Page 1

Displaying 1 – 20 of 20

Showing per page

A multi-model approach to Saint-Venant equations: A stability study by LMIs

Valérie Dos Santos Martins, Mickael Rodrigues, Mamadou Diagne (2012)

International Journal of Applied Mathematics and Computer Science

This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear Matrix Inequalities...

Control of the surface of a fluid by a wavemaker

Lionel Rosier (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.

Control of the surface of a fluid by a wavemaker

Lionel Rosier (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in Lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.

Control of underwater vehicles in inviscid fluids

Rodrigo Lecaros, Lionel Rosier (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we investigate the controllability of an underwater vehicle immersed in an infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as control input the flow of the fluid through a part of the boundary of the rigid body, we obtain a finite-dimensional system similar to Kirchhoff laws in which the control input appears through both linear terms (with time derivative) and bilinear terms. Applying Coron’s return method, we establish some local controllability...

Controllability of 3D incompressible Euler equations by a finite-dimensional external force

Hayk Nersisyan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the control system associated with the incompressible 3D Euler system. We show that the velocity field and pressure of the fluid are exactly controllable in projections by the same finite-dimensional control. Moreover, the velocity is approximately controllable. We also prove that 3D Euler system is not exactly controllable by a finite-dimensional external force.

Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method

S. S. Ravindran (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the boundary penalty method for optimal control of unsteady Navier–Stokes type system that has been proposed as an alternative for Dirichlet boundary control. Existence and uniqueness of solutions are demonstrated and existence of optimal control for a class of optimal control problems is established. The asymptotic behavior of solution, with respect to the penalty parameter ϵ, is studied. In particular, we prove convergence of solutions of penalized control problem to the...

Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations

Jean-Michel Coron (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.

Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations

Jean-Michel Coron (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.

On the controllability and stabilization of the linearized Benjamin-Ono equation

Felipe Linares, Jaime H. Ortega (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law which...

On the controllability and stabilization of the linearized Benjamin-Ono equation

Felipe Linares, Jaime H. Ortega (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law...

On the L 2 -instability and L 2 -controllability of steady flows of an ideal incompressible fluid

Alexander Shnirelman (1999)

Journées équations aux dérivées partielles

In the existing stability theory of steady flows of an ideal incompressible fluid, formulated by V. Arnold, the stability is understood as a stability with respect to perturbations with small in L 2 vorticity. Nothing has been known about the stability under perturbation with small energy, without any restrictions on vorticity; it was clear that existing methods do not work for this (the most physically reasonable) class of perturbations. We prove that in fact, every nontrivial steady flow is unstable...

Optimal control of the Primitive Equations of the ocean with Lagrangian observations

Maëlle Nodet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem for the three-dimensional non-linear Primitive Equations of the ocean in a vertically bounded and horizontally periodic domain. We aim to reconstruct the initial state of the ocean from Lagrangian observations. This inverse problem is formulated as an optimal control problem which consists in minimizing a cost function representing the least square error between Lagrangian observations and their model counterpart, plus a regularization term. This paper proves...

Some inverse and control problems for fluids

Enrique Fernández-Cara, Thierry Horsin, Henry Kasumba (2013)

Annales mathématiques Blaise Pascal

This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.

Stabilization of a 1-D tank modeled by the shallow water equations

Christophe Prieur, Jonathan de Halleux (2002)

Journées équations aux dérivées partielles

We consider a tank containing a fluid. The tank is subjected to a one-dimensional horizontal move and the motion of the fluid is described by the shallow water equations. By means of a Lyapunov approach, we deduce control laws to stabilize the fluid's state and the tank's position. Although global asymptotic stability is yet to be proved, we numerically simulate the system and observe the stabilization for different control situations.

Currently displaying 1 – 20 of 20

Page 1