Displaying 21 – 40 of 140

Showing per page

Approximation and numerical realization of 3D contact problems with given friction and a coefficient of friction depending on the solution

Jaroslav Haslinger, Tomáš Ligurský (2009)

Applications of Mathematics

The paper presents the analysis, approximation and numerical realization of 3D contact problems for an elastic body unilaterally supported by a rigid half space taking into account friction on the common surface. Friction obeys the simplest Tresca model (a slip bound is given a priori) but with a coefficient of friction which depends on a solution. It is shown that a solution exists for a large class of and is unique provided that is Lipschitz continuous with a sufficiently small modulus of...

Bloch wave homogenization of linear elasticity system

Sista Sivaji Ganesh, Muthusamy Vanninathan (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...

Bloch wave homogenization of linear elasticity system

Sista Sivaji Ganesh, Muthusamy Vanninathan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...

Boundary stabilization of the linear elastodinamic system by a Lyapunov-type method.

Rabah Bey, Amar Heminna, Jean-Pierre Lohéac (2003)

Revista Matemática Complutense

We propose a direct approach to obtain the boundary stabilization of the isotropic linear elastodynamic system by a natural feedback; this method uses local coordinates in the expression of boundary integrals as a main tool. It leads to an explicit decay rate of the energy function and requires weak geometrical conditions: for example, the spacial domain can be the difference of two star-shaped sets.

Carleman estimates for the non-stationary Lamé system and the application to an inverse problem

Oleg Yu. Imanuvilov, Masahiro Yamamoto (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we establish Carleman estimates for the two dimensional isotropic non-stationary Lamé system with the zero Dirichlet boundary conditions. Using this estimate, we prove the uniqueness and the stability in determining spatially varying density and two Lamé coefficients by a single measurement of solution over ( 0 , T ) × ω , where T > 0 is a sufficiently large time interval and a subdomain ω satisfies a non-trapping condition.

Carleman estimates for the non-stationary Lamé system and the application to an inverse problem

Oleg Yu. Imanuvilov, Masahiro Yamamoto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we establish Carleman estimates for the two dimensional isotropic non-stationary Lamé system with the zero Dirichlet boundary conditions. Using this estimate, we prove the uniqueness and the stability in determining spatially varying density and two Lamé coefficients by a single measurement of solution over (0,T) x ω, where T > 0 is a sufficiently large time interval and a subdomain ω satisfies a non-trapping condition.

Discontinuous Galerkin and the Crouzeix–Raviart element : application to elasticity

Peter Hansbo, Mats G. Larson (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous piecewise linear approximation of the displacements. We show optimal order a priori error estimates, uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is closely related to the non-conforming Crouzeix–Raviart (CR) element, which in fact is obtained when one of the stabilizing parameters tends to infinity. In the case of the elasticity operator, for which the...

Discontinuous Galerkin and the Crouzeix–Raviart element: Application to elasticity

Peter Hansbo, Mats G. Larson (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous piecewise linear approximation of the displacements. We show optimal order a priori error estimates, uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is closely related to the non-conforming Crouzeix–Raviart (CR) element, which in fact is obtained when one of the stabilizing parameters tends to infinity. In the case of the elasticity operator, for...

Currently displaying 21 – 40 of 140