The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 2241 –
2260 of
10055
We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for -Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.
In this paper we exhibit some decompositions in orthogonal stochastic integrals of two-parameter square integrable martingales adapted to a Brownian sheet which generalize the representation theorem of E. Wong and M. Zakai ([6]). Concretely, a development in a series of multiple stochastic integrals is obtained for such martingales. These results are applied for the characterization of martingales of path independent variation.
A market with defaultable bonds where the bond dynamics is in a Heath-Jarrow-Morton setting and the forward rates are driven by an infinite number of Lévy factors is considered. The setting includes rating migrations driven by a Markov chain. All basic types of recovery are investigated. We formulate necessary and sufficient conditions (generalized HJM conditions) under which the market is arbitrage-free. Connections with consistency conditions are discussed.
Currently displaying 2241 –
2260 of
10055