Displaying 841 – 860 of 8839

Showing per page

Are rational curves determined by tangent vectors?

Stefan Kebekus, Sándor J. Kovács (2004)

Annales de l’institut Fourier

Let X be a projective variety which is covered by rational curves, for instance a Fano manifold over the complex numbers. In this paper, we give sufficient conditions which guarantee that every tangent vector at a general point of X is contained in at most one rational curve of minimal degree. As an immediate application, we obtain irreducibility criteria for the space of minimal rational curves.

Arithmetic Fujita approximation

Huayi Chen (2010)

Annales scientifiques de l'École Normale Supérieure

We prove an arithmetic analogue of Fujita’s approximation theorem in Arakelov geometry, conjectured by Moriwaki, by using measures associated to -filtrations.

Arithmetic genus of integral space curves

Hao Sun (2018)

Czechoslovak Mathematical Journal

We give an estimation for the arithmetic genus of an integral space curve which is not contained in a surface of degree k - 1 . Our main technique is the Bogomolov-Gieseker type inequality for 3 proved by Macrì.

Arithmetic of 0-cycles on varieties defined over number fields

Yongqi Liang (2013)

Annales scientifiques de l'École Normale Supérieure

Let X be a rationally connected algebraic variety, defined over a number field k . We find a relation between the arithmetic of rational points on  X and the arithmetic of zero-cycles. More precisely, we consider the following statements: (1) the Brauer-Manin obstruction is the only obstruction to weak approximation for  K -rational points on  X K for all finite extensions K / k ; (2) the Brauer-Manin obstruction is the only obstruction to weak approximation in some sense that we define for zero-cycles of degree...

Currently displaying 841 – 860 of 8839