Displaying 781 – 800 of 908

Showing per page

On the structural result on normal plane maps

Tomás Madaras, Andrea Marcinová (2002)

Discussiones Mathematicae Graph Theory

We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by 6 + [ ( 2 D + 12 ) / ( D - 2 ) ] ( ( D - 1 ) ( t - 1 ) - 1 ) . This improves a recent bound 6 + [ ( 3 D + 3 ) / ( D - 2 ) ] ( ( D - 1 ) t - 1 - 1 ) , D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.

On the structure of path-like trees

F.A. Muntaner-Batle, Miquel Rius-Font (2008)

Discussiones Mathematicae Graph Theory

We study the structure of path-like trees. In order to do this, we introduce a set of trees that we call expandable trees. In this paper we also generalize the concept of path-like trees and we call such generalization generalized path-like trees. As in the case of path-like trees, generalized path-like trees, have very nice labeling properties.

On the structure of plane graphs of minimum face size 5

Tomás Madaras (2004)

Discussiones Mathematicae Graph Theory

A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is known that a plane graph of minimum face size 5 contains light paths and a light pentagon. In this paper we show that every plane graph of minimum face size 5 contains also a light star K 1 , 3 and we present a structural result concerning the existence of a pair of adjacent faces with degree-bounded vertices.

On the sum of powers of Laplacian eigenvalues of bipartite graphs

Bo Zhou, Aleksandar Ilić (2010)

Czechoslovak Mathematical Journal

For a bipartite graph G and a non-zero real α , we give bounds for the sum of the α th powers of the Laplacian eigenvalues of G using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.

On the total domination subdivision numbers in graphs

Seyed Sheikholeslami (2010)

Open Mathematics

A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Karami, Khoeilar, Sheikholeslami and Khodkar, (Graphs and...

On the Total Graph of Mycielski Graphs, Central Graphs and Their Covering Numbers

H.P. Patil, R. Pandiya Raj (2013)

Discussiones Mathematicae Graph Theory

The technique of counting cliques in networks is a natural problem. In this paper, we develop certain results on counting of triangles for the total graph of the Mycielski graph or central graph of star as well as completegraph families. Moreover, we discuss the upper bounds for the number of triangles in the Mycielski and other well known transformations of graphs. Finally, it is shown that the achromatic number and edge-covering number of the transformations mentioned above are equated.

On the total k-domination number of graphs

Adel P. Kazemi (2012)

Discussiones Mathematicae Graph Theory

Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ × k ( G ) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V, | N G [ v ] S | k . Also the total k-domination number γ × k , t ( G ) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V, | N G ( v ) S | k . The k-transversal number τₖ(H) of a hypergraph H is the minimum size of a subset S ⊆ V(H) such that |S ∩e | ≥ k for every edge e ∈ E(H). We know that for any graph...

On the total restrained domination number of direct products of graphs

Wai Chee Shiu, Hong-Yu Chen, Xue-Gang Chen, Pak Kiu Sun (2012)

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a graph. A total restrained dominating set is a set S ⊆ V where every vertex in V∖S is adjacent to a vertex in S as well as to another vertex in V∖S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by γ r t ( G ) , is the smallest cardinality of a total restrained dominating set of G. We determine lower and upper bounds on the total restrained domination number of the direct product of two graphs. Also, we show that these bounds...

On the toughness of cycle permutation graphs

Chong-Yun Chao, Shaocen Han (2001)

Czechoslovak Mathematical Journal

Motivated by the conjectures in [11], we introduce the maximal chains of a cycle permutation graph, and we use the properties of maximal chains to establish the upper bounds for the toughness of cycle permutation graphs. Our results confirm two conjectures in [11].

On the tree graph of a connected graph

Ana Paulina Figueroa, Eduardo Rivera-Campo (2008)

Discussiones Mathematicae Graph Theory

Let G be a graph and C be a set of cycles of G. The tree graph of G defined by C, is the graph T(G,C) that has one vertex for each spanning tree of G, in which two trees T and T' are adjacent if their symmetric difference consists of two edges and the unique cycle contained in T ∪ T' is an element of C. We give a necessary and sufficient condition for this graph to be connected for the case where every edge of G belongs to at most two cycles in C.

Currently displaying 781 – 800 of 908