Displaying 21 – 40 of 459

Showing per page

About stability and regularization of ill-posed elliptic Cauchy problems: the case of C1,1 domains

Laurent Bourgeois (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace's equation in domains with C1,1 boundary. It is an extension of an earlier result of [Phung, ESAIM: COCV9 (2003) 621–635] for domains of class C∞. Our estimate is established by using a Carleman estimate near the boundary in which the exponential weight depends on the distance function to the boundary. Furthermore, we prove that this stability estimate is nearly optimal and induces...

Actuator fault tolerant control design based on a reconfigurable reference input

Didier Theilliol, Cédric Join, Youmin Zhang (2008)

International Journal of Applied Mathematics and Computer Science

The prospective work reported in this paper explores a new approach to enhance the performance of an active fault tolerant control system. The proposed technique is based on a modified recovery/trajectory control system in which a reconfigurable reference input is considered when performance degradation occurs in the system due to faults in actuator dynamics. An added value of this work is to reduce the energy spent to achieve the desired closed-loop performance. This work is justified by the need...

An L¹-stability and uniqueness result for balance laws with multifunctions: a model from the theory of granular media

Piotr Gwiazda, Agnieszka Świerczewska (2004)

Colloquium Mathematicae

We study the uniqueness and L¹-stability of the Cauchy problem for a 2 × 2 system coming from the theory of granular media [9,10]. We work in a class of weak entropy solutions. The appearance of a multifunction in a source term, given by the Coulomb-Mohr friction law, requires a modification of definition of the weak entropy solution [5,6].

An observability estimate for parabolic equations from a measurable set in time and its applications

Kim Dang Phung, Gengsheng Wang (2013)

Journal of the European Mathematical Society

This paper presents a new observability estimate for parabolic equations in Ω × ( 0 , T ) , where Ω is a convex domain. The observation region is restricted over a product set of an open nonempty subset of Ω and a subset of positive measure in ( 0 , T ) . This estimate is derived with the aid of a quantitative unique continuation at one point in time. Applications to the bang-bang property for norm and time optimal control problems are provided.

Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model

I. S. Ciuperca, L. I. Palade (2011)

Mathematical Modelling of Natural Phenomena

This paper deals with the evolution Fokker-Planck-Smoluchowski configurational probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We prove the exponential convergence in time of the solution of this equation to a corresponding steady-state solution, for arbitrary velocity gradients.

Asymptotic stability for a nonlinear evolution equation

Zhang Hongwei, Chen Guowang (2004)

Commentationes Mathematicae Universitatis Carolinae

We establish the asymptotic stability of solutions of the mixed problem for the nonlinear evolution equation ( | u t | r - 2 u t ) t - Δ u t t - Δ u - δ Δ u t = f ( u ) .

Asymptotic stability of linear conservative systems when coupled with diffusive systems

Denis Matignon, Christophe Prieur (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study linear conservative systems of finite dimension coupled with an infinite dimensional system of diffusive type. Computing the time-derivative of an appropriate energy functional along the solutions helps us to prove the well-posedness of the system and a stability property. But in order to prove asymptotic stability we need to apply a sufficient spectral condition. We also illustrate the sharpness of this condition by exhibiting some systems for which we do not have the asymptotic...

Asymptotic stability of linear conservative systems when coupled with diffusive systems

Denis Matignon, Christophe Prieur (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study linear conservative systems of finite dimension coupled with an infinite dimensional system of diffusive type. Computing the time-derivative of an appropriate energy functional along the solutions helps us to prove the well-posedness of the system and a stability property. But in order to prove asymptotic stability we need to apply a sufficient spectral condition. We also illustrate the sharpness of this condition by exhibiting some systems for which we do not have the asymptotic property. ...

Asymptotic stability of stationary solutions to the drift-diffusion model in the whole space

Ryo Kobayashi, Masakazu Yamamoto, Shuichi Kawashima (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the initial value problem for the drift-diffusion model arising in semiconductor device simulation and plasma physics. We show that the corresponding stationary problem in the whole space ℝn admits a unique stationary solution in a general situation. Moreover, it is proved that when n ≥ 3, a unique solution to the initial value problem exists globally in time and converges to the corresponding stationary solution as time tends to infinity, provided that the amplitude of the stationary solution...

Currently displaying 21 – 40 of 459