Displaying 21 – 40 of 614

Showing per page

A mixed formulation of a sharp interface model of stokes flow with moving contact lines

Shawn W. Walker (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Two-phase fluid flows on substrates (i.e. wetting phenomena) are important in many industrial processes, such as micro-fluidics and coating flows. These flows include additional physical effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddle-point) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate. The model is derived by an Onsager type principle using shape differential calculus (at the sharp-interface, front-tracking...

A modified Cayley transform for the discretized Navier-Stokes equations

K. A. Cliffe, T. J. Garratt, Alastair Spence (1993)

Applications of Mathematics

This paper is concerned with the problem of computing a small number of eigenvalues of large sparse generalized eigenvalue problems. The matrices arise from mixed finite element discretizations of time dependent equations modelling viscous incompressible flow. The eigenvalues of importance are those with smallest real part and are used to determine the linearized stability of steady states, and could be used in a scheme to detect Hopf bifurcations. We introduce a modified Cayley transform of the...

A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation

Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, Jacques Sainte-Marie (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity. Here we introduce another multilayer system with mass exchanges between the neighboring layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic pressure...

A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation*

Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, Jacques Sainte-Marie (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity. Here we introduce another multilayer system with mass exchanges between the neighboring layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic...

A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations

Yun-Bo Yang, Qiong-Xiang Kong (2017)

Applications of Mathematics

A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations is presented. Applying the orthogonal projection technique, we introduce two local Gauss integrations as a stabilizing term in the error correction method, and derive a new error correction method. In both the coarse solution computation step and the error computation step, a locally stabilizing term based on two local Gauss integrations is introduced. The stability and convergence of the...

A new quadrilateral MINI-element for Stokes equations

Oh-In Kwon, Chunjae Park (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a new stable MINI-element pair for incompressible Stokes equations on quadrilateral meshes, which uses the smallest number of bubbles for the velocity. The pressure is discretized with the P1-midpoint-edge-continuous elements and each component of the velocity field is done with the standard Q1-conforming elements enriched by one bubble a quadrilateral. The superconvergence in the pressure of the proposed pair is analyzed on uniform rectangular meshes, and tested numerically on uniform...

A new two-dimensional shallow water model including pressure effects and slow varying bottom topography

Stefania Ferrari, Fausto Saleri (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional model, which approximates the three-dimensional...

A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography

Stefania Ferrari, Fausto Saleri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional model, which approximates the three-dimensional...

A note on the generalized energy inequality in the Navier-Stokes equations

Petr Kučera, Zdeněk Skalák (2003)

Applications of Mathematics

We prove that there exists a suitable weak solution of the Navier-Stokes equation, which satisfies the generalized energy inequality for every nonnegative test function. This improves the famous result on existence of a suitable weak solution which satisfies this inequality for smooth nonnegative test functions with compact support in the space-time.

A phase-field method applied to interface tracking for blood clot formation

Marek Čapek (2020)

Applications of Mathematics

The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in Weller (2008), (2010) take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations...

Currently displaying 21 – 40 of 614