Page 1 Next

Displaying 1 – 20 of 28

Showing per page

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows

Jean-Frédéric Gerbeau, Marina Vidrascu (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with shells...

A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows

Jean-Frédéric Gerbeau, Marina Vidrascu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with...

A three dimensional finite element method for biological active soft tissue formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A three dimensional finite element method for biological active soft tissue Formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A viscoelastic model with non-local damping application to the human lungs

Céline Grandmont, Bertrand Maury, Nicolas Meunier (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we elaborate a model to describe some aspects of the human lung considered as a continuous, deformable, medium. To that purpose, we study the asymptotic behavior of a spring-mass system with dissipation. The key feature of our approach is the nature of this dissipation phenomena, which is related here to the flow of a viscous fluid through a dyadic tree of pipes (the branches), each exit of which being connected to an air pocket (alvelola) delimited by two successive masses. The...

Caputo Derivatives in Viscoelasticity: A Non-Linear Finite-Deformation Theory for Tissue

Freed, Alan, Diethelm, Kai (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 74B20, 74D10, 74L15The popular elastic law of Fung that describes the non-linear stress- strain behavior of soft biological tissues is extended into a viscoelastic material model that incorporates fractional derivatives in the sense of Caputo. This one-dimensional material model is then transformed into a three-dimensional constitutive model that is suitable for general analysis. The model is derived in a configuration that differs from the current, or spatial,...

Cell-to-muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie, Ayman Mourad, Annie Raoult (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Cell-to-Muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie, Ayman Mourad, Annie Raoult (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement constraint...

Inverse modelling of image-based patient-specific blood vessels: zero-pressure geometry and in vivo stress incorporation

Joris Bols, Joris Degroote, Bram Trachet, Benedict Verhegghe, Patrick Segers, Jan Vierendeels (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In vivo visualization of cardiovascular structures is possible using medical images. However, one has to realize that the resulting 3D geometries correspond to in vivo conditions. This entails an internal stress state to be present in the in vivo measured geometry of e.g. a blood vessel due to the presence of the blood pressure. In order to correct for this in vivo stress, this paper presents an inverse method to restore the original zero-pressure geometry of a structure, and to recover the in vivo...

Mechanical aspects of growth in soft tissues

D. Ambrosi, F. Guana (2004)

Bollettino dell'Unione Matematica Italiana

In the last years many efforts have been devoted to understand the stressmodulated growth of soft tissues. Recent theoretical achievements suggest that a component of the stress-growth coupling is tissue-independent and reads as an Eshelby-like tensor. In this paper we investigate the mathematical properties and the qualitative behavior predicted by equations that specialize that model under few simple assumptions. Equations strictly deduced from a dissipation principle are compared with heuristic...

Propagation of elastic waves in DNA.

Mukherjee, Sunil, Sarkar, Saumyendra Nath, Raychaudhuri, Probhas, Mazumdar, Sunil Kumar (1983)

International Journal of Mathematics and Mathematical Sciences

Currently displaying 1 – 20 of 28

Page 1 Next