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TIME - DEPENDENT BARRIER OPTIONS AND BOUNDARY
CROSSING PROBABILITIES
A . NOVIKOV , V. FRISHLING , AND N . KORDZAKHIA
Abstract . The problem of pricing of t ime - dependent barrier options is con -
sidered in the case when interest rate and volatility are given functions in
Black — Scholes framework . The calculation of the fair price reduces to the cal -
culation of non - linear boundary crossing probabilities for a standard Brow -
nian motion .  The proposed method is based on a piecewise - linear approxi -
mation for the boundary and repeated integration .  The numerical example
provided draws attention to the performance of suggested method in com -
parison to some alternatives .
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1. INTRODUCTION

In the diffusion equation for an underlying asset S; let us assume the coeffi -
cients u(t) and o(t) to be t ime - dependent ,

dS; = ,u(t)Stdt + O'(t)Stth, 0<t<T < o0, (1)

W is a standard Wiener process given on a probability space Q,F ,P ). We
assume a bank account process By i s driven by the equation dB; = r(t)B;dt and hence

t
By = exp( / r(s)ds),

o where r(t) 1is a positive function of t ime , the so - called spot interest rate .  The
solution of equation ( 1) is

t t t
Sy = Sg exp{/ pu(s)ds — 2 /02(s)d5 + /a(s)dWS}. (2)
0 0 0
We assume here that u(s) and o(s) are square - integrable and nonrandom func - t ions . Further , we

also assume that u(s) =r(s),0<s<7T. This assumption

means that we use the free - arbitrage approach to pricing of options ( see details ,
e.g.,in[l]or[2]). Then the process {S;/B;, t > 0}1is a martingale with respect to  the
information flow F, = o{S,, 0 < s < ¢} and probability measure P defined above .
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It i s well known that under the free - arbitrage assumption the fair price of an
option with a payoff function f7T is given by the formula

Cr = E[fT/Br],

where E(-) is a symbol of expectation with respect to measure P ( see details ,
e.g.,in[l]or[2]).
down - and - out call option i s a call option that expires if the sto ck price falls below the prespecified
“out ” barrier H. “ Down ” here refers to an init ial price of sto ck S, being above of the barrier H. A
down - and - in call i s a call that comes into existence i f the stock price falls below the  “in”  barrier
at any t ime during the option ’ s 1 ife . Note , i f we buy a down - and - out call and a down - and - in
call with the same barrier price , H, strike price K, and t ime to expiration ,T, the payoff of the portfolio i
s the same as for a standard call option .  In the case of up - and - out option , the barrier lies above the
initial sto ck price , and if the sto ck price ever r i ses above the barrier , then the option becomes worthless
S imilarly , there exist up - and - in options . Below we consider the case of up - and - out barrier
option with t ime - dependent upper barrier H(¢). In this case the payoff function
is

fT=(Sr—K)"I{r >T}=(S7 — K)I{Sr > K, 7>T}

where we use the notation I1{A} for the indicator function of a set A and

T=inf{t >0:5; > H(t)}.

2.  PricING OF TIME - DEPENDENT BARRIER OPTIONS
The problem is to find a fast  and accurate algorithm for the calculation of
the fair price of up - and - out barrier option

Cr = E[(Sy — K)I{Sr > K, 7>T}/Br].

This problem has been addressed , e. g. , by Roberts and Shortland in [ 3] . For s implicity
of the notation and further exposition , we assume the volatility func - t ion i s a constant : o(s) =0 > 0.
The fo llowing proposition reduces the pricing problem to the calculation of boundary crossing probabilities
by the standard Wiener process with respect to measure P .

Proposition 1 . The fair price of a up - and - out European cal | option with a single upper barrier
H(t) 15 given by

T
Ct = Sopl — Kexp(—/r(s)ds)po, (3)

0
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where

pl = P{oWr +0°T > G; oW, +o’t < g(t), t<T},

p0=P{oWr >G; oW <g(t), t<T},
T

G=In ( K ) + 20T — /r(s’)ds7
So
0

t
g(0) 1n< Ié(;) ) +2102t7/r(5)ds.

o Proof . Using ( 2 ) with o(s) = ¢ we have

Cr=E[I{Sr>K, 7>T}SE] —E[I{Sr>K, 7>T}BY]
= SOE[I{ST >K, 1> T} eXP{UWT _ 2102T}]
T

-K exp{—/r(s)ds}P{ST >K, 7>T}.

0
To see that P {Sr > K,7 > T} = p0 one needs j ust express S; and 7 in t erms
of w,.
Denote the Girsanov exponent

T T
Ze(f) = expl [ fls)aw. —2* [ f(s)as).
0o o By the Girsanov theorem (see, e.g., [2]) forany square - integrable nonrandom

function f(s) and an event A ¢ Fp

E[I{A}Zr(f)] = P{A}
where probability measure P i s such that the process
t

(4= Wt—/f(s)ds, ¢ >0}

0 is a standard Wiener process with respect to  (F;, P). Applying this fact with

f(s) = owehave

pl = ﬁ{O‘WT >G; oWe<yg(t), t<T}

= P{oWr +0’T > G; oW, +o’t<g(t), t<T}
=P{oWr +0°T > G; oW, +d*t<gt), t<T} O
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Remark 1. For other types of barrier options , such as double barrier options or partial barrier
options , the equation ( 3 ) st i1l holds with modified values of p1 and po.
We now need tools for the calculation of probabilities p1 and p0 in Proposition
1. In fact , the calculation of boundary crossing probabilities has other impor - tant  applications
besides  the pricing of barrier ~ options .  This  problem arises in various fields such as psychology (
see [4]),clinical trials (see [5]) and many other areas as physics , insurance , and nonparametric
statistics . While the t ime of calculation for the purpose of evaluating the fair price of barrier options is
very important ,  in other applications | ike clinical trials  or physics a high de - gree  of accuracy
becomes more important than the time of calculation.  For calculation other methods could
be used , such as partial differential equations ( PDE ) ,see [ 6], integral equations [7] and Monte
Carlo s imulation approaches . We now introduce a method based on numerical integration , proposed by
Wang and P stzelberger [8] andthen developed by Novikov et al. [9] which led
to an another work by P étzelberger and Wang [10]. This method may in fact
have certain advantages over the other methods . One of the advantages of this approach is that it can
be used in the case of boundaries which may even be dis - continuous . Another important advantage is
that we can control the accuracy of the approximation as it will be shown below .
Let g(s) be the boundary on the interval [0,7] which is considered as an

approximation for  function g(s) defined in  Proposition 1. For example, one may
consider g(s) as piecewise - linear continuous functions with nodes t;,ty =

0 < t4 < -+ < t, = T (in general, this function might be discontinuous or
nonlinear ) . Denote

p(i,g | w2 + 1) = P{W, <g(s), s € (tistiv1) | Wi, =i, Wiy, = 2ig1}

When g(t) is alinear function on the interval  (¢;,t;41) the last probability i s given by ( see , e . g.

181, [97)

p(lag | Ty Ty + 1)
= I{G(t:) > 24, G(tis1) > zisa }1 — exp{=2G(t:) — zt), PO — 2 ).

The next formula gives the representation for a boundary crossing probability of the form

P(gK,T):=P{W,<g(t), t<T; Wr>K}

as an n— fold repeated integral of p(i,g| x;,z; +1) and the transition probability of the Wiener process :

n—1
P(./g\,KvT) :E[I{WT >K}]Hp(27/g\‘ Wti7Wti+1)' (5)
1=0
This formula seems to be firstly noted by Wang and P 6 tzelb erger  [8]  for the case of piecewise one -

s ided continuous linear boundaries . It s generalization to
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for Cr and Cr in t erms of the
original Wiener process :

Ct = E[(SoBrexp{oWr — 02T} — K)+1(ow, < g(t), t<T}/Br],
Cr = E[(SoBr exp{oWr — 022T} — K)+1(ow, < §(t), t<T}/Br].

Let probability measure P be defined by formula ( 4 ) with

Then by the Girsanov theorem the process

(Vi =W+ @) - g(t)fo, >0} (8)

is a standard Wiener process withrespect to (F,P). Note that due to the assumption
§(T) — g(T) = 0 we have the equality Wy =Wy. Besides , expressing W, via W, from ( 8 ) and substituting it
into the representation for Zr(f) we also

have

T
(Zr(f))' = eXp{—/de(ﬁ(S) — 9(s))/odW, — AG("029(s))}-
0 As E()=E[(Zr(f))"*()] ,we have
Cr = E['Zy(f)) — 1(SoBr exp{oWr — 02,T} — K)+
<I{oW, < g(t), t<T}/Br]
= E[(Zr(f)) — 1(SoBr exp{oWr — 02,T} — K)+
xI{oW, <§(t), t<T}/Br
= B[ Zp(=f))(SoBr exp{oWy — 0?T2} — K)+
XI{O’Wt<§(t), tST}/BT]
Using this representation we get
| Ct — C |= veatendsingleE|[(Zy(—f) — 1)(Sp — K)TI{oW; < §(t),t < T}/Br|veatendsingle
< E[| Zr(—f) = 1| (57 — K)"/Br].

Here the random variables Zr(—f) and Sz are independent as they are functions of Gaussian random variables
fOT f(s)dW(s) and Wz which are independent .
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choice of function

f(s) the covariance of those random variables i s
T T
E[WT/f(S)dW(S)} = /f(S)dS = (9(T)—9(T) +4(0) = 9(0))/o =0
o o Hence
Bl Zr(f) =11 (St — K)*/Br] = E[| Zr(f) — 1 |E[(Sr — K)* /Br]

To complete the proof we note that a random variable log (Zr(f) is normally
distributed with mean —A7(gg)/(20%) and variance Ar(gg)/(0?). By direct calculation we have the equality

E| Zr(f) =1 |=2(@CAr( ,g)/0%) —2"),

where ®(z) is a standard normal distribution .  As ®(x) —1/2 < z/y/27 2 > 0 it fo llows that
2AT( ) g)
E|Z —-1|<
| Ze(H)~11< R
Remark 2 . The price of the ordinary call option E[(Sr — K)*/Br]in ( 7 ) is easy to evaluate by the
famous Black — Scholes formula .  If we assume that the
boundary g¢(t) is a twice continuously differentiable function and the lengths of intervals
(titiv1), 4 = 1,..,n— 1, for a  piecewise - linear  approximating function gt are equal (i
. e., auniform partition i s considered ) , then ,  obviously ,
Ar(gg) =O(L2) as n— oco. Hence by Theorem 1 we have
| Cr — Cr [= 0(}).
We can essentially improve this est imate by using Theorem 3 from [ 9 | along with Proposition 1 .
Proposition 2 . Let  g(t) be a twice continuously differentiable function and

g(t) be a piecewise - linear continuous function such

g(tl) = g(ti), t; = iTn, 1= 0, ey N

Thenasn — 00
e logn
| Ct — Cr |—O< n3/2 )

Theoretically , we can improve this est imate for the rate of convergence i f we allow the use of a non
- uniform partition .  In the context of boundary cross - ing problems it has recently been shown by
P 6 tzelb erger and Wang [1 0] that under some conditions on boundaries  with the use
of a specifically  designed non - uniform partition

vextendsingleP{W, < g(t), t<T}—P{W,<g(t), t<T}lvextendsingle= O ( le > .
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| Cr — Cr |:o< o )
Note that  a search for an optimal non - uniform partition could be a rather t ime - consuming procedure
especially for large n.
3. NUMERICAL EXAMPLE
This section contains a numerical example of the calculation of the fair price of a barrier option which
was considered by Roberts and Shortland in  [3].  In this paper the Vasicek model is used for the risk
- free interest rate I, :

t
It—r:a—&—/(r—ls)ds—i—aw,;

0
where W, i s a standard Wiener process independent of W,. Then r(t)=EI =

r+ et and fot r(s)ds = rt+a(l—e?). Note that the interest rate is now
considered to be stochastic rather than deterministic as in Section 2 .
Roberts and  Shortland  considered in [5] the example with S = 10, o =

0.1, r=0.1, and a=05 The style of option was the up - and - in European call option with boundary
H = 12, strike price K = 11, and maturity at 7 = 1. To price this option we use that the sum of prices of “ up
-and -down” and “up- and-in”  options equals to the price of “ standard call ”  and hence the
assertion of Theorem 1 is true for “up-and-in”  options also .

The boundary function g¢(¢) for this example is

t

g(t) =1In(H/So) + 0°t/2 — /r(s)ds = 0.18232 — 0.95t — 0.5(1 — e~ ).

0

By using an analytic approximation Roberts and Shortland obtained the following
bounds for the fair price :

0.51675 < Cr < 0.51796.
They also used the Monte - Carlo method to evaluate the fair price of the option . By s imulating 1
million sample paths  of the sto ck price with step size 0. 01 they obtained
Cr = 0.513903

with standard error 0. 016 . This value of the fair price is  less than the lower bound , although
a 95 % confidence interval for Cr does include these bounds . In order for a 95 % confidence interval
to have comparable width to the ana - Iyt ic bounds , we would require about 700 million sample paths
with step size 0. 01 . The computational t ime required to do this would clearly prevent the direct
Monte Carlo method from being useful . However , the use of the variance reduction t echnique might
dramatically reduce the required sample s ize .
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Using the suggested numerical integration method with piecewise - 1 inear ap - proximation for 50 and

400 uniformly spaced nodes , we obtained for both cases the following value for the approximation of the fair
price :

Cr = 0.51683. (9)

This value is within the analytic bounds obtained by Roberts and Shortland .

Note that by Theorem 1 the upper bound for errors of these est imates are 9-10~4

and 1.1-107%, respectively for n =50 and n =400. The stability of numerical integration i s verified by using
the Gaussian quadrature method with 32 and 64

nodes , the reported numbers are the same asin (9 )

For the calculation of boundary probabilities in Proposition 1 we also used the integral equation method
from [ 7].  Solving the integral equation it eratively , for three it erations only we obtained the fair price
as Cr =051695. Thisis also within the bounds given by Roberts and Shortland .

By using the PDE approach we obtained Cr =0.51671 as the fair price . It i s noteworthy that this i s
s 1 ightly les s than the lower bound obtained by Roberts and Shortland , although the difference i s only

in the fifth digit .  However this is an acceptable accuracy for the bank practice .
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