Displaying 21 – 40 of 446

Showing per page

A remark on product of Dirichlet L-functions

Kirti Joshi, C. S. Yogananda (1999)

Acta Arithmetica

While trying to understand the methods and the results of [3], especially in Section 2, we stumbled on an identity (*) below, which looked worth recording since we could not locate it in the literature. We would like to thank Dinesh Thakur and Dipendra Prasad for their comments.

A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip 3 / 4 σ < 1

Yuk-Kam Lau (2006)

Journal de Théorie des Nombres de Bordeaux

Let E σ ( T ) be the error term in the mean square formula of the Riemann zeta-function in the critical strip 1 / 2 < σ < 1 . It is an analogue of the classical error term E ( T ) . The research of E ( T ) has a long history but the investigation of E σ ( T ) is quite new. In particular there is only a few information known about E σ ( T ) for 3 / 4 < σ < 1 . As an exploration, we study its mean value 1 T E σ ( u ) d u . In this paper, we give it an Atkinson-type series expansion and explore many of its properties as a function of T .

A zero density result for the Riemann zeta function

Habiba Kadiri (2013)

Acta Arithmetica

We prove an explicit bound for N(σ,T), the number of zeros of the Riemann zeta function satisfying ℜ𝔢 s ≥ σ and 0 ≤ ℑ𝔪 s ≤ T. This result provides a significant improvement to Rosser's bound for N(T) when used for estimating prime counting functions.

An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II

Andrea Ossicini (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper treats about one of the most remarkable achievements by Riemann, that is the symmetric form of the functional equation for ζ ( s ) . We present here, after showing the first proof of Riemann, a new, simple and direct proof of the symmetric form of the functional equation for both the Eulerian Zeta function and the alternating Zeta function, connected with odd numbers. A proof that Euler himself could have arranged with a little step at the end of his paper “Remarques sur un beau rapport entre...

An application of Mellin-Barnes type integrals to the mean square of Lerch zeta-functions (II).

Masanori Katsurada (2005)

Collectanea Mathematica

For the Lerch zeta-function Φ(s,x,λ) defined below, the multiple mean square of the form (1.1), together with its discrete and Irbid analogues, (1.2) and (1.3) are investigated by means of Atkinson's [2] dissection method applied to the product Φ(u,x,λ)Φ(υ,x,-λ), where u and υ are independent complex variables (see (4.2)). A complete asymptotic expansion of (1.1) as Im s → ±∞ is deduced from Theorem 1, while those of (1.2) and (1.3) as q → ∞ and (at the same time) as Im s → ±∞ are deduced from Theorems...

Currently displaying 21 – 40 of 446