Displaying 2421 – 2440 of 10055

Showing per page

Dirichlet problem for parabolic equations on Hilbert spaces

Anna Talarczyk (2000)

Studia Mathematica

We study a linear second order parabolic equation in an open subset of a separable Hilbert space, with the Dirichlet boundary condition. We prove that a probabilistic formula, analogous to one obtained in the finite-dimensional case, gives a solution to this equation. We also give a uniqueness result.

Discrete approximations of generalized RBSDE with random terminal time

Katarzyna Jańczak-Borkowska (2012)

Discussiones Mathematicae Probability and Statistics

The convergence of discrete approximations of generalized reflected backward stochastic differential equations with random terminal time in a general convex domain is studied. Applications to investigation obstacle elliptic problem with Neumann boundary condition for partial differential equations are given.

Discrete Approximations of Strong Solutions of Reflecting SDEs with Discontinuous Coefficients

Alina Semrau (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

We study L p convergence for the Euler scheme for stochastic differential equations reflecting on the boundary of a general convex domain D ⊆ ℝd. We assume that the equation has the pathwise uniqueness property and its coefficients are measurable and continuous almost everywhere with respect to the Lebesgue measure. In the case D=[0,∞) new sufficient conditions ensuring pathwise uniqueness for equations with possibly discontinuous coefficients are given.

Discrete limit laws for additive functions on the symmetric group

Eugenijus Manstavičius (2005)

Acta Mathematica Universitatis Ostraviensis

Inspired by probabilistic number theory, we establish necessary and sufficient conditions under which the numbers of cycles with lengths in arbitrary sets posses an asymptotic limit law. The approach can be extended to deal with the counts of components with the size constraints for other random combinatorial structures.

Discrete limit theorems for the Laplace transform of the Riemann zeta-function

Roma Kačinskaitė, Antanas Laurinčikas (2005)

Acta Mathematica Universitatis Ostraviensis

In the paper discrete limit theorems in the sense of weak convergence of probability measures on the complex plane as well as in the space of analytic functions for the Laplace transform of the Riemann zeta-function are proved.

Discrete Lundberg-type bounds with actuarial applications

Kristina Sendova (2007)

ESAIM: Probability and Statistics

Different kinds of renewal equations repeatedly arise in connection with renewal risk models and variations. It is often appropriate to utilize bounds instead of the general solution to the renewal equation due to the inherent complexity. For this reason, as a first approach to construction of bounds we employ a general Lundberg-type methodology. Second, we focus specifically on exponential bounds which have the advantageous feature of being closely connected to the asymptotic behavior (for large...

Discrete Models of Time-Fractional Diffusion in a Potential Well

Gorenflo, R., Abdel-Rehim, E. (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.By generalization of Ehrenfest’s urn model, we obtain discrete approximations to spatially one-dimensional time-fractional diffusion processes with drift towards the origin. These discrete approximations can be interpreted (a) as difference schemes for the relevant time-fractional partial differential equation, (b) as random walk models. The relevant convergence questions as well as the behaviour for time tending to infinity...

Discrete random processes with memory: Models and applications

Tomáš Kouřim, Petr Volf (2020)

Applications of Mathematics

The contribution focuses on Bernoulli-like random walks, where the past events significantly affect the walk's future development. The main concern of the paper is therefore the formulation of models describing the dependence of transition probabilities on the process history. Such an impact can be incorporated explicitly and transition probabilities modulated using a few parameters reflecting the current state of the walk as well as the information about the past path. The behavior of proposed...

Discrete stochastic processes, replicator and Fokker-Planck equations of coevolutionary dynamics in finite and infinite populations

Jens Christian Claussen (2008)

Banach Center Publications

Finite-size fluctuations in coevolutionary dynamics arise in models of biological as well as of social and economic systems. This brief tutorial review surveys a systematic approach starting from a stochastic process discrete both in time and state. The limit N → ∞ of an infinite population can be considered explicitly, generally leading to a replicator-type equation in zero order, and to a Fokker-Planck-type equation in first order in 1/√N. Consequences and relations to some previous approaches...

Currently displaying 2421 – 2440 of 10055