Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus
In this paper we derive non asymptotic deviation bounds forwhere is a stationary and ergodic Markov process and is some integrable function. These bounds are obtained under various moments assumptions for , and various regularity assumptions for . Regularity means here that may satisfy various functional inequalities (F-Sobolev, generalized Poincaré etc.).
In this paper we derive non asymptotic deviation bounds for where X is a μ stationary and ergodic Markov process and V is some μ integrable function. These bounds are obtained under various moments assumptions for V, and various regularity assumptions for μ. Regularity means here that μ may satisfy various functional inequalities (F-Sobolev, generalized Poincaré etc.).
The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.
This note deals with two logical topics and concerns Boolean Algebras from an elementary point of view. First we consider the class of operations on a Boolean Algebra that can be used for modelling If-then propositions. These operations, or Conditionals, are characterized under the hypothesis that they only obey to the Modus Ponens-Inequality, and it is shown that only six of them are boolean two-place functions. Is the Conditional Probability the Probability of a Conditional? This problem will...