Residue currents with prescribed annihilator ideals
The structure of the section space of a real analytic vector bundle on a real analytic manifold X is studied. This is used to improve a result of Grothendieck and Poly on the zero spaces of elliptic operators and to extend a result of Domański and the author on the non-existence of bases to the present case.
For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals , are on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are . We study such maps and build a family of examples where also fibre-integrals for , the Grothendieck sheaf, are .
We study Levi-flat real analytic hypersurfaces with singularities. We prove that the Levi foliation on the regular part of the hypersurface can be holomorphically extended, in a suitable sense, to neighbourhoods of singular points.
On étudie les singularités et l’intégrabilité d’une classe de fonctions plurisousharmoniques sur une variété analytique de dimension . Pour étudier ce problème, nous commençons par contrôler les nombres de Lelong de certains types de fonctions plurisousharmoniques . Ensuite, nous étudions les singularités du transformé strict du courant par un éclatement de au dessus d’un point. Nous répondons ainsi positivement au problème d’intégrabilité locale de , lorsque , et lorsque est une fonction plurisousharmonique...