Displaying 21 – 40 of 56

Showing per page

Index form equations in quintic fields

István Gaál, Kálmán Győry (1999)

Acta Arithmetica

The problem of determining power integral bases in algebraic number fields is equivalent to solving the corresponding index form equations. As is known (cf. Győry [25]), every index form equation can be reduced to an equation system consisting of unit equations in two variables over the normal closure of the original field. However, the unit rank of the normal closure is usually too large for practical use. In a recent paper Győry [27] succeeded in reducing index form equations to systems of unit...

Integral points on the elliptic curve y 2 = x 3 - 4 p 2 x

Hai Yang, Ruiqin Fu (2019)

Czechoslovak Mathematical Journal

Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E : y 2 = x 3 - 4 p 2 x . Further, let N ( p ) denote the number of pairs of integral points ( x , ± y ) on E with y > 0 . We prove that if p 17 , then N ( p ) 4 or 1 depending on whether p 1 ( mod 8 ) or p - 1 ( mod 8 ) .

On the diophantine equation x 2 + 2 a 3 b 73 c = y n

Murat Alan, Mustafa Aydin (2023)

Archivum Mathematicum

In this paper, we find all integer solutions ( x , y , n , a , b , c ) of the equation in the title for non-negative integers a , b and c under the condition that the integers x and y are relatively prime and n 3 . The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.

On the Diophantine equation x 2 + 2 α 5 β 17 γ = y n

Hemar Godinho, Diego Marques, Alain Togbé (2012)

Communications in Mathematics

In this paper, we find all solutions of the Diophantine equation x 2 + 2 α 5 β 17 γ = y n in positive integers x , y 1 , α , β , γ , n 3 with gcd ( x , y ) = 1 .

On the Lebesgue-Nagell equation

Andrzej Dąbrowski (2011)

Colloquium Mathematicae

We completely solve the Diophantine equations x ² + 2 a q b = y (for q = 17, 29, 41). We also determine all C = p a p k a k and C = 2 a p a p k a k , where p , . . . , p k are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).

Currently displaying 21 – 40 of 56