d75 —d75 — d75 — d75 — d75 — d75 — d75 d15 — d15 — line
/S

commutes for every ¢ € I.
On the other hand , the family of homomorphisms

F, — FZ/R, — hian/Rz

I
indexed by I satisfies the appropriate conditions to apply the universal property of
that'"°2tve the 3" S.diagram Therefore , we have a unique homomorphism
S — hm_) IF;/]%z such

F; S
d73 —d73 —d73 —d73 — d73 — d73 — d73 dl15 — d15 — line
—
commutes .  Since lim_, 1 F;/R; is abelian , we have an induced homomorphism S/S’ —

lim IFi/Ri .
—
other™® two morphisms thus induced between S/S’ and lim_ yF;/R; are inverses of
eachline — line Observe that we have , for every i € I, the following short exact sequence
of abelian
groups

FNG ,F, . FG
— N 5 el

— 0.
R, -R;
Revistaszggs 17, Nam 2, Complutensessr— 319 296

Matem a tica



D % az - Barriga et al . Active sums I where 7i is the inclusion .  We obtain the
following commutative diagram of abelian
groups with exact rows [ 38 | , pp . 46 — 47 :

0 (Fi N G/)/Ri’l]iFi/RiT/)ii FiGl/G/ 0
a;d15 —d15  Bidld —d15  d15 — d15vi

hIIlI(f?z N G’)/anhmIFl/erphmIFlG’/G’ 0.
— — —

In this context , we give the following definition : Definition 1 . 7 . We say that F
is regular if Bi((F; NG")/R;) = 0 for every i € I. Next theorem follows immediately from
the definition :
Theorem 1 . 8. The fo [ lowing s tatements are equivalent .

(i) F is regular .

(i) n(lim(F;NG)/R;) = 0.

(iil) 1 is an is omorphism .
We have the following result for discrete families .

Lemmal. 9. Assume that the family F is dis crete . The family F is regular
if and only if [F,Ng(F)|=FNG' for every F € F, where Ng(F) is th e normalizer
of Fin G.
Proof . If the family F is discrete , then R; = [F;, Ng(F;)] for every i.  Then clearly
F,NG'/R; =0. Therefore F is regular .  Suppose now that F is regular .  Then ,
two elements ¢, in the same connected component of the diagram I satisfy ¢ < j and
j <i. The induced morphism F;/R; — F}/R; is an isomorphism .  If we take one
representative in every connected component of I , and call T the set of representatives ,
we have that lim_, 1F;/R; ~ @, Fy/R;.  Given 4, we may assume that i € 7. Then
Bi is basically the coprojection F;/R; — @teT F;/R;. Since F is regular , we have
that F;NG' C R; = [F;, Ng(F;)]. The inclusion [F;, Ng(F;)] C F; NG’ is always
satisfied . line — line

In some cases it is easier to work with what we call a transversal .  We define the
equivalence relation ~ on I as follows .  For i,j € I we say that ¢ ~ j if and only if there
is a g € G such that Fz-g = F;. A subset T' C I that contains exactly one representative
for each class of equivalence of ~ is called a transversal . It is not hard
to see that
Lemma 1.10. F is regular if for e very t € T, there exists an i € I with i ~t, such

thatBi((F; N G')/R;) = 0.
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We define the graph T from T and ~ as follows : The objects of T are the elements
of T. There is at most one arrow in T between any two objects s and ¢ in T . There is
an arrow s — t in T if we can find ¢ ~ s and j ~ t such that there is an arrow

i — jin.

We now define a diagram from T to the category of abelian groups :  for every ¢ €
T let A, = F;G'/G’. 1If there is an arrow s — ¢t in T , then we can induce a canonical
homomorphism A, — A;. We can then consider the abelian group lim_;.. A;.

For every i € I there is a t € T such that i ~ t. We therefore have an isomorphism
F,G'/G" — A;. These isomorphisms induce a homomorphism

lim F;G' /G’ — lim A;.
— —

I T
It is not hard to see that the above homomorphism is an isomorphism .
Now , for every t € T we have an obvious monomorphism A; — G/G’.  Further -
more , if s = ¢ in T | the diagram

As At
d69 — d69 — d69 — d69 — d69 — d69 d15 — d15 — line
GG
commutes .  We can induce then a unique homomorphism ¢ : lim_, v A4; — G/G’ such
that for every t € T the diagram
Atfti hm TAt
—

d70 — d70 — d70 — d70 — d70 — d70 — d70  d15 — d15 — linee
GG

commutes , where ¢; is the canonical homomorphism into the colimit .  Since the ho -
momorphism A; — G /G’ is mono , we conclude that every ¢; is also mono .  Observe
furthermore that € is an epimorphism .

Definition 1.11. F is called independent if the homomorphism ¢ : lim_, v 4; — G/G’
is an isomorphism .

Theorem 1.12. px :S5/S8 — G/G’ is an is omorphism if and only if F is reqular
and independent .

Proof . The composition

S/8' lim 1F; /R, lim 1 F,G' /G G/G

lim TAt
—
is the homomorphism ¢* : S/S" — G/G’ induced by ¢ : S — G. line — line
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2. First conditions for recovering a group as an active sum
2.1. Generating sets for the active sum
We show in this section that , for any regular and independent family of subgroups of
a group G, a subset of the active sum generates the active sum if its image under the
canonical projection to G generates G. An interesting corollary in such a case is that ,
to prove that the active sum is isomorphic to the given group , it suffices to split the
canonical projection from the active sum to the group . Lemma 2 . 1 . Let H be a
subgroup of a group G. If HG' =G and HZ(G) = G then

H=¢G

Proof . If HZ(G) = G, we have that for every g1, g2 € G, we can find hy, hy € H and
21,22 € Z(QG) such that gi = h;z;. Clearly [g1, g2] = [h121, hoza] = [h1, ha]. Therefore

G' = H'.ThenG = HG' = HH' = H. line — line

Corollary 2 . 2. Let G be a group and X C G a subset . If the images of
X under the canonical homomorphisms G — G/G', and G — G/Z(G) generate G/G’
and G/Z(G) respectively , then X generates G.

Corollary 2. 3. If o S — G s an epimorphism  of groups
, such that ker ¢ C S'NZ(S), then a subset X of S generates S if and only
if ©(X) generates G.

Proof . Assume that ¢(X) generates G. Consider

S G~ S/ker ¢ S/S' N Z(S)d103 — d103 — d103 — d103 — d1035/S’
d87 — d87 — d875/Z(8S).

Observe that every arrow is an epimorphism . Since ¢(X) generates GG, we have that
its images under S — S/S’" and S — S/Z(S) generate S/S" and S/Z(S) respectively .
According to the previous corollary , we have that X generates S. line — line

We can now show :

Proposition 2. 4. Let G be a group , andlet F be a generating
active family of subgroups of G. Let S  be th e active sum of th e family F,
andlet ¢ : S — G be the canonical homomorphism . If F is reqular and

independent , then a subset X C S

generates S if and only if »(X) generates G.

Proof . The fact that F is regular and independent means that the bottom arrow of
the commutative diagram

S G

line — d15 — d15 d15 — d15 — line

S/S"-0.G/G
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is an isomorphism . It is easy to see then , that ker ¢ C S’. On the other hand ,
according to Lemma 1 . 1. 5, ker ¢ C Z(S). Now apply the previous corollary . line —
line
Corollary 2 . 5. Let F be a reqular and independent generating active family of
sub - groups of a group G. Let S  be the active sum of th e family F, and

¢ : S— G the canonical projection . The epimorphism ¢ : .S — G splits if and
only if ¢ is an is omorphism .
2. 2. Examples

We use the above results to prove that several groups are active sums of certain families
of subgroups , cyclic subgroups in most cases .
2.2.1. FREE GROUPS
As a first example , let F' be a free group on the set X. Let F := {(z¥) |z € X,w €
F}. Tt is clear that F is a generating active family of cyclic subgroups of F.

Since (z™) N F’ is trivial for every element of F, we have that the family is regular .

It is also easy to see that we can choose the family {(z)},cX  as representa -

tive groups for the transversal . Then the colimit lim_,, ¢ x (z)F’/F’ in the category of
abelian groups is isomorphic to the free abelian group in X, and isomorphic to it by
the homomorphism induced by the inclusions (x)F'/F’ — F/F’.  Thus the family is
independent .

Let S be the active sum of the family F. According to Corollary 2 . 5, to show that S
is isomorphic to F' it suffices to split the canonical projection 7 : S — F.  This is easily
done since F' is free .

2.2.2. FREE AMALGAMATED PRODUCTS

Let (H,), € N be a family of groups and A another group . Assume that , for every
v € N we have an inj ective homomorphism ¢v : A — H, that is not an isomorphism .
Let G be the amalgamated product of the groups H, with amalgamated subgroup

A.  For details of this construction we refer the reader to [ 30 ] . Let ¢, : H, — G
be the usual homomorphism . It is well known that v, is an inj ection , so that we can
identify H, with a subgroup of G. It is also well known that G is the colimit in G rp of
the diagram

o,
d55_d55d1237d1107d1237d1107d1237dll[)*d1237d1107d1237d1107d123“”’ ,
Ad80 — d80 — d80 — d80y, ,, 7’ Hyr

with inj ections ¢, : H, — G.
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We want to express G as the active sum of the active family of subgroups formed by
all the conjugates of A in G plus all the conjugates of H, in G, for all v € N, ordered by
inclusion . We denote by S the active sum of this family , and let ¢ : S — G be the usual
projection . Observe that the diagram

d111—-d111—d111—d111
Ad55 — d55, |

v d55—d55, Hy 1d79— d6(

— d80—d80—d8oY, .-
d80—d80—ds0—dsoY, ,,.:

d123—d110—d123—-d110—d123—d110—d123—d110—d123—d110—d123—prime

commutes , where A\, : H, — S is the usual homomorphism to the active sum . By the
universal property of the colimit , there is a unique homomorphism 7 : G — S such that
mo, = A\, for every v € N. It is clear that the diagram

Gm S
d64 — d64 — d64 — d64 — d6414d15 — d15 — linep
G
commutes . By Corollary 2.5, ¢ is an isomorphism .

As mentioned in the introduction , [ 30 ] also considers a subgroup G* of G, and
constructs an active family of subgroups of G* whose active sum is a normal subgroup
N of G* such that G*/N is free .  In this case , as in the previous one , the families
considered allow repetitions of the subgroups , see Remark 1. 1. 4 .

2.2.3. SEMIDIRECT PRODUCTS OF CYCLIC GROUPS

We show now that the semidirect product G := Z, o' Z, of Zs and Z, by t can be
expressed as an active sum of cyclic subgroups . We recall that G has two generators

x and y with the following properties : 2" = y* = 1 and y 'zy = 2.  Since x has order
r, we have t* = 1 mod r. This in particular means that (r,t) = 1.
Observe that the conjugates of y are y, yzt=1, yx2t=D yz(r=D0E=1)  Let

Fy = (yz'®=V) for i = 1,2,...,7, and let Fy = (). Consider the discrete generating
active family F = (F;)7_,. Let us see that F is regular and independent .

It is not hard to see that G’ = (z'~1). Also ,Ro = (#'~1). Thus (Fp NG’)/Ry is
trivial . It can be shown that

i(t™—1)

i(tfl))m — ymx )

(yx

In particular (yz**—1D)s = ¢*2*("=1 = 1. We conclude that F; N G’ is trivial if i # 0.
Therefore F is regular .

Now we see that F is independent .  As representatives for the transversal we
can consider Fy and Fy.  Observe that FyG'/G' ~  (z)/{z'~!).  On the other hand
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G /G ~ (y). If T is the transversal ,lim_, 7 A; ~ (z)/(z!~1) x (y), and the morphism
lim_, tA; — G/G’ is clearly and isomorphism . Therefore F is independent .
Denote the active sum of the family F by S. To avoid confusion , denote by a the
generator in S that corresponds to z, and b; the one that corresponds to yz*(*=1).
It is clear that we can define a homomorphism f : G — S such that f(z) = a and

f(y) = b;. Clearly the diagram

S
d118 — d118 — d118 — d118 — d118 — d118 — d118F  d72 — d72 — d72 — d72 — d72 — d72 — d72¥
Zs ! ZoigZs <t 7,

commutes . Thus , by Corollary 2.5, G is isomorphic to the active sum S.
2.2.4. COXETER GROUPS
Let W be a Coxeter group . We show that every W is the active sum of subgroups

Followi . .
ofgf,gf;sZe o V'™ has order thes Thenotationyelations Of [22are], wehavegiven by a( sset,)mlss’(sof)generatorszl_Deﬁneofﬂ

F:={(s") |weW,seS}

Clearly , F is an active generating family of subgroups of W of order 2 . We show first
that F is regular and independent .

There is a homomorphism W — Z, sending every s € S to 1. This means that for
every w € W and s € S, (w™tsw) N W' is trivial . Thus , F is regular .

Let T be the graph obtained from the Coxeter graph of (W, S) by deleting the edges
labeled by oo, or by an even number . Then W/W' >~ @ ) Z2, where mo(T')
denotes the connected components of I'.  Choose an s, in every element ¢ € my(T"). Then
T :={(sc) | c € mo(')} is a transversal for 7. It follows that lim . cer, (r){sc) =
@im(r)LetH %’etheTh“S}";SCtiveindependentz F. To make the notation easier
, assume that for every F' € F we have chosen an s € S and a w € W such that F' = (s%).
Furthermore , if F' = (s), assume that we have chosen w =e. Thus , we may suppose
that the family F is of the form {(s"ij)},; € J for some indexing set J. We have that H

ofthefamily -

k

L. tos;foreveryj
swi = swk s jswk % 0

kcanbepresented

¢(sj)=x;.Tobeabletoextend

. . _ €.Jg.Define: S— Hsuch
inW.AssumeS={s; }ec J, bygenerators{z }

withJy C J, andthatx;corresponds

¢ to a homomorphism W — H, we must show that the relations satisfied in W by
3 theelements +p: ofSare . satisfied _ theirimages s .
since the condition (alboss,)m(s s = 1bYicequivalens 10 under o in H.  This
is not hard ,

§'s)line—parenleft—prime—parenright—minusms,s1

S( 2 =g
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D 1 az - Barriga et al . Active sums I if m(s, s') is odd , and equivalent to

!
’(SS,)W /

s s =5
if m(s,s’) is even . Therefore we obtain a homomorphism ¢ : W — H that is clearly
a section of the usual projection H — W. By Corollary 2 . 5 we have that H and W
are isomorphic .

2.2.5. BEST WIRTINGER APPROXIMATIONS

According to [ 39 ] , a Wirtinger presentation is a presentation

({x;)i € I; {(ri)k € K)

where every relator r is of the form x;lw_lxjw where ¢,j € I and w is a word on the

generators (z;)i € I. We will assume that there is a distinguished element iy € I. Given
a group G and an element ¢t € G, a Wirtinger approximation is a group X given by a
Wirtinger presentation X = ((x;)i € I;(rg)k € K), and an epimorphism ¢ : X — G
such that 1(x;,) = t, and ¢ induces an isomorphism X/X’ — G/G’. A best Wirtinger
approximation is a Wirtinger approximation ¢ : Y — G, with Y = ((y,), € P; (rg)q € Q?
such that for every Wirtinger approximation ¢ : X — G, there exists an epimorphism
¥ : X =Y such that ¢¥(z;,) = ypo and Y = p o9,

Let G be a group , and t € G.  Assume that G/G' ~ Z and that G/{{t)) ~1,
where ((t)) denotes the normal closure of the subgroup generated by ¢. Theorem 1. 3 in |
39 ] shows that in such a case (G,t) has a best Wirtinger approximation . We show that
the active sum of the family F := {(t*) | w € G} together with the canonical projection
is a best Wirtinger approximation .  Since G/{(t)) ~ 1, we have that F is a generating
active family of subgroups of G. It is easily seen that F is regular and

independent .

We may assume that F = {(t“p)}, € P for some indexing set P, and furthermore ,
that w,o = e. LetSbethe activesum of the family /, andy : S — G
the
isregularand ~ ¢/ Gl we

w . . :S— GinducesanisomorphismS/ S’
w t74d 1w P
whenever(t*p)* *=twrinG. SinceF 1. _independent,wehavethaty then

PxQGPrelationssfls; spsq canonicalprojection Wecan PresentSwithgenerators

know that ¢ is an epimorphism , and ¢(spo) = t. Thus ¢ : S — G is a Wirtinger

approximationof (G, t).

Assume that ¢ : X — G is another Wirtinger approximation , with X = ((x;)i € I;
(re)k € K), as above . We want to construct an epimorphism v : X — S.

Since X/X' ~ Z, we have that every x; is conjugate of z;,. Therefore ¥(z;) is a
conjugate of t.  There is a unique p € P such that ¢¥(z;) = t“p. We can then
define y(z;) = s, if ¢(z;) =t"p. To be able to extend «y to all of X, we must show that
the relations in the presentation of X are also satisfied by their images under ~.
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Then in'*presentationy,, , of X, and that ¢ (z;) = t“p,

we

1= o(xy e tagay) = () 7 (W) "L We g,

Therefore s; s, 5,54 is a relator in the presentation of S. We conclude that v : X — S'is

a homomorphism . Clearly , the diagram

Xy G
vd15 — d15d126 — d126 — d126 — d126 — d126 — d126,
S
commutes , and y(x;,) = Spo- It remains to show that v is an epimorphism . Since

the morphisms S/S" — G/G’ and S/ ker ¢ — G, induced by ¢ are isomorphisms , it is
not hard to see that X — S — S/ and X — S — S/kerp —
S/Z(S) are epimorphisms , where the first arrow in both is v and the rest are projections
. According to Corollary 2 . 2 | we have that « is an epimorphism .  Thus, S is a best
Wirtinger approximation of (G, t).
2.3. Atomic and molecular groups
In this subsection we introduce a new class of subgroups , called atomic ( or of weight 1
[24]) . We also introduce the concept of molecular [ 35 ] .
Definition 2 . 6 . A group G is called atomic if there exists an element g € G, such
that G is equal to the normal closure of (g) in G. A subgroup H of a group G is called an
atomic subgroup if H is atomic in its own right . A group G is called molecular if
G is the active sum of atomic subgroups .

We denote the normal closure of (g) in G by [g]G. Thus , G is atomic if there is a

g € Gsuchthat[g]G = G.

Clearly , an abelian group is atomic if and only if it is cyclic .  We also have that
every simple group is atomic . It is not true in general that G/G’ cyclic implies that G
is atomic [ 24 ] . However , it has been shown that for finite groups , G is atomic if and
only if G/G" is cyclic [26 ] . Thus symmetric groups are atomic .  Every atomic group
is of course molecular , as is any group that is the active sum of cyclic subgroups .

Since we know that for n > 4, the alternating group A,, is not an active sum of cyclic
subgroups , A, gives us an example of a molecular group that is not the active sum of
cyclic subgroups .

2.3.1. ALL ATOMIC CLASS 2 GROUPS ARE CYCLIC
A class of groups in which being molecular is the same as being the active sum of cyclic
subgroups is the class 2 groups .
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Lemma 2. 7. If G is a class 2 atomic group , th en G is cyclic .
Proof . Assume G = [a]|G. Then we have that G/G’ ~ (aG’). Since G is class 2 , we
have G’ C Z(G). Therefore we can include G/Z(G) in G/G’, which is cyclic . We

then use an exercise in [ 20 | that says that G/Z(G) cyclic implies G abelian . line — line

It is not hard to show that every subgroup of a class 2 group is a class 2 group . Thus
we have :
Proposition 2 . 8. Let G be a class 2 group . G is molecular if and only if G is
th e active sum of cyclic subgroups .
2.3.2. ALL FINITE ATOMIC P - GROUPS ARE CYCLIC
Another class for which being molecular is the same as being the active sum of cyclic
subgroups is the class of p groups .
Lemma 2. 9. Let p be a prime number . If G is a finite atomic p— group ,
then G s cyclic .
Proof . Since G is atomic , G/®(Q) is also atomic . Thus G/®(G) is cyclic . According
to Corollary 1. 2, page 1 73 [ 1 4 ] this means that G is cyclic . line — line

Thus we have :

Proposition 2 . 10 . A p— group G is molecular if and only if it is the active sum
of a family of cyclic subgroups .
2.4. The pullback of an active sum is an active sum

We show that the pullback of a group that is the active sum of a family of subgroups is
the active sum of the family of inverse images of the given family of subgroups .
2.4.1. INVERSE IMAGE OF A FAMILY OF SUBGROUPS

Let ¢ : G — H be an epimorphism of groups , and H = (H;)i € I a generating active
family of subgroups of H. Assume that 0 € I, that Hy is the trivial subgroup , and that
Hy < H;forallieI. We can produce a generating active family of subgroups of G

by considering the inverse images of the subgroups H;. Specifically , let F; = ¢~ ' H;
and consider the family F = (F;)i € I. The order is given by F; < Fj if and only if
H; < Hj; inH. Clearly , Fy = ker (). Let S be the active sum of the family F, S’
the active sum of the family # and £ : S’ — H the canonical epimorphism .  We will
show that the pullback of ¢ along ¢ is isomorphic to the active sum of the family F. We
will need the following lemma, .
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Lemma 2. 1 1. Supposethat hy-hg---hy =k ks---ky € minus —multiply — H,
with h; € Hy, and
ki € H,,. If for every i= 1,...n, we have gi € F,, such that ¢(gi) = h;, then
wegy - cangs - -f""‘iign:f‘”"g'lef);;y gl o1 ome elementsactive sum of g;F. € F
such that gp(g;) =k; and
Proof . Ifhy-ho---hy=Fk ko kn € minus — multiplyH, then there is a sequence
hi-ho - h, =wg~wy ~ - ~wy =ky-ky---ky, of words in the elements of the family H,
where the symbol w ~ w’ means that w can be obtained from w’ by adding the identity
of some H; between two letters of w, or by multiplying together two consecutive letters of
w that belong to the same group , or by the opposite operations ( deleting an identity
that appears in w or considering a product in some H; as two letters ) . It suffices then ,
to show that the claim of the lemma is true if h1 -hy -+ h,, ~ k1 - ko ---k,,. Wedo
the case where hy = xy in H; and leave all the other cases to the reader . We have

hi-ho b1 (2y) - hepr hn ~h1-ho o1 -2y hosr - - - hy.Assumep(gi) = hy.

Then ¢(g¢) = zy. Since ¢ is onto , we can find & § € F,, such that p(Z) = = and
©(9) = y. Notice that gfg=—'=! € ker p C F,,,. Therefore gl = glg—te=1e € F,,. We

have ga(gég))_l =z,0(y) =y and (g@)_lg = gf. Therefore , the elements we can

choosearegl, ..., gf — 1, gfﬂfly,gf +1,..gn. line — line

2.4.2. THE PULLBACK OF AN ACTIVE SUM
Theorem 2 . 12 . With the same definitions , consider the pullback
P7T2 S/
mline — d15 — d15  d15 — d15 — line&
G-pH.

Then P is is omorphic to the active sum of the family F. Proof . Let (: S — G be
the canonical epimorphism . Observe that the family (¢ | F; :
F; — H;) induces a homomorphism 1 : S — S such that the diagram

FlFi H;
line —d15 — d15 d15 — d15 — line
S-S’
commutes , where the vertical arrows are the canonical inj ections . It is easy to see
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D 1 az - Barriga et al . Active sums I account that ker ¢ = Fy < F; for all i € I, we
have

9192+ gn R = (x191) - - (wp_1gn — 1) (zngn) R
= (z191) - - - (p_19n — 1%n)gnT

= (2191) -+ - (Tn_19” " nan Lgn—1)gnE

= (w191) -+ (Tp_ogn — 2°n — 179" 1)y onr

— gn—2n—1_gn_n 19—1
- (mlgl) e (ajn,QIL‘ et gl 711 n—4gn—2)gn—1gnt

21 9231 1 —n_ - 1 -1 R
= (w92 922 e — 109 1T = 20 g - g,

Applying ¢ : S — G to both sides we obtain

Y A /o g121,9231 1 gn-m g 1 -1
9=619r " gp = (a2 P20 — 17 x9 T 179 —20g) Yglg2 * " gn

_ g121 9231__1._.9_77, ~~-g_1—1
= (zqa9t2 x92°  — 1 29" 11 2791 g

in G. Therefore xyz912 12923 s — 11 ... g9n-7 19 — 21gf1 is the identity . We conclude
that

9igh - ghR=glg2--- gn®

We show now that the definition of 5 does not depend on the choice of

hiho - - hpR'.
Assume that (g, hihs - - - hpR') = (g, hihL - - - k!, R"). Therefore we have that

hihy - hph! ~t. . ht "l e R

This means that we can write hy - hg - - - hy, - B!, 71 -+« By 71 in minus — multiplyH as a
product of conjugates of generators of R’. It is clear that for every factor in this last
product

we can find a preimage along ¢ in such a way that the resulting product in minus —
multiplyF is an element of R.  Using Lemma 2 . 1 1 we can find elements gi € F,., and
gj € Fy; for all

ié{z’ysuchglgg.that“gnmp:(g/f)g/:lqh?,fg(gj)/mR. = h; and glg2- - gng’s} - ¢'T'R = R. That
is toline — line \

2.4.3. FINITE GROUPS AS ACTIVE SUMS OF PROPER SUBGROUPS

We draw now some conclusions of the pullback theorem above .  For any group G, we
can decompose G/G” as a direct sum of cyclic groups G/G" ~ ,.;C;. Let

¢ : G — @,c; Ci be the projection . We may assume that 0 € I and Cj is trivial .
Notice then that G/G’ is the active sum of the family (C;)i € I, where Cy < C; for all
1 €I. Theorem 2 . 12 asserts that G is isomorphic to the active sum of the family
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(o= 1(Cy))ie 1. This produces a non - trivial decomposition of G as an active sum of
normal subgroups provided that G/G’ is not cyclic .

As pointed out in Section 2 . 3, a finite group G is atomic if and only if G/G’ is cyclic
. Thus we have :
Theorem 2. 13. Every non - atomic finite group is the a ctive sum of proper normal
subgroups .

The following theorem states that , except for cyclic groups of prime power order ,
every finite group is decomposable .

Theorem 2 . 14 . If G is a finite group that is not a cyclic p— group , then G
is th e active sum of proper subgroups .

Proof . The previous theorem allows us to assume that G is atomic . By Lemma
2.9, G cannot be a p— group .  Then G is the active sum of it s subgroups of order a

1[35].  line — line

2.5. Central extensions and homology
2.5.1. HoMoLOGY , GANEA > S MAP AND RECULARITY AND INDEPENDENCE
Recall that a central extension is a short exact sequence

Kkline — d47 — d47S7dA7 — d47 — lineG,

where K C Z(G). Such an extension gives rise to the five - term exact sequence [ 2 1],

[4] :
0.

HQ(S)’]T* HQ(G) K Hl(S)’/T* Hl(G)

Therefore , K is trivial , that is , S — G is an isomorphism , if and only if H1(S) — H1(G)
is monic and H3(S) — Hz(G) is epic .

Thus , if S is the active sum of a generating active family F of subgroups of G, the
canonical map S — G is an isomorphism if and only if F is regular and independent , and
Hy(S) — H2(G) is surj ective . As a consequence we have :

Lemma 2 . 15 . If G is a group such that Hs(QG) is trivial , then every generating
active family of subgroups of G that is regular and independent has active sum G.

Still assuming S to be the active sum of a family F of subgroups of G, the image of
the homomorphism H3(S) — H2(G) contains , besides the images of the inclusion induced
homomorphisms Hs(F') — Hy(G) with F € F, the image of the so called
Ganea map x : H1(G) ® Z(G) — Hy(G) which we describe next .

If g, ¢’ € G are such that g¢’ = ¢'g, an element gA g’ € Ho(G), the Pontrjagin product ,
is defined as follows .  Define the homomorphism Z®Z — G such that (1,0) — g
and (0,1) — ¢’. We thus obtain Z ~ Hy(Z & Z) — H>(G). One generator
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of Hy(Z & Z) goes to the element g A ¢’ and the other to its inverse . This ambiguity of
sign can be avoided using the Schur - Hopf formula [ 4 | . However , the above description
of g A ¢’ will be enough for our purposes .
Assume now that we have a central extension

NrdA7 — d47 — lineGmd4AT — d47 — lineQ. (1)

Ganea [ 1 2 ] has added a term to the exact sequence of five terms :

Hy(G) ® Nx_H>(G)m. H>(Q) N H, (G)m. H,(Q) 0. (2)
We will call x Ganea ’ s map .  Using the algebraic description of Ganea ’ s map given
in[9], it follows that x([g] ® ) =g Az. Clearly x is an epimorphism if and only if
H,(G) is generated by elements of the form g A x with g € G and x € N. We can
take N = Z (@) in particular .

Theorem 2. 16. If x : Hi(G)®Z(G) — HyG) is an  epi-
morphism , th en every generating active family of subgroups of G that is regular
and independent has active sum is omorphic to G.

Proof . Let F be a regular and independent generating active family of subgroups of G,

and let S be the active sum of the family . Let ¢ : § — G be the induced epimorphism
and let M be the kernel of ¢. Consider the short exact sequence

0 M S G 0.

We obtain the five term exact sequence

Hy(S)p" Ha(G) M H1(S)p" H1(G)

Since F is regular and independent , we have that ¢+ is an isomorphism at the H; level .

To show that M is the trivial group it suffices then to show that % is an epimorphism at

the Hy level . Since Hs(G) is generated by elements of the form g A z with g € G

and z € Z(G), it will be enough if we show that these elements are in the image of

wx*. Let gz € S such that p(g) = g and ¢(Z) =z. Since z € Z(G), Lemma 1. 1.5

tells us that ¥ € Z(S). Therefore g AT € Hy(S). We have that ¢ x (gAT) = g Az. We

conclude that M is the zero group , that is , ¢ : S — G is an isomorphism . line — line
Recall that the short exact sequence ( 1) is called s ¢ em if it is central and N C G'.

As a corollary to our last result we have :

Corollary 2 . 17 . Let NEkline — d47 — d47Gnd4AT — d47 — line@  be a s t em

extension , with Hs(Q) finitely gen - erated and N is omorphic to H2(Q). If F is

a generating active family of subgroups of G that is reqular and independent , th en the

active sum of the family F is is omorphic to G.
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Proof . Since we have a central extension , we can induce the long exact sequence ( 2
) . Since the extension is stem , we have that . : Hi(G) — H1(Q) is an isomorphism [ 9
] . This means that the next map to the left is trivial .  Therefore , the homomorphism

H,(Q) — N is an epimorphism . Since Hs(Q) is finitely generated and isomorphic to N,
this map must be an isomorphism . This means that m, at the level H is trivial . It
follows that Ganea ’ s map x is an epimorphism . Therefore , the map H;(G) ® Z(G) —
H,(G) is surj ective and Theorem 2 . 1 6 finishes the proof . line — line

2.5.2. EXAMPLE : GROUPS OF ORDER p3

As an application we will see that all groups of order p3, with p # 2 prime , are active
sums of cyclic groups .  According to Theorem 5. 1, p . 203 of [ 1 4], there are only
two such groups for every p # 2, namely :

H:<x,y,z|xp:yp:zp:1,[x,z] :[y,z] :1a[xay]:2>7

and

K ={(a,b|a” =t =1,[a,b] = a?),

and they are extra special . Actually H' = Z(H) = (z), and K’ = Z(K) = (aP). Since
H/H' ~ K/K' ~ 7, ®Z, and Hy(Z, ® Zy,) ~ Z,, we see that both groups can be

fitted in Corollary 2. 1 7.  Therefore , to show that they can be expressed as an active
sum of cyclic subgroups , all we have to do is to find an active generating family F of cyclic
subgroups that is regular and independent .  In the case of H we consider the family

F={{xz")|i=0,1,....p—1}U{{ygz") | i =0,1,....,p — 1},

and in the case of K we consider

G = {{a)} U{(ba™) | i=0,1,...p—1}.

We leave it to the reader to show that F and G are regular and independent .
3. Perfect and simple groups
3.1. Regularity and independence for perfect groups
We will show that most of the groups SLa(q), all the simple groups with trivial
Schur multiplier and all of Suzuki * s groups [ 41 ] , with the exception of the smallest
one , are active sums of cyclic subgroups .  The proofs consist on identifying regular and
independent generating active families of cyclic subgroups ( actually , one such
subgroup and all its conjugates ) , and considering the Schur multiplier , that turns out
to be trivial in many of these cases .

If G is a perfect group , independence is not an issue :
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Lemma 3 . 1. If F is a generating active family of subgroups of a perfect group
G, then F is independent .
Proof . If G is a perfect group , then G/G’ is trivial . On the other hand , if we take any
F € F, we have that FG'/G’ is also trivial . Thus the corresponding colimit in the
definition of independence is the trivial group . Since G/G' is also trivial , the family
is independent . line — line

Next , we have a condition for regularity for cyclic subgroups :
Proposition 3. 2. Let G be a group . If a,be G,a#0, are such that a® = a®,
and s—1 and th e order of a are re lative prime , then the family

F={w Ha)w|we G}

is a reqular ( not necessarily generating ) active family of subgroups of G. Proof . Fis
clearly an active family of subgroups of G. Observe that

a*~' =a"'b"tab € [(a), No((a))].

Since (o(a),s — 1) = 1, then (a) = (a®~!). Therefore (a) = [{a), Ng({a))]. Since every
F € F is a conjugate of (a), we have that F' = [F, Ng(F)] is true for every F € F.
According to Lemma 1.1.9, F is regular . line — line
Remark 3.3 . Under the hypotheses of the proposition , if F is g enerating, then
G is
perfect ( every e lement of the family is  contained in G'). If G is s imple, th
en the family F is a generating family .

It is clear that the conditions for the proposition are satisfied if a simple group G has
as a subgroup a dihedral group of order 2m, with m odd . In such a case G has a regular
generating active family of cyclic subgroups of order m.

3.2. Simple groups with trivial Schur multiplier

Theorem 3 . 4. FEvery finite s imple group G with trivial Schur multiplier is the
active sum of cyclic subgroups .

Proof . Assume G is a finite non - abelian simple group .  Then any non - trivial

active family of cyclic subgroups is generating , and by Lemma 3 . 1 , independent . If in
addi -
tion Hy(G) is trivial , Lemma 2 . 2 . 15 tells us that G is the active sum of any non -
trivial
regular active family of cyclic subgroups of G. It suffices then to find elements in G
that satisfy the conditions of Proposition 3 . 2 . Observe that it suffices to show that G
contains a dihedral subgroup of order 2n with n odd . Since G is simple it is generated
by a conjugacy class of involutions . According to Corollary 2 . 67 in [ 1 5 ] there must be
involutions s,t € G such that the order of st is not a power of 2 . Assume the order
of st is 28n with n > 1 odd . Then (s, (st)Qk) is isomorphic to a dihedral subgroup of
order 2n. line — line
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The above proof tells us nothing about the size of the cyclic subgroups that have
to be considered .
3.3. Special linear groups
3.3.1. SL,(¢),n >3 Theorem 3 . 5. Let n>3. The group SL,(q) is an active
sum of subgroups of order
3, if it is not one of th e fo l lowing : SL3(2),SL3(3),SL4(2) and SL3(4).
Proof . According to [ 23], pages 244 — 246 , the groups SL,(q) are perfect and have
trivial Schur multiplier ( we are assuming that n > 3 and that the group is not one of
SL3(2),SL3(3),SL4(2) or SL3(4)). [11] in page 2 gives for any field K two matrices
of order 2 in SL3(K) that generate an Ss :

-1 0
A= 0 O
0 1

1 0
. B:= 0 0
0 00 -1

0 0
1 1

Furthermore ,SL;_1(q) is included in SLi(q). Thus we conclude that Ss is a subgroup

of SL,,(q). Using Lemma 3 . 1 and Proposition 3 . 2 , we obtain a generating regular and

independent active family of subgroups of order 3 . Since the Schur multiplier is trivial , the

active sum of the family is isomorphic to SL,(g), according to Lemma 2.2.15.  line — line
We will see in the sequel to this paper , that none of SL3(2), SL3(3), SL4(2) and

SL3(4) is an active sum of cyclic subgroups .

3.3.2. SL2(¢),q A POWER OF A PRIME

Let p be a prime number , and let ¢ = p” be a power of p,r > 1. We denote by F,

the finite field of order q. We will consider the special linear groups SLa(g) of 2 x 2

matrices with entries in F, and determinant 1 . The theorem we want to prove is :

Theorem 3. 6 . If q +# 4 then the group SLa(q) is an a ctive sum of cyclic subgroups

Observe that SLy(4) ~ A5.  We show in the sequel to this paper , that A5 is not the
active sum of cyclic subgroups . We begin with the case where ¢ — 1 is not a power of 2 .

Proposition 3 . 7 . If q—1 is not a power of 2, and q # 4, then the group
SLa(q) is an active sum of cyclic subgroups .

Proof . According to [ 23 ], pg . 244 and 246, SLa(q) is a perfect group , except for
SLa(2),

and the Schur multiplier is trivial ( with the exception of SL2(4)). SL2(2) =~ Ss3, and this
last group is the active sum of cyclic subgroups .  Assume that ¢ # 2. It follows from
Lemma 2.2 .15, that all we have to do is to find a regular and independent
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generating active family of cyclic subgroups . According to Lemma 3 . 1, independence
is not an issue . We will find elements in SLy(q) satisfying the conditions of Proposition 3
. 2. Let ¢ be a prime divisor of ¢ — 1 with ¢ # 2, and let A be a primitive root of ;.
Consider the following elements of SLa(q) :

(M0 (0 1
A= (N0 ) e (1)

Observe that the order of A is ¢, and that AP = A — 1 Since t is a prime number
different from 2, A and B satisfy the conditions of Proposition 3. 2.  Since A is not in
the center of SLy(g), it follows from 3 . 2. 8 in [ 37 ] that the family consisting of the
cyclic subgroup (A) and its conjugates is a generating family .  Thus , SLa(q) is
an active sum of cyclic subgroups of order t. line — line

Proposition 3 . 8 . If p#3and q—1 is a power of 2, then SLa(q) is an active
sum of cyclic subgroups .

Proof . Again [ 23 ] tells us that SLy(q) is perfect , and its Schur multiplier is trivial .

Consider the elements
1 0 cc2 0
= (10) b (02 0)

Since p # 2, B is well defined . We have that AP = A%. Since o(A4) = p and 3 are rela -
tive prime , we have that A and B satisfy the hypotheses of Proposition 3 . 2 . Therefore
the family consisting of the subgroups that are conjugates of the one generated by A, is a
regular and independent family of cyclic subgroups . Since A is not in the center of SLy(q),
that the family is generating follows as in the previous proposition . line — line

The above propositions , together with the observation about SLy(4), leave us with
the cases SLy(3"), where 3" — 1 is a power of 2 . According to [ 1 9 ] it was Leo Hebreus
who showed that the equation 2 — 3Y = —1 has only two solutions , namely 2! — 3!
and 23 — 32, Thus we are left with SL(3) and SLy(9). We will show that both groups are
active sum of cyclic subgroups .
Proposition 3 . 9. The group SLo(3) is the active sum of subgroups of order 3 .
Proof . The order of G := SLy(3) is 24.G’ has order 8 . It follows that for any element
A of order 3, (4) NG’ = 1. Tt follows from Lemma 1 . 1. 9, that the family F consisting
of all the subgroups of G of order 3 , is regular . Since F consists of 3 - Sylow subgroups
of G, then a transversal for F has exactly one element , (A) say . Clearly , the order of
(A)G' is 24 , therefore (A)G'/G' ~ G/G’', and the family is independent . [ 23 | again
says that G has trivial Schur multiplier . By Lemma 2.2.15,G is the active sum of F if
we can show that the family is generating .SLy(3) has four 3 - Sylow subgroups , giving
8 elements of order 3. It is not hard to produce with these ones five more elements to
show that the family does generate . line — line
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is the active sum of subgroups of order 3 .
Proof . Consider the family F consisting of the cyclic group generated by

11
o=(3 1)

and all its conjugates .  Every element of F has order 3.  Since SL2(9) is perfect , we
have that the family is independent . Let i be a square root of —1 in Fg, and consider the

following element in SLy(9) :
—i 0
RN

Since BX = B~1, then F is regular . And by 3. 2. 8in [ 37 ], the family generates .
Let S be the active sum of the family F, and let ¢ : S — SL2(9) be the projection .

To prove that ¢ is an isomorphism , we will show that ¢* : Ha(S) — H2(SL2(9)) is an

epimorphism . According to [ 23 | , pg .246, H2(SL2(9)) ~ Z3. Let A € F, such that

Aelement — slash{0,1, 2} .Define

(31

Observe that A is an element of SLy(9) of order 3, and that AB = BA. Thus
P := (B, A) is a 3 - Sylow subgroup of SL2(9). Let ¢ : P — SL(9) be the inclusion
. We have i, : Hy(P) — H3(SL2(9)) and the map called transfer ¢ : Ha(SLa(9)) —
Hy(P). It is well known that the composition i, o ¢t is multiplication by the index of P
in SL2(9), 80 in this case .  Since 80 is relative prime with 3, we have that i, ot
is an isomorphism .  Since Hy(P) ~ Z3, this means that i, is an isomorphism . Thus
H(SL2(9)) is generated by the element B A A( see section 2. 5) .  We need an element
in Hy(S) that is mapped to BA A.  Since (B) € F, we have a generator

B € S, corresponding to B.  Of course ©(B) = B. A proof very similar to that of
Lemma 1. 1. 5 shows that ¢~ !(Cgp,(9)(B)) = Cs(?).  Choose an element A€ S with

©(*) = A. Then 4 and B commute in S, and the element B A A in H,(S) is mapped to
BAA. Thus HyS — HSLo(9) is an epimorphism . Therefore ¢ : S — SLy(9) is an
isomorphism . line — line

3.4. Covering groups

We begin with an extension

K Gr G, (3)

of finite groups . Our first lemma is :
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Lemma 3 . 1 1. Ifthe extension (3) is central , then for e very subgroup F of G,
whose R
order is re latively prime with | K |, there is a unique homomorphism 6:F — G such
that o 0 equals the inclusion F — G. Proof . The central extension ( 3 ) induces
the central extension

K T lF F.

Since (| F |,| K |) = 1, the Schur - Zassenhaus ’ theorem [ 14 | , pg . 21 1, tells us that
7 1F ~ K x F. There is a unique homomorphism F — 7~ 'F such that the diagram

F o F
d69 — d69 — d69 — d69 — d69 — d69 — d69,4d15 — d15 — linew
F
commutes . The homomorphism we are looking for is then
F 7 F é line — line

Suppose now that we have a generating active family F = {F;}i € I of subgroups
of G, such that (| F; |,| K |) =1 for every i € I. According to the above lemma , there
are uniquely determined subgroups F of G such that 7 | = B F — F} is an 1somorphlsm .

Since conjugation does not alter order we have that F= {Fz}z € I is an active family ,
with inclusions as in the family F. We call such a family Fa lifting of the family F to
G. Tt is clear that the active sum of the family F is isomorphic to the active sum of the
family F' Now we have :

Proposition 3 . 12 . Assume that the extension (3 ) isstem , then, with the
above R N

notation , F is a generating active family of subgroups of G _

Proof . Let NNV be the subgroup of G generated by F' Since F is active and K is central
, -thesubgroup 41 ¢ @N isa f¢ jymormal /Nsubgroup. ; /( KofG’ Ttsince 18 nothardtheeytension

to see isth*tcentral®= K N that K/(K N N) is abelian . Therefore G’ C N. Since the

wehave
extension is stem , we have

that K C G’ C N.ThereforeN = G line — line

An immediate consequence of the previous two propositions is :
Proposition 3 . 13 . If ( 8 )is a s t em extension and F is an active generating
family of subgroups of G such that , for e very F € F the order of F is re latively
prime with the order of K, then there is an epimorphism from the a ctive sum of the
family F

to@ .
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Theorem 3 . 14 . Let G be a finite group . Let p be a prime dividing the order
of HyG. If G isth e active sum of an a ctive generating family F of subgroups of G,
then there exists an F € F such that p divides the order of F.
Proof . Assume F is an active generating family of subgroups of G. Let S be
the active ) of F .Assumegmupofthatpdoesthen we nothave +,stem the€extension order

,uff?;yzc e7rﬁLetg_SinceGbe
p || HoG | and H»G is abelian , there is a subgroup N of H>G such that HyG/N ~ Z,,.

acove

theimage G

. . -~ N . .
theaboveextenswnHQG/N; is,stem, G /o u(N ) T ofGgsthatnormalistolnsay’.aWeStemob

Sincegiemextension

the form :

Z,—H___G.

By what was done in the above propositions ,  taking into account the fact that p does
not divide any element of F, there is a unique lifting F' of F to H, and thus ,
an epimorphism S — H. Since | H |=| G | p, we conclude that S is not isomorphic

toG. line — line

Theorem 3. 15. Let G be a finite group  and G a COVETINg group
of G. If F s a regular and independent generating a ctive family of subgroups of
G such that for

every F € F we have that | F| and | HyG | are re latively prime , then th e active
sum N

of F is is omorphic to G.

Proof . According to Proposition 3. 1 3, the active sum S of the family F is projected
onto G, Lety : S — G be the usual projection and K := ker ¢. Consider
the following diagram

K Se G
d31431=a15=d15 - pine — d15 — d15 — d15 — d15  vlinevline
H,G G <G.

. . — G,
since sWecaninduceprojects, . the el dottedwehavearrowthat K| 5 | < H2| sl

hand [jcommutcs7
thediagram'—commute .

Sincethemakingright

Consider the exact sequence

HgS(ijQG K Hl&prlGiO

Since F is regular and independent , we have that ¢x* is an isomorphism at the H; level .
This means that the next arrow to the left is zero . Therefore the arrow HoG — K is an
epimorphism . Thus | K |<| HoG | . Now , it is j ust a question of cardinality :

| S = K || G|<| HoG | G I=91<] S| -

Therefore S is isomorphic to é line — line
Conjecture . FEvery covering group of a finite s imple group is an active sum of cyclic
subgroups .
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