Rational torsion points on elliptic curves over number fields
The space S of all non-trivial real places on a real function field K|k of trascendence degree one, endowed with a natural topology analogous to that of Dedekind and Weber's Riemann surface, is shown to be a one-dimensional k-analytic manifold, which is homeomorphic with every bounded non-singular real affine model of K|k. The ground field k is an arbitrary ordered, real-closed Cantor field (definition below). The function field K|k is thereby represented as a field of real mappings of S which might...
Given a closed Riemann surface R of genus p ≥ 2 together with an anticonformal involution τ : R ---> R with fixed points, we consider the group K(R, τ) consisting of the conformal and anticonformal automorphisms of R which commute with τ...