The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 2741 –
2760 of
3166
We show that the range of a contractive projection on a Lebesgue-Bochner space of Hilbert valued functions Lp(H) is isometric to a lp-direct sum of Hilbert-valued Lp-spaces. We explicit the structure of contractive projections. As a consequence for every 1 < p < ∞ the class Cp of lp-direct sums of Hilbert-valued Lp-spaces is axiomatizable (in the class of all Banach spaces).
We investigate whether the projective tensor product of two Banach spaces and has the reciprocal Dunford–Pettis property of order , , when and have the respective property.
In relation to some Banach spaces recently constructed by W. T. Gowers and B. Maurey, we introduce the notion of Schroeder-Bernstein index SBi(X) for every Banach space X. This index is related to complemented subspaces of X which contain some complemented copy of X. Then we establish the existence of a Banach space E which is not isomorphic to Eⁿ for every n ∈ ℕ, n ≥ 2, but has a complemented subspace isomorphic to E². In particular, SBi(E) is uncountable. The construction of E follows the approach...
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University,
College Station, Texas, 2000. Research partially supported by the Edmund Landau Center
for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation
(Germany).The space K[0, 1] of differences of convex functions on the
closed interval [0, 1] is investigated as a dual Banach space. It is proved
that a continuous function f on [0, 1] belongs to K[0, 1]
In this report we discuss the applications of the strong unicity constant and highlight its use in the minimal projection problem.
Lindenstrauss-Pełczyński (for short ℒ) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c₀ into X can be extended to the whole c₀. Here we obtain the following structure theorem: a separable Banach space X is an ℒ-space if and only if every subspace of c₀ is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides a negative...
Sea X un espacio de Banach con una base incondicional de Schauder no numerable, y sea Y un subespacio arbitrario no separable de X. Si X no contiene una copia isomorfa de l1(J) con J no numerable entonces (1) la densidad de Y y la débil*-densidad de Y* son iguales, y (2) la bola unidad de X* es débil* sucesionalmente compacta. Además, (1) implica que Y contiene subconjuntos grandes formados por elementos disjuntos dos a dos, y una propiedad similar se verifica para las bases incondicionales no numerables...
We show that the super fixed point property for nonexpansive mappings and for asymptotically nonexpansive mappings in the intermediate sense are equivalent. As a consequence, we obtain fixed point theorems for asymptotically nonexpansive mappings in uniformly nonsquare and uniformly noncreasy Banach spaces. The results are generalized to commuting families of asymptotically nonexpansive mappings.
Currently displaying 2741 –
2760 of
3166