Displaying 21 – 40 of 781

Showing per page

A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation

Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, Jacques Sainte-Marie (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity. Here we introduce another multilayer system with mass exchanges between the neighboring layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic pressure...

A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation*

Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, Jacques Sainte-Marie (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity. Here we introduce another multilayer system with mass exchanges between the neighboring layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic...

A multi-model approach to Saint-Venant equations: A stability study by LMIs

Valérie Dos Santos Martins, Mickael Rodrigues, Mamadou Diagne (2012)

International Journal of Applied Mathematics and Computer Science

This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear Matrix Inequalities...

A new domain decomposition method for the compressible Euler equations

Victorita Dolean, Frédéric Nataf (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Sér. I325 (1997) 1211–1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains,...

A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method

George Avalos, Matthew Dvorak (2008)

Applicationes Mathematicae

We consider a coupled PDE model of various fluid-structure interactions seen in nature. It has recently been shown by the authors [Contemp. Math. 440, 2007] that this model admits of an explicit semigroup generator representation 𝓐:D(𝓐)⊂ H → H, where H is the associated space of fluid-structure initial data. However, the argument for the maximality criterion was indirect, and did not provide for an explicit solution Φ ∈ D(𝓐) of the equation (λI-𝓐)Φ =F for given F ∈ H and λ > 0. The present...

A new two-dimensional shallow water model including pressure effects and slow varying bottom topography

Stefania Ferrari, Fausto Saleri (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional model, which approximates the three-dimensional...

A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography

Stefania Ferrari, Fausto Saleri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional model, which approximates the three-dimensional...

A Note on an Application of the Lasota-York Fixed Point Theorem in the Turbulent Transport Problem

Tomasz Komorowski, Grzegorz Krupa (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We study a model of motion of a passive tracer particle in a turbulent flow that is strongly mixing in time variable. In [8] we have shown that there exists a probability measure equivalent to the underlying physical probability under which the quasi-Lagrangian velocity process, i.e. the velocity of the flow observed from the vintage point of the moving particle, is stationary and ergodic. As a consequence, we proved the existence of the mean of the quasi-Lagrangian velocity, the so-called Stokes...

A note on bounds for non-linear multivalued homogenized operators

Nils Svanstedt (1998)

Applications of Mathematics

In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis.

A note on poroacoustic traveling waves under Darcy's law: Exact solutions

P. M. Jordan, J. K. Fulford (2011)

Applications of Mathematics

A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are...

A note on the generalized energy inequality in the Navier-Stokes equations

Petr Kučera, Zdeněk Skalák (2003)

Applications of Mathematics

We prove that there exists a suitable weak solution of the Navier-Stokes equation, which satisfies the generalized energy inequality for every nonnegative test function. This improves the famous result on existence of a suitable weak solution which satisfies this inequality for smooth nonnegative test functions with compact support in the space-time.

A parabolic system involving a quadratic gradient term related to the Boussinesq approximation.

Jesús Ildefonso Díaz, Jean-Michel Rakotoson, Paul G. Schmidt (2007)

RACSAM

We propose a modification of the classical Boussinesq approximation for buoyancy-driven flows of viscous, incompressible fluids in situations where viscous heating cannot be neglected. This modification is motivated by unresolved issues regarding the global solvability of the original system. A very simple model problem leads to a coupled system of two parabolic equations with a source term involving the square of the gradient of one of the unknowns. Based on adequate notions of weak and strong...

Currently displaying 21 – 40 of 781